Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
CITRIC ACID PRODUCTION FROM YEASTS:
COMPARISON OF A PARENT AND A MUTANT
STRAIN OF CANDIDA GUILLIERMONDII, AND
SUBSEQUENT REVERSION OF THE MUTANT

A thesis presented in fulfilment of the requirements for the degree of

Master of Philosophy

in

Food Technology

at

Massey University

Anne-Marie Nutter

1997
ABSTRACT

Citric acid production from yeasts has been studied widely owing to the short duration of fermentation, the broad choice of carbon source and the better yields obtained when compared to the currently used submerged or surface fermentation with *Aspergillus niger*.

In this work two strains of *Candida guilliermondii* were compared for their citric acid-producing capabilities, these being parent strain *Candida guilliermondii* NRRL Y-448, and mutant strain *Candida guilliermondii* IMKI. The mutant was previously selected for its ability to produce much higher concentrations of citric acid than the parent. These strains were grown under various nutrient limitations to determine if nutrient limitation had an effect on the amount of citric acid produced.

Several differences were observed between the non-citric acid-producing parent and the citric acid-producing mutant. The mutant generally consumed less glucose (g.g⁻¹), produced less biomass (g.L⁻¹) and produced much higher levels of citric acid – the best production (7.34 g.g⁻¹) seen from the culture grown under phosphorus-limited (0.15 mM) conditions. Upon assessment of enzyme activities it was found that the mutant also exhibited reduced activity of the enzyme NAD-ICDH (NAD-dependent isocitrate dehydrogenase), a recognised control point for the over-production of citric acid. NAD-ICDH is inhibited by increased concentrations of ATP - these are associated with the accumulation of citric acid in the cell in the stationary phase of growth. This reduction in NAD-ICDH activity correlated with a dramatic increase in the activity of NADP-ICDH (NADP-specific isocitrate dehydrogenase), the activity of which was thought to compensate for the loss of activity of NAD-ICDH. However, in a subsequent experiment, the mutant was found to have reverted - losing its ability to produce citric acid. This loss of productivity occurred before the levels of adenine
nucleotides in the cell could be assessed, meaning that the suggested inhibition of NAD-ICDH by elevated levels of ATP could not be confirmed.

Upon analysis of the revertant, it was found that glucose consumption (grams per gram of cells) had increased, as had the production of biomass (g.L\(^{-1}\)). Even though the revertant failed to consume as much glucose as the parent, in many instances it produced higher levels of biomass. Upon analysis of enzyme activity, it was found that the activity of NAD-ICDH had increased, so reducing the accumulation of citric and isocitric acids. The activity of NADP-ICDH had decreased somewhat, but activity of this enzyme remained at significant levels. It is proposed that the activity of NADP-ICDH in the revertant was responsible for the increased efficiency of biomass production.

In conclusion, it is suggested that overproduction of citric acid in *Candida guilliermondii* IMK1 was due to the consumption of lowered levels of glucose combined with the reduced activity of the enzyme NAD-ICDH, which it is speculated was due to elevated concentrations of ATP in the cell.
When I started on this journey of discovery, who would have known where the next few years were to take me. However, this particular little journey has finally been completed. I would like to thank my Mum and Dad for all of their love and support, which helped to keep me going when all was not going as planned. I would also like to thank John Brooks - his support and encouragement was greatly appreciated. I can’t forget the other technical staff in the Food Technology department, most of whom at some time have offered advice and encouragement. Lastly I want to acknowledge myself – I finally made it!

A cloud does not know why it moves in such a direction and at such a speed
 It feels an impulsion..........this is the place to go now
 But the sky knows the reasons and patterns behind all clouds
 And you will know too – when you lift yourself high enough to see beyond horizons

Richard Bach
Illusions
TABLE OF CONTENTS

1. **Introduction**

2. **Literature Review**

 2.1 Citric acid – General
 2.1.1 History of Citric Acid Production
 2.1.2 Uses and Properties of Citric Acid
 2.1.3 Biochemistry of the Citric Acid Cycle
 2.1.4 Regulation of the Citric Acid Cycle - General
 2.1.5 Strains used in Citric Acid Production
 2.1.6 Citric Acid Production by *Aspergillus niger*

