Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
EFFECT OF TRANSGLUTAMINASE ON MILK PROTEINS

A thesis presented in partial fulfilment of the requirements for the degree of

MASTER IN TECHNOLOGY

at

MASSEY UNIVERSITY
NEW ZEALAND

XIMENITA ISABELLE TREJO ARAYA

2003
ABSTRACT

In this study transglutaminase was used to achieve ε-γ-(glutamyl) lysine cross-linking of milk proteins, in Trim™ and Full Fat milks, the same milks with a variety of added protein concentrates, and finally in yogurt and Petite Suisse acid gel systems. The effects of a preheat treatment, enzyme incubation temperature, enzyme inactivation after the enzyme incubation period and homogenization on the cross-linking of the three major casein and two whey proteins were also studied. The degree of cross-linking was established by the use of SDS PAGE gel electrophoresis.

The results indicated that cross-linking of the major casein and whey proteins was maximized if the milk was preheated for 10 minutes at 90°C and then cooled before addition of the transglutaminase. However, the preheat treatment was not always advantageous in Trim™ milk systems, but was essential for Full Fat milk systems. Maximal cross-linking of milk proteins occurred if the enzyme/milk system was incubated at 37°C for two hours rather than at 55°C for the same period. The extent of cross-linking increased in an almost linear fashion with increasing transglutaminase concentration in most milk systems, with maximal cross-linking occurring when the enzyme concentration was 100 U/mL. Studies on one milk system showed that whey loss and gel strength deteriorated if more than 100 U/mL of enzyme was used.

The study demonstrated that homogenization was an essential step for protein cross-linking if the system contained any fat. Casein and whey protein transglutaminase mediated cross-linking was maximized in Full Fat milk systems if the milk was homogenized before transglutaminase was added. Maximal cross-linking, particularly of whey proteins, occurred in Full Fat milk systems if the milk was preheated for 10 minutes at 90°C, cooled to 60°C and then homogenized at 50/150, cooled further to 37°C and then incubated with 100 U/mL of enzyme for two hours.

Addition of sodium caseinate or milk protein isolate to Trim™ and Full Fat milk systems was shown to significantly improve protein cross-linkage by up to 50% for β-casein and whey protein respectively. Transglutaminase addition to milk systems containing the previously mentioned protein concentrates further enhanced cross-linking compared to the non-enzyme controls, particularly when the enzyme concentration was 100 U/mL.
Addition of transglutaminase to acid milk gels dramatically improved the whey holding and gel properties of the products, particularly when the enzyme concentration was 100 U/mL. The reduction in whey loss was proportional to transglutaminase concentration up to 100 U/mL. A 100% reduction in whey syneresis and a 10g F improvement in gel strength improvement were obtained when 0.5 % sodium caseinate and 100 U/mL of transglutaminase were added to a gel milk system compared to a control sample with no enzyme. The physical properties of the milk acid gels were further improved if the transglutaminase in the acid gel systems was not inactivated prior to the addition of the enzyme.

The addition of milk protein concentrates such as sodium caseinate and total milk proteinate were shown to have dramatic effects on the whey holding and gel properties of acid gels. Moreover, the properties showed little reduction over a two week storage period compared to yogurt with no added protein. The addition of transglutaminase at a concentration of 100 U/mL further enhanced the above physical characteristics of the acid milk gels. Variations in cross-linking within systems containing either sodium caseinate, milk protein concentrate and milk protein isolate were observed. These variations need to be examined in further work. The addition of NaCNTMP further enhanced the gel and whey-holding properties compared to systems containing either sodium caseinate or total milk proteinate.

The final study was conducted on Petite Suisse, a high fat acid milk gel, and here the addition of transglutaminase at 100 U/mL dramatically improved the gel strength of the system by 500% compared to the control.

Finally, this research confirmed that transglutaminase effectively cross-linked milk proteins, and in particular β- and κ-casein and β-lactoglobulin.

Transglutaminase addition to milk and acid milk systems clearly improved some of the physical properties of the systems. However, much work is needed before it could be recommended for use by industry. The effect of adding transglutaminase to acid milk gels and milk systems should be evaluated by consumer panels to ensure that the sensory properties of these systems have in no way been compromised. Furthermore the economic costs of adding transglutaminase should be determined to ensure that the process would not
be uneconomic. If the above evaluations prove to be beneficial then the process could be investigated and further studies carried out to see whether improvements could result by addition of transglutaminase to such milk products as yogurts, desserts, cheese etc, and to create new products with different textural and water holding characteristics. Further work is needed on a scientific front to assess the effects of transglutainase and added proteins on the structure of milk gels and the precise mechanism of filament formation in these gels. Some questions were also raised concerning the exact mechanism that was responsible for removal of monomeric forms of whey protein in the various milk systems evaluated in this study, and these should be determined by further research work.
ACKNOWLEDGEMENTS

I would like to thank my chief supervisor, Dr Brian Wilkinson and Dr Michelle Harnett who opened the doors for me in New Zealand giving me constant support, advice, time and excellent guidance throughout the whole year. A special thanks also to Palatasa, for his constant strength and guidance.

