Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE EFFECT OF ENZYMATIC HYDROLYSIS OF A DIETARY PROTEIN ON THE EXCRETION OF URINARY NITROGEN METABOLITES

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Nutritional Science at Massey University, Palmerston North, New Zealand.

MARIA EUGENIA QUINTINO CINTORA
2000
TO TERESA CINTORA
AND
ANTONIO QUINTINO,

MY PARENTS
ABSTRACT

Hydrolysed milk proteins are used for many purposes in human nutrition. Although it is assumed that the nutritive value of a protein hydrolysate is the same, or even superior to the corresponding intact protein, there is limited research available to support this assumption.

The aim of this study was to compare amino acid utilisation and the pattern of excretion in the urine of the nitrogenous metabolites (urea, ammonia and creatinine) as an immediate response to the ingestion of a meal containing an intact protein or its enzymatic hydrolysate. This involved a novel technique, 'acute urine collection' (AUC), in which urine was drained from the bladder at short time periods (30 min to 2 hr) through a catheter.

The performance and nitrogen balance results indicated that the two sources of amino acid were equally effective in supporting nitrogen retention and growth of the pigs. Nevertheless, the pattern of excretion of the metabolites of nitrogen digestion suggested important differences in the metabolism of the pigs on the two diets.

Both groups of pig excreted creatinine nitrogen, at constant and comparable rates over the sampling period indicating similar rates of catabolism in the muscle. The total excretion of nitrogen by AUC by the two groups was similar but the pattern of excretion over the day differed which indicated a difference in the metabolism of the amino acids in the diets. This may have been in part due to a more rapid absorption of amino acids from the hydrolysed diet and in part due to a higher rate of glutamine and asparagine breakdown in the gut of pigs fed the hydrolysate.
Excretion of nitrogen as urea and ammonia was similar for the two groups but there were differences between the groups in the pattern of excretion of these metabolites. In addition, the excretion of ammonia was significantly lower ($P < 0.0001$) in the pigs fed the hydrolysate. This was due to a higher content of fixed cations in the diet containing the hydrolysate that led to a compensatory reduction in ammonia excretion. There was a proportional increase in the excretion of urea in the pigs on the hydrolysed diet as a result of the reduction in ammonia excretion but the differences were small relative to the total urea excretion and not significant.

AUC not only gives comparable information to the nitrogen balance if it is carried out over a 24 hr period but it also provides detailed information about the protein utilisation during the immediate postprandial period. In particular, AUC can indicate differences and/or similarities in protein absorption by allowing the observation of the pattern of production of urea directly related to the catabolism of dietary amino acids. In addition, it may be possible to use this technique to estimate the optimum time between meals.
ACKNOWLEDGEMENTS

I want to express my sincere appreciation to my supervisors, Dr Alison J. Darragh and Associate Professor Duncan Mackenzie for their continuing encouragement and guidance throughout the study.

I am especially thankful to Professor Duncan Mackenzie for his patience throughout the writing up of this thesis, and for sharing with me the adventures of his scientific thoughts.

I am grateful to Mr Frazer J. Allan for his involvement in the surgical aspects of the study, and for his valuable advice in the area of animal care.

I would also like to thank the following people for their various areas of support:

- Dr Barbara Kuhn-Sherlock for her advice on statistical matters.

- Mrs Chris Booth and Miss Catherine Brown for technical assistance during the experimental trials.

- Miss Maggie Zou, Mrs Florence Chung and Dr Philip Pearson for assistance on chemical analyses.

- Patrick Morel for assistance in computer programming with simulation of the weight gain and data available for pig growing.
- Dr Ravi Ravindran for provision of information on electrolyte acid-base balance matters.

- Dr John McIntosh for assistance with immunology, chemistry and human physiology matters.

- Mr Shane Rutherfurd for valuable informative support.