 2.2 Citric Acid Production from Yeasts
 2.2.1 Introduction
 2.2.2 Yeast biology
 2.2.2.1 Growth and Multiplication of Yeasts
 2.2.2.2 Yeast Cell Structure

 2.2.3 Media Used in the Production of Citric Acid
 2.2.3.1 Carbon Source
 2.2.3.2 Nutrient Limitation
 Nitrogen
 Phosphorus
 Vitamins and Minerals
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3.3</td>
<td>Growth Conditions</td>
<td>28</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Yeast Strains Used in the Production of Citric Acid</td>
<td>30</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Control of Citric Acid Production from Citric Acid Producing Yeasts</td>
<td></td>
</tr>
<tr>
<td>2.2.5.1</td>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>2.2.5.2</td>
<td>Nutrient Limitation and Citric Acid Production</td>
<td>32</td>
</tr>
<tr>
<td>2.2.5.3</td>
<td>Enzyme Activity</td>
<td>34</td>
</tr>
<tr>
<td>2.2.5.4</td>
<td>Adenine Nucleotides</td>
<td>37</td>
</tr>
<tr>
<td>2.2.5.5</td>
<td>Transport of Glucose and Citric Acid in Citric Acid-Producing Yeasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glucose Transport</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Citric Acid Transport</td>
<td>39</td>
</tr>
<tr>
<td>2.2.5.6</td>
<td>Growth Conditions Affecting Citric Acid Production</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Carbon Source</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>pH Levels</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Oxygen Levels</td>
<td>45</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Productivity of Citric Acid-Producing Yeasts</td>
<td>47</td>
</tr>
<tr>
<td>2.3</td>
<td>Yeast Mutation and Repair</td>
<td>49</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Introduction</td>
<td>49</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Repair</td>
<td>50</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Inactivation</td>
<td>52</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Modification of Effects of Radiation</td>
<td>53</td>
</tr>
</tbody>
</table>
2.3.4.1 Post-irradiation Treatments 53
2.3.4.2 Cell Phase 54
2.3.4.3 Mitochondria 54

2.3.5 Mutation and Citric Acid-Producing Yeasts 55

3. Nutrient Limitation Experiment - Materials and Methods 59

3.1 Introduction 59

3.2 Cultures - Origin and Maintenance 59
 3.2.1 Yeast Strains 59
 3.2.2 Maintenance 60

3.3 Nutrient Limitation Experiment 60
 3.3.1 Media composition and concentration of limiting nutrients 60
 3.3.2 Inoculation of flasks 61

3.4 Analysis of Samples 62
 3.4.1 Preparation of sample for further analysis 62
 3.4.2 Optical density 62
 3.4.3 pH 63
 3.4.4 Dry weight determination 63
3.5 Analysis of Concentration of Glucose and Citric Acid Cycle Metabolites in the Fermentation Medium
3.5.1 Glucose
3.5.2 Citric acid
3.5.3 Isocitric acid
3.5.4 Pyruvate
3.5.5 2-Oxoglutarate
3.5.6 Fumarate
3.5.7 Malate

3.6 Analysis of Enzyme Activities of the Citric Acid Cycle
3.6.1 Fermentation and sampling
3.6.2 Disruption of cells and sample preparation
3.6.3 Protein analysis
3.6.4 Citrate Synthase (EC 4.1.3.7)
3.6.5 Aconitase (EC 4.2.1.3)
3.6.6 NAD-dependent Isocitrate Dehydrogenase (EC 1.1.1.41)
3.6.7 NADP-specific Isocitrate Dehydrogenase (EC 1.1.1.42)
3.6.8 Pyruvate Carboxylase (EC 6.4.1.1)

4. Mutant Reisolation
4.1 Introduction
4.2 UV Mutagenesis
5. **Nutrient Limitation Experiment - Part 1**

Results and Discussion

5.1 Introduction

5.2 Optical density (OD)

5.3 Changes in pH

5.4 Biomass Production

5.5 Biomass Yield

5.6 Glucose Consumption and Citric Acid Production
 5.6.1 Glucose Consumption
 5.6.2 Citric Acid Production
 5.6.3 Substrate Yield

