Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
HETEROLOGOUS PRODUCTION AND CHARACTERISATION OF
A YEAST PEPTIDE:N-GLYCANASE

A thesis presented in partial fulfillment of the requirements for
the degree of Master of Science
in Biochemistry
at Massey University, New Zealand

Kun Hong
2007
Abstract

Peptide: N-glycanases (PNGases) remove N-linked glycans from glycoproteins. Three distinct families of PNGases have been characterised, although all of them not completely. Some of these PNGases are cytosolic, others are secreted. Cytoplastic PNGases (Png1p) are implicated in the proteasomal degradation of newly synthesized misfolded or unfolded glycoproteins that are exported from the endoplasmic reticulum (ER). Cytoplastic PNGases are encoded by the PNG1 gene and have been classified as members of transglutaminase-like superfamily based on the sequence analyses. There has, however, been no report of transglutaminase activity in any PNGase. The three-dimensional structures of recombinant PNGases from yeast (S. cerevisiae) and mouse have been determined in complex with the XPCB domain of Rad23 and mHR23B respectively. These PNGases were both produced as insoluble proteins, and could only be refolded and crystallised in the presence of their physiological binding partners.

In this study, the gene encoding for S. pombe PNGase has been cloned and heterologously expressed as a soluble thioredoxin-fused protein. The proteolytic cleaved recombinant protein (rPNGase Sp) remained soluble as a monomer and retained its deglycosylating activity. It did not have, however any transglutaminase activity despite its homology to the transglutaminase family of proteins. The activity of rPNGase Sp in vitro is both reductant and Zn\(^{2+}\) dependent. rPNGase Sp showed apparent heterogeneity on SDS-PAGE, which was characterised by the appearance of two bands differing in their molecular weights by an ~ 2.3 kDa. This heterogeneity was eventually shown to be the result of two different local conformations that were dependent on disulfide bond and/or Zn\(^{2+}\). The enzyme was shown to only deglycosylate the denatured glycoproteins, not their native counterparts. Moreover, it preferred to deglycosylate glycoproteins with high mannose-type glycan chains, both of which are consistent with the biological function of cytoplasmic PNGases.

Compared to bacterial PNGase F, rPNGase Sp is not very active, at least on the substrate used in this study. A higher K_m (186 µM) determined for rPNGase Sp using a FITC-labelled glycopeptide which carries a complex-type glycan as the substrate also suggests that complex glycans are not favoured substrates for these PNGases