I acknowledge with gratitude the generous financial assistance of the New Zealand Dairy Board, having been the recipient of both a New Zealand Dairy Board Scholarship and a New Zealand Milk Products (Mexico) Scholarship.

Finally, I would like to express my sincere gratitude to my parents: Teresa and Antonio, and to my brothers: Antonio, Luis Manuel and José Alfredo, and my sisters: Guadalupe, Teresa, Rocio and Elisabeth for their long-distance support.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... III

LIST OF TABLES .. XI

LIST OF FIGURES .. XIV

LIST OF ABREVIATIONS .. XVII

INTRODUCTION ... 1

CHAPTER 1 LITERATURE REVIEW .. 3

1.1 Protein Hydrolysates; Properties and Processing 3
 1.1.1 Manufacture of Milk Protein Hydrolysates 4
 1.1.1.1 Enzymatic hydrolysis ... 5
 1.1.1.2 Control of enzymatic hydrolysis 8

1.2 Uses of Protein Hydrolysates ... 13
 1.2.1 Non-Medical but Special Nutritional Needs 14
 1.2.1.1 Hydrolysates for the elderly 14
 1.2.1.2 Hydrolysates for sports people 16
 1.2.1.3 Hydrolysates in weight-control diets 18
1.2.2 Hydrolysates for Individuals with Specific Medical Needs . 19
 1.2.2.1 Pancreatic patients ... 20
 1.2.2.2 Patients with short bowel syndrome 21
 1.2.2.3 Crohn’s disease ... 21
 1.2.2.4 Cow’s milk allergy ... 22
 1.2.2.4.1 Development of the cow’s milk allergy 24
 1.2.2.4.2 Enzymatic hydrolysis and protein allergenicity 26
 1.2.2.4.3 The hydrolysate formulae and their role in allergenic
diseases .. 28
 1.2.2.5 Other uses of hydrolysates 29

1.3 Human Metabolism of Protein Hydrolysates 30
 1.3.1 Digestion ... 30
 1.3.2 Absorption ... 32
 1.4.3 Nutritional Evaluation of Protein Hydrolysates 39

1.5 The Pig as an Animal Model for Evaluation of Human

Nutrition ... 45
 1.5.1 The Piglet as an Animal Model for the Human Baby 46
 1.5.2 The Growing Pig as an Animal Model for Studies in Human
Nutrition ... 47

1.6 Conclusions ... 48
CHAPTER 2 MATERIALS AND METHODS ... 50

2.1 Preliminary Trial .. 50

2.1.1 Animals .. 50

2.1.2 Diet and Feeding .. 51

2.1.2.1 Experimental diets ... 51

2.1.2.2 Diet preparation .. 55

2.1.2.3 Sampling of diets ... 55

2.1.2.4 Schedule for the preliminary trial 55

2.1.2.5 Feeding .. 56

2.1.3 Experimental Procedure ... 58

2.1.3.1 Nitrogen balance .. 58

2.1.3.1.1 Sub-sampling of urine and faeces 59

2.1.4 Acute Urine Collection .. 59

2.1.4.1 Implantation of bladder catheter 59

2.1.4.1.1 Surgery ... 60

2.1.4.2 AUC sampling ... 61

2.1.4.3 Removal of the catheter .. 62

2.1.4.4 Preparation of the urine samples for analysis 62

2.1.5 Chemical Analysis of Tested Proteins, Excreta and Diet

Samples ... 63

2.1.6 Data Analysis ... 67
2.1.6.1 Body weights, average dietary gains and feed intakes 67
2.1.6.2 Nitrogen balance ... 67
2.1.6.3 Acute urine collection .. 67