5.7 Specific Rates of Glucose Consumption and Citric Acid Production
 5.7.1 Glucose Consumption
 5.7.2 Citric Acid Production

5.8 Ratio of Citric Acid to Isocitric Acid

78

78

79

82

83

85

88

88

91

93

93

96

97
5.9 Levels of Citric Acid Cycle Intermediates Excreted into the Medium
5.9.1 Isocitrate
5.9.2 Pyruvate
5.9.3 2-Oxoglutarate
5.9.4 Fumarate
5.9.5 Malate

5.10 Experiment 1: Summary and Discussion

6. Nutrient Limitation Experiment - Part 2
Results and Discussion

6.1 Introduction

6.2 Comparison of Internal and External Levels of Citric Acid Cycle Intermediates
6.2.1 Citric Acid
6.2.2 Isocitric Acid
6.2.3 Pyruvate
6.2.4 2-Oxoglutarate
6.2.5 Malate
6.2.6 Fumarate
6.3 Enzyme Activities
 6.3.1 Citrate Synthase 131
 6.3.2 Aconitase 134
 6.3.3 NAD-dependent Isocitrate Dehydrogenase 135
 6.3.4 NADP-specific Isocitrate Dehydrogenase 136
 6.3.5 Pyruvate Carboxylase 137

6.4 Experiment 2: Summary and Discussion 139

7. Reversion and Reisolation of Mutant Strain
 Candida guilliermondii IMK1 144

7.1 Introduction 144

7.2 Citric Acid Production 144

7.3 Glucose Consumption 147

7.4 Biomass Production and Biomass Yield 149

7.5 Levels of Intermediates Excreted into the Medium 152
 7.5.1 Isocitric Acid 152
 7.5.2 Pyruvate 152
 7.5.3 2-Oxoglutarate 156
7.5.4 Fumarate

7.6 Enzyme Activity
7.6.1 Citrate Synthase
7.6.2 Aconitase
7.6.3 NAD-dependent Isocitrate Dehydrogenase
7.6.4 NADP-specific Isocitrate Dehydrogenase
7.6.5 Pyruvate Carboxylase

7.7 Possible Site(s) of Repair of the Mutant Strain
7.7.1 Glucose consumption
7.7.2 Enzyme Activity

7.8 Efficiency of Mutation Method

8. Conclusion

8.1 Conclusion

8.2 Further work
Appendix 1 – Literature 174
Appendix 2 – Materials and Methods 183
Appendix 3 – Nutrient Limitation Experiment: Part 1 186
Appendix 4 – Nutrient Limitation Experiment: Part 2 196
Appendix 5 – Reversion of Candida guilliermondii IMK1 199
References 204
LIST OF TABLES

Table 2.1: The citric acid cycle 7

Table 2.2: Citric acid and isocitric acid production from yeasts (grams per gram of cells) 48

Table 3.1: Limitations chosen for enzymatic analysis 70

Table 5.1: Comparison of biomass (dry weights) of parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1 after 144 hours 85

Table 5.2: Comparison of levels of glucose consumed and citric acid produced for parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1 after 144 hours 91

Table 5.3: Comparison of ratios of citric acid to isocitric acid (grams per gram of cells) for parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1 98

Table 7.1: Comparison of biomass (dry weights) of parent, mutant and revertant strains after 144 hours. 151

Table A1.1: Summary of citric acid production from yeasts: substrates, methods and yields 175

Table A1.2a: Summary of citrate synthase activity from citric acid producing yeasts 178
Table A1.2b: Summary ofaconitase activity of citric acid producing yeasts

Table A1.2c: Summary of NAD-dependent isocitrate dehydrogenase activity of citric acid producing yeasts

Table A1.2d: Summary of NADP-specific isocitrate dehydrogenase activity of citric acid producing yeasts

Table A1.2e: Summary of isocitrate lyase activity of citric acid producing yeasts

Table A2.1: Nutrient limitation experiment – media and composition

Table A2.2: Concentrations of amino acids, vitamins and trace elements

Table A3.1: Optical density at A600 nm of parent strain Candida guilliermondii NRRL Y-448 at 24 hour intervals