I also would like to thank all the staff members from Fonterra Research Center, especially Brent, Dianne and Ivan, who were very supportive and very friendly during my time there.

I would like to thank and dedicate this piece of work to my parents who with lots of effort and sacrifice kept this dream project going.
Gracias mama' y papá, sin ustedes esto no seria possible. Los quiero mucho.

Finally a special thanks to my closest friends who were there for me always, Sophia, Toni, Gareth, Renoud, Rosalie and Brian, Peter Jeffery, Shane and Stephanie.

And finally to my fiancée who is always supporting me and who I admire, Andrew East you are an excellent person.

Thank you
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>II</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>V</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>VI</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XI</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XII</td>
</tr>
<tr>
<td>CHAPTER I</td>
<td></td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER II</td>
<td></td>
</tr>
<tr>
<td>2.0 LITERATURE REVIEW</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Milk Proteins</td>
<td>2</td>
</tr>
<tr>
<td>2.1.1 Caseins</td>
<td>2</td>
</tr>
<tr>
<td>2.1.1.1 Casein Micelle</td>
<td>3</td>
</tr>
<tr>
<td>2.1.2 Whey Proteins</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Protein Gelation</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Gelation of Caseins</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2 Gelation of Whey Proteins</td>
<td>10</td>
</tr>
<tr>
<td>2.2.3 Factors Affecting Gelation</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Transglutaminase and its food application</td>
<td>16</td>
</tr>
<tr>
<td>2.3.1 Transglutaminase in Milk Proteins</td>
<td>21</td>
</tr>
<tr>
<td>2.3.1.1 Cross-linking of Caseins with Transglutaminase</td>
<td>26</td>
</tr>
<tr>
<td>2.3.1.2 Cross-linking of whey proteins with Transglutaminase</td>
<td>27</td>
</tr>
<tr>
<td>2.4 Applications of Transglutaminase in the Dairy Industry</td>
<td>29</td>
</tr>
<tr>
<td>2.4.1 Use of Transglutaminase in Yoghurt</td>
<td>32</td>
</tr>
<tr>
<td>2.4.2 Use of Transglutaminase in Cheese</td>
<td>35</td>
</tr>
</tbody>
</table>
2.4.3 Use of Transglutaminase in Cream 36
2.4.4 Use of Transglutaminase in Films 36
2.5 Nutritional Importance of Transglutaminase 38
2.6 Determination of ε-(γ-glutamyl) lysine 39
2.7 Conclusions 40

CHAPTER III

3.0 MATERIALS AND METHODS

3.1 Materials 41
3.1.1 Trim™ Milk and Full Fat Milk 41
3.1.2 Transglutaminase 41
3.1.3 Milk Protein Concentrates 41
3.1.4 Yoghurt Starter 41
3.1.5 Petit Suisse Starter 41
3.1.6 Homogenizer 41
3.2 Methods 43
3.2.1 Determination of Transglutaminase Activity 43
3.2.2 Transglutaminase Preparation 43
3.2.3 Sample Preparation to Determine the Effect of Transglutaminase on Milk proteins 43
3.2.4 Sample Preparation to Determine the Effect of Transglutaminase on Milk proteins and Milk Protein Concentrates 44
3.2.5 Total Solids 44
3.2.6 Sodium Dodecyl Sulphate (SDS) Polyacrylamide Gel Electrophoresis (PAGE) 44
3.2.7 Sample Preparation for Acid Milk Gels 45
3.2.8 Sample Preparation for Petit Suisse 45
3.3 Measurements on Acid Milk Gels 46
3.3.1 Texture Profile 46
3.3.2 Free Whey 46
3.3.3 pH 46
CHAPTER IV
4.0 EFFECT OF TRANSGLUTAMINASE ON MILK PROTEINS