2.2 Main Trial .. 68
2.2.1 Animals ... 68
2.2.2 Diet and Feeding .. 68
2.2.3 Experimental Procedure ... 69
2.2.3.1 Nitrogen balance .. 69
2.2.3.1.1 Sub-sampling of urine and faeces 70
2.2.3.2 AUC sampling ... 70
2.2.3.2.1 Implantation of bladder catheter 70
2.2.3.2.2 Collection of urine samples 71
2.2.3.2.3 Removal of the catheter .. 71
2.2.3.2.4 Preparation of the samples for analysis and chemical
analysis .. 72
2.2.4 Data Analysis .. 72
2.2.4.1 Body weights, average dietary gains, feed intakes and
nitrogen balance .. 72
2.2.4.2 Acute urine collection ... 72
2.2.4.2.1 Transformation of the data from the acute urine
collection ... 72
2.2.4.2.2 The statistical design for the rate of excretion 73
2.2.4.2.3 The accumulative nitrogen excretion 74

CHAPTER 3 RESULTS ... 75

3.1 Pig Survival ... 75
3.2 Animal Health ... 75
3.3 Average Body weights .. 77
3.4 Average Daily Gain (ADG) .. 77
3.5 The Mean Daily Intake ... 79
 3.5.1 Preliminary Trial .. 79
 3.5.2 Main Trial .. 79
3.6 Variability of the Chemical Analysis 79
3.7 Nitrogen Balance ... 80
 3.7.1 Preliminary Trial .. 81
 3.7.2 Main Trial .. 82
3.8 Rate of Excretion of Urinary Metabolites 83
 3.8.1 Third Acute Urine Collection 83
 3.8.2 Fourth Acute Urine Collection 91
3.9 Accumulative Excretion of Urinary Metabolites 98
3.9.1 Third Acute Urine Collection ... 98
3.9.2 Fourth Acute Urine Collection .. 98

CHAPTER 4 DISCUSSION .. 102

CHAPTER 5 RECOMMENDATIONS .. 128

APPENDIX 1 INFANT FORMULAE BASED ON HYDROLYSED PROTEIN .. 130

APPENDIX 2 ALATAL 825 AND ALATAL 821 OUTLINE
MANUFACTURE .. 131

APPENDIX 3 RAW NITROGEN BALANCE DATA FOR THE MAIN TRIAL .. 132

APPENDIX 4 NITROGEN CONTENT OF THE DIET 133

REFERENCES ... 134
LIST OF TABLES

Table 1. Enzymes available for food protein hydrolysis 6

Table 2. Hydrolysates from casein and whey protein concentrate 7

Table 3. Ingredient and nutrient composition of the experimental diets 54

Table 4. Composition of a commercial grower diet fed to 37-53 kg pigs 57

Table 5. Composition of the diet fed to all the pigs for each day of the 7d adaptation period ... 57

Table 6. Average body weight of female pigs consuming 10% of their metabolic body weight of a diet containing either intact protein or a hydrolysed whey protein ... 78

Table 7. Average diet intake and the corresponding N intake in female pigs at each experimental stage in the main trial ... 79

Table 8. Comparison of the N intake, N excretion and N balances for female pigs fed with either intact or hydrolysed protein in a preliminary and a main trial ... 81
Table 9. Nitrogen excreted as urinary metabolites in pigs receiving either an intact or hydrolysed protein diet during the nitrogen balance study of the preliminary trial ... 82

Table 10. Weight balance and protein deposition ratio in pigs receiving either an intact or hydrolysed protein diet during the nitrogen balance study of the main trial .. 82

Table 11. Nitrogen excreted in urinary metabolites in pigs receiving either an intact or hydrolysed protein diet during the nitrogen balance study of the main trial .. 83

Table 12. An example of the analysis of variance table generated by analysing the results from a split plot design in which effect of diet, time and diet*time on the rate of urinary ammonia excretion was tested 84

Table 13. Summary of the ANOVAs of the effects of diet, time and diet*time on the rate of excretion of urinary creatinine N, urea N, ammonia N and total N, following a split plot design on the 3rd AUC .. 84