Table A3.2: Optical Density at A600 nm of mutant strain Candida guilliermondii IMK1 at 24 hour intervals

Table A3.3: pH changes of parent strain at Candida guilliermondii NRRL Y-448 over period of fermentation

Table A3.4: pH changes of mutant strain at Candida guilliermondii IMK1 over period of fermentation
Table A3.6: Citric acid production and glucose consumption
from parent strain *Candida guilliermondii* NRRL Y-448
and mutant strain *Candida guilliermondii* IMK1 over a
fermentation period of 144 hours

Table A3.7: Biomass yield (grams of cells per gram of glucose) for
parent strain *Candida guilliermondii* NRRL Y-448
and mutant strain *Candida guilliermondii* IMK1

Table A3.8: Citrate yield (grams of citrate per gram of cells) for
parent strain *Candida guilliermondii* NRRL Y-448
and mutant strain *Candida guilliermondii* IMK1

Table A3.9: Substrate yield (grams of citrate per gram of glucose) for
parent strain *Candida guilliermondii* NRRL Y-448
and mutant strain *Candida guilliermondii* IMK1

Table A3.10: Maximum specific rates of glucose utilisation for
parent strain *Candida guilliermondii* NRRL Y-448
and mutant strain *Candida guilliermondii* IMK1

Table A3.11: Maximum specific rates of citric acid production for
parent strain *Candida guilliermondii* NRRL Y-448
and mutant strain *Candida guilliermondii* IMK1

Table A3.12: Levels of intermediates (milligrams per gram of cells)
excreted into the fermentation medium by parent strain
Candida guilliermondii NRRL Y-448 and mutant strain
Candida guilliermondii IMK1 after 144 hours
Table A4.1: Comparison of internal and external metabolites (milligrams per gram of cells) of parent Candida guilliermondii NRRL Y-448 in logarithmic and stationary phases of growth.

Table A4.2: Comparison of internal and external metabolites (milligrams per gram of cells) of mutant strain Candida guilliermondii IMK1 in logarithmic and stationary phases of growth.

Table A4.3: Enzyme activities (U/mg protein) of parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1 in logarithmic and stationary growth phases.

Table A5.1: Comparison of citric acid production, glucose consumption and biomass yield from Candida guilliermondii – parent, mutant and revertant strains.

Table A5.2: Comparison of levels of intermediates (mg/g cells) excreted by Candida guilliermondii – parent, mutant and revertant strains after 144 hours.

Table A5.3: Comparison of enzyme activities (U/mg protein) of Candida guilliermondii – parent, mutant and revertant strains.
LIST OF FIGURES

Figure 2.1: The citric acid cycle. Regulation of the citric acid cycle and anaplerotic pathways. 8

Figure 2.2: Process of catabolism (degradation) and anabolism (biosynthesis) linked to energy production and provision of reducing power – aerobic metabolism 20

Figure 2.3: Method for isolation of a fluoroacetate-sensitive, non-citrate metabolizing mutant 56

Figure 5.1: Optical density at A600 nm of parent strain Candida guilliermondii NRRL Y-448 at 24 hour intervals 80

Figure 5.2: Optical density at A600 nm of mutant strain Candida guilliermondii IMK1 81

Figure 5.3: Biomass yield (grams of cells per gram of glucose) of parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1 86

Figure 5.4: Citrate yield (grams of citrate per gram of cells) for parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1 90

Figure 5.5: Substrate yield (grams of citrate per gram of glucose) for parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1 92
Figure 5.6: Maximum specific rates of glucose utilisation for parent strain *Candida guilliermondii* NRRL Y-448 and mutant strain *Candida guilliermondii* IMK1

Figure 5.7: Maximum specific rates of citric acid production for parent strain *Candida guilliermondii* NRRL Y-448 and mutant strain *Candida guilliermondii* IMK1

Figure 5.8: Comparison of isocitrate production (milligrams per gram of cells) from parent strain *Candida guilliermondii* NRRL Y-448 and mutant strain *Candida guilliermondii* IMK1