4.1 Introduction

4.2 Results

4.2.1 Effect of Heat

4.2.1.1 Effect of heat treatment on Trim™ milk samples incubated with Transglutaminase

4.2.1.2 Effect of heat treatment on Full Fat milk samples incubated with transglutaminase

4.3 Effect of Transglutaminase Incubation Temperature on Milk Samples

4.4 Effect of Homogenization On Full Fat Milk Samples Incubated with Transglutaminase

4.5 Discussions

4.6 Conclusions

CHAPTER V
5.0 EFFECT OF TRANSGLUTAMINASE ON MILK WITH PROTEIN CONCENTRATES

5.1 Effect of Transglutaminase on Milk with 0.5% of Sodium Caseinate

5.2 Results

5.2.1 Effect of Incubation Temperature and Transglutaminase concentration on Trim™ Milk with 0.5% of Sodium Caseinate

5.2.2 Effect of Incubation Temperature and Transglutaminase concentration on Full Fat Milk (Homogenised and Non-homogenised) with 0.5% of Sodium Caseinate

5.3 Effect of the addition of Transglutaminase on Milk Proteins and 0.625% Alacen 132
5.3.1 Effect of Transglutaminase Incubation Temperature and Alacen 132 (0.625%) on Trim™ Milk 66
5.3.2 Effect of Transglutaminase Incubation Temperature and Alacen 132 (0.625%) on Full Fat Milk (non-homogenised and homogenised) 69
5.4 Effect of the addition of Transglutaminase to Milk Proteins and 0.5% of Milk Protein Concentrates (MPC) 71
5.4.1 Effect of Transglutaminase Incubation Temperature and Milk Protein Concentrate (0.5%) on Trim™ Milk 72
5.4.2 Effect of Transglutaminase Incubation Temperature and Milk Protein Concentrate (0.5%) on Full Fat Milk (non-homogenised and homogenised) 73
5.5 Effect of the addition of Transglutaminase to Milk Proteins and 0.5% of Milk Protein Isolate 75
5.5.1 Effect of Transglutaminase Incubation Temperature and Milk Protein Isolate (0.5%) on Trim™ Milk 76
5.5.2 Effect of Transglutaminase Incubation Temperature and Milk Protein Isolate (0.5%) on Full Fat Milk (non-homogenised and homogenised) 76
5.6 Discussions 79
5.7 Conclusions 83

CHAPTER VI

6.0 APPLICATIONS OF TRANSGLUTAMINASE IN ACID MILK GELS

6.1 INTRODUCTION 85
6.2 RESULTS 87
6.2.1 Acid Milk Gels Treated with Transglutaminase 87
6.2.2 Acid Milk Gels Treated with Transglutaminase and Sodium Caseinate 90
6.2.3 Acid Milk Gels Treated with Transglutaminase and Milk Protein Isolate 92
6.2.4 Shelf Life Behavior of Acid Milk Gels Treated with Transglutaminase and Sodium Caseinate 94
6.2.5 Shelf Life Behavior of Acid Milk Gels Treated with Transglutaminase, Sodium Caseinate and Milk Protein Isolate

6.2.6 Effect of Transglutaminase in Petit Suisse

6.3 Discussion

6.4 Conclusions

CHAPTER VII

7.1 Conclusions

7.2 Recommendations

REFERENCES

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F
LIST OF TABLES

Table I: Amount of Ammonia Released and the Decrease in Free Amino Groups During the Transglutaminase Reaction 22

Table II: Rate of Cross-linking of β-Lactoglobulin and αs-Casein by Transglutaminase 25

Table III: Potential use of transglutaminase in processing of milk proteins and products 30

Table IV: Properties of cross-linked whipping cream in relation to the non-treated product 37

Table V: Composition of Liquid Milks 42

Table VI: Differences in gel strength between Acid Milk Gels Incubated with Transglutaminase at different temperature, concentrations and storage time. 97
LIST OF FIGURES

Figure 1: Model (cross section) of casein micelle

Figure 2: Schematic of Gelation of Whey Proteins

Figure 3: Model of the formation of transparent and opaque gels

Figure 4: Crosslinking reaction between protein-bound glutamine and lysine by transglutaminase

Figure 5: SDS-PAGE patterns of casein components during the Transglutaminase reaction

Figure 6: Syneresis of transglutaminase-treated skim milk yogurt in relation to the non-treated product

Figure 7: Gel strength of transglutaminase-treated skim milk yoghurt in relation to the non-treated product

Figure 8: SDS-PAGE gel of Trim milk treated with transglutaminase (37°C for 2h)

Figure 9: SDS-PAGE gel of Full Fat homogenized milk treated with transglutaminase (37°C for 2 h)