Table 14. Summary of the ANOVAs of the effects of diet, time and diet*time on the rate of excretion of urinary creatinine N, urea N, ammonia N and total N, using a split plot design on the 4th AUC .. 91
Table 15. The accumulated total excretion of nitrogen in urinary metabolites measured in growing female pigs at certain intervals for 16 hr following a meal of either an intact milk protein or its hydrolysate. 100

Table 16. The accumulative total excretion of nitrogen in urinary metabolites measured in growing female pigs at intervals, in a 24 hr period in which the pigs were offered two meals of either an intact milk protein, or its hydrolysate .. 101

Table 17. Nitrogen balances comparing alimentary proteins and their hydrolysates ... 113

Table 18. Comparison between the experimental conditions of several studies that evaluate the nutritional value of intact versus hydrolysed protein 115

Table 19. Dietary electrolyte balance in protein sources used in the experiment, and in human milk, bovine milk and infant formulae. 123
LIST OF FIGURES

Figure 1. The enzymatic process in the production of hydrolysed milk proteins ... 13

Figure 2. Nitrogen balance during exercise ... 18

Figure 3. Enzyme hydrolysis of protein ... 27

Figure 4. Dual mechanism for the assimilation of dietary nitrogen in the small intestine ... 34

Figure 5. Molecular weight profile of ALATAL 821 ... 52

Figure 6. Competitive ELISA of ALATAL 821 and ALATAL 825 ... 53

Figure 7. Daily weight gains during the adaptation period, nitrogen balance, the third acute urine collection and the fourth acute urine collection of the main trial ... 78

Figure 8. Main Trial; Third Acute Urine Collection; Urinary creatinine nitrogen excreted after consumption, by pigs, at time 0 hr, diets containing either an intact or hydrolysed whey protein ... 85
Figure 9. Main Trial; Third Acute Urine Collection; Urinary urea nitrogen excreted after consumption, by pigs, at time 0 hr, diets containing either an intact or hydrolysed whey protein .. 87

Figure 10. Main Trial; Third Acute Urine Collection; Urinary ammonia nitrogen excreted after consumption, by pigs, at time 0 hr, diets containing either an intact or hydrolysed whey protein .. 88

Figure 11. Main Trial; Third Acute Urine Collection; Urinary total nitrogen excreted after consumption, by pigs, at time 0 hr, diets containing either an intact or hydrolysed whey protein .. 90

Figure 12. Main Trial; Fourth Acute Urine Collection; Urinary creatinine nitrogen excreted after consumption, by pigs, at 0 and 8 hr, diets containing either an intact or hydrolysed whey protein .. 92

Figure 13. Main Trial; Fourth Acute Urine Collection; Urinary urea nitrogen excreted after consumption, by pigs, at 0 and 8 hr, diets containing either an intact or hydrolysed whey protein .. 94

Figure 14. Main Trial; Fourth Acute Urine Collection; Urinary ammonia nitrogen excreted after consumption, by pigs, at time 0 and 8 hr, diets containing either an intact or hydrolysed whey protein .. 96
Figure 15. Main Trial; Fourth Acute Urine Collection; Urinary total nitrogen excreted after consumption, by pigs, at 0 and 8 hr, diets containing either an intact or hydrolysed whey protein .. 97

Figure 16. Rate of excretion of urinary creatinine in Duggal and Eggum study (1978) and the present study .. 111