Figure 5.9: Comparison of pyruvate production (milligrams per gram of cells) from parent strain *Candida guilliermondii* NRRL Y-448 and mutant strain *Candida guilliermondii* IMK1

Figure 5.10: Comparison of 2-oxoglutarate production (milligrams per gram of cells) from parent strain *Candida guilliermondii* NRRL Y-448 and mutant strain *Candida guilliermondii* IMK1

Figure 5.11: Comparison of fumarate production (milligrams per gram of cells) from parent strain *Candida guilliermondii* NRRL Y-448 and mutant strain *Candida guilliermondii* IMK1
Figure 5.12: Comparison of malate production (milligrams per gram of cells from parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1)

Figure 6.1: Comparison of internal and external levels of citric acid produced by parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1

Figure 6.2: Comparison of internal and external levels of isocitric acid from parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1

Figure 6.3: Comparison of internal and external levels of pyruvate from parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1

Figure 6.4: Comparison of internal and external levels of 2-oxoglutarate from parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1

Figure 6.5: Comparison of internal and external levels of malate from parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1

Figure 6.6: Comparison of internal and external levels of fumarate produced by parent strain Candida guilliermondii NRRL Y-448 and mutant strain Candida guilliermondii IMK1
Figure 6.7: Comparison of enzyme activities of parent strain *Candida guilliermondii* NRRL Y-448 and mutant strain *Candida guilliermondii* IMK1

Figure 7.1: Comparison of citric acid production (grams of citrate per gram of cells) from *Candida guilliermondii* – parent, mutant and revertant strains

Figure 7.2: Comparison of glucose consumption from *Candida guilliermondii* – parent, mutant and revertant strains

Figure 7.3: Comparison of biomass yield (grams of cells per gram of glucose) from *Candida guilliermondii* – parent, mutant and revertant strains

Figure 7.4: Comparison of isocitrate production (milligrams per gram of cells) from *Candida guilliermondii* – parent, mutant and revertant strains

Figure 7.5: Comparison of pyruvate production (milligrams per gram of cells) from *Candida guilliermondii* – parent, mutant and revertant strains

Figure 7.6: Comparison of 2-oxoglutarate production (milligrams per gram of cells) from *Candida guilliermondii* – parent, mutant and revertant strains

Figure 7.7: Comparison of fumarate production (milligrams per gram of cells) from *Candida guilliermondii* – parent, mutant and revertant strains
Figure 7.8: Comparison of enzyme activities of *Candida guilliermondii* – parent, mutant and revertant strains
CHAPTER 1

INTRODUCTION

Citric acid is currently produced industrially using the submerged or surface fermentation with *Aspergillus niger*. Citric acid has a wide range of uses, but the majority of citric acid produced is used in the food and pharmaceutical industries.

Recently attention has been focused on the use of yeasts for the production of citric acid. Yeasts have certain advantages over fungi, some of these being the shorter duration of fermentation, broad choice of carbon source and better yields.

Much work has been performed on the mechanism of accumulation of citric acid in yeasts. The organisms most commonly used are those of the genus *Candida*, *C. lipolytica* (Synonym: *Yarrowia lipolytica*, *Saccharomyces lipolytica*) being the most favoured. It has been found that the optimum production of citric acid can vary depending on the type of carbon source, the medium pH, aeration and also the presence or absence of trace elements.

It is generally accepted that for citric acid production to occur, the culture must be under conditions of nutrient limitation - usually nitrogen limitation. However, other nutrient limitations have been assessed successfully for the production of citric acid.

The object of this research was to compare two strains of *Candida guilliermondii* - the parent (NRRL Y-448) and a mutant strain (IMK1). The mutant was chosen for its increased production of citric acid. Comparisons were made between the parent and the mutant to attempt to identify the differences that were responsible
for the increased production of citric acid from the mutant. Comparisons were made of glucose consumption, rates of production of citric acid, levels of intermediates and enzymes of the tricarboxylic acid (TCA) cycle.

Unfortunately, the mutant proved to be unstable and citric acid producing activity was lost after a period of time. Attempts were made to revive this mutant and to isolate a new citric acid producing mutant, but this proved to be unsuccessful.