Figure 10: SDS-PAGE gel of Full Fat Milk homogenized and treated with with transglutaminase (55°C for 2h)

Figure 11: SDS-PAGE gel of Full Fat Milk non-homogenized and treated with with transglutaminase (55°C for 2h)
Figure 12: SDS PAGE gel of Trim™ milk treated with transglutaminase and 0.5% sodium caseinate

Figure 13: SDS-PAGE gel of Full Fat Milk non-homogenized treated with transglutaminase and 0.5% of sodium caseinate

Figure 14: SDS-PAGE gel of Full Fat Milk homogenized treated with transglutaminase and 0.5% sodium caseinate

Figure 15: SDS-PAGE gel of Trim™ milk and 0.625%
Alacen and transglutaminase

Figure 16: Reduced SDS-PAGE gel of Trim™ milk treated with transglutaminase and 0.625% Alacen

Figure 17: Full Fat non-homogenized milk SDS-PAGE gel treated with transglutaminase and 0.625% Alacen

Figure 18: Full Fat homogenized milk SDS-PAGE gel treated with transglutaminase and 0.625% Alacen

Figure 19: Trim™ milk SDS-PAGE gel treated with transglutaminase and 0.5% MPC

Figure 20: Full Fat homogenized milk SDS-PAGE gel treated with transglutaminase and 0.5% MPC

Figure 21: Trim™ milk SDS-PAGE gel treated with transglutaminase and TMP (0.5%)

Figure 22: Full Fat non-homogenized milk SDS-PAGE gel treated with transglutaminase and TMP (0.5%)
Figure 23: Full Fat homogenized milk SDS-PAGE gel treated with transglutaminase and TMP (0.5%)

Figure 24: Enzymic treatment of acid milk gels

Figure 25: Free whey in acid milk gels treated with transglutaminase

Figure 26: Gel strength in acid milk gels treated with transglutaminase

Figure 27: Free whey in acid milk gels treated with transglutaminase and 0.5% of Sodium Caseinate

Figure 28: Gel strength in acid milk gels treated with transglutaminase and 0.5% of Sodium Caseinate

Figure 29: Free whey in acid milk gels treated with transglutaminase and 0.5% Milk protein isolate

Figure 30: Gel strength in acid milk gels treated with transglutaminase and 0.5%Milk protein isolate

Figure 31: Free whey in acid milk gels treated with transglutaminase and sodium caseinate (1%) through time

Figure 32: Free whey in acid milk gels treated with transglutaminase, sodium caseinate and milk protein isolate (1%) through time

Figure 33: Gel strength in acid milk gels treated with transglutaminase, sodium caseinate and milk protein isolate

Figure 34: Gel strength in Petit Suisse treated with transglutaminase (0, 50, 100 U/mL)
CHAPTER I

1.0 INTRODUCTION

Proteins are important components of food for human nutrition and are widely used as functional ingredients for improving the texture or viscoelastic properties of foods (Sakamoto et al., 1994).

The functional properties, e.g. viscosity, water-holding capacity, gelation, mouthfeel, and emulsifying and foaming properties, are closely related to a protein’s molecular structure and interaction; it is therefore of great importance to increase our knowledge of the relationship between protein structure and functionality (Faergemand, 1998).

Protein gelation plays a major role in the preparation and acceptability of dairy products (Boye et al., 1995). Gels made from milk protein are traditionally formed by thermal denaturation of the whey proteins or by treating caseins with acid or a proteolytic enzyme (chymosin). In milk protein gels, the resulting network structure is typically held together by non-molecular physical cross-links, electrostatic interactions, hydrogen bonding and hydrophobic bonds (Dickinson and Yamamoto, 1996).

An alternative way of making a milk protein gel could be by enzymatically cross-linking the protein molecules to produce a network of covalent linkages. This new protein network might have different rheological properties from a conventional milk protein gel (Dickinson and Yamamoto, 1996).

The enzyme transglutaminase can catalyze an acyl transfer reaction between γ-carboxymide groups of glutamine residues and ε-amino groups of the lysine residues of peptide chains, giving as a result a covalent ε-(γ-glutamyl) lysine bond between protein molecules. Thus transglutaminase could have great potential for improving the physical properties of many foods without affecting the sensory properties of the product such as flavor and odor.

The aim of our study was to investigate the interaction between transglutaminase, at different concentrations and thermal conditions, and milk proteins and protein concentrates.

Once the optimal conditions were defined, transglutaminase was applied to yogurt manufacture with the objective of improving the texture and reducing syneresis.