Figure 17. The percentage reduction in ammonia excretion when fixed cations are added in excess to the diet .. 122
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADG</td>
<td>Average Daily Gain</td>
</tr>
<tr>
<td>AT/TN</td>
<td>Amino acid nitrogen in the hydrolysate relative to the total amount of nitrogen in the substrate</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemistry</td>
</tr>
<tr>
<td>APU</td>
<td>Animal Physiology Unit</td>
</tr>
<tr>
<td>AUC</td>
<td>Acute Urine Collection</td>
</tr>
<tr>
<td>D</td>
<td>Daltons</td>
</tr>
<tr>
<td>DEB</td>
<td>Dietary Electrolyte Balance</td>
</tr>
<tr>
<td>DH</td>
<td>Degree of Hydrolysis</td>
</tr>
<tr>
<td>GLM</td>
<td>the general linear method procedure</td>
</tr>
<tr>
<td>HP</td>
<td>Diet containing hydrolysed protein</td>
</tr>
<tr>
<td>IFNHH</td>
<td>Institute of Food Nutrition and Human Health</td>
</tr>
<tr>
<td>IP</td>
<td>Diet containing intact protein</td>
</tr>
<tr>
<td>MBW</td>
<td>Metabolic Body Weight</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NAD</td>
<td>Nicotinamide Adenine Dinucleotide</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide Adenine Dinucleotide (reduced)</td>
</tr>
<tr>
<td>NB</td>
<td>Nitrogen Balance</td>
</tr>
<tr>
<td>PDR</td>
<td>Protein Deposition Ratio</td>
</tr>
<tr>
<td>UTI</td>
<td>Urinary Tract Infections</td>
</tr>
</tbody>
</table>
INTRODUCTION

Proteins are vital molecules for life. Their importance has been recognised since the 19th century, when they were called the 'primary material of life'. Even though protein structure is built using only 20 different amino acids, the different arrangement and repetition in the chain make it possible to have thousands of different proteins performing unique and specific functions.

The human being requires a constant supply of protein in the diet for maintaining protein homeostasis in the body. The body of a normal 70 kg man contains about 11 kg of protein (Forbes, 1987). This protein mass contains thousands of different proteins each of different weight and chemical composition and each one with a definite function. Some provide the structure for cells and organs; others control the speed of biochemical reactions, and others control intracellular and intercellular communication. Although the total mass of protein in the body is relatively stable in the adult, proteins are continually degraded into their constituent amino acids. In order to keep the protein mass constant, new proteins must be synthesised to replace the degraded ones. About 0.3 kg of protein are degraded and replaced each day in a normal 70 kg man (Morais et al., 1997). Synchronised degradation and synthesis of protein, referred to as 'protein turnover', consumes approximately 20% of the energy consumption of a person at rest after an overnight fast (Welle and Nair, 1990). Most of this energy is used for protein synthesis rather than degradation (Welle, 1999). The rapid alteration of the concentration of certain enzymes, such as occurs after ingestion of a meal, alcohol or stress and the replacement of altered proteins from oxidation,
glycation, racemisation and isomerisation consumes much more energy than cell replication and growth (Berneis, 1997; Boirie et al., 1997; Welle, 1999).

Under normal conditions, an individual can maintain the turnover of his/her body protein by eating a diet containing an adequate quantity and balance of proteins. The normal physiological processes of digestion and absorption will ensure the dietary amino acids reach the sites of protein metabolism. Under some circumstances, however, dietary proteins are unable to meet the amino acid requirements of the individual or whole dietary proteins are not tolerated. For example, an insufficient gut absorptive surface, inefficient function of some gastrointestinal organs, degenerated digestive and absorptive function, may all lead to insufficient absorption of amino acids from the gastrointestinal tract and therefore malnutrition. Alternatively, activation of allergic reactions to dietary proteins can induce life threatening anaphylactic reactions. Many of these problems may be avoided by replacing the protein in the diet with partially digested proteins that are readily digested and have low allergenicity.

Given the nutritional dependence that consumers, such as allergenic infants, and patients with pancreatic and Crohn's disease, have on pre-digested proteins, it is crucial to assess their nutritional value in comparison with the intact protein. Even though several studies have compared the nutritional value of intact proteins and their hydrolysates, there is still much controversy arising from the methods used in the comparisons. The objective of the present study was to compare both the immediate and long-term responses of pigs to a milk protein that was fed intact or hydrolysed. The response variables measured included the weight gain of the pigs, nitrogen balance and the pattern of excretion of nitrogenous compounds in the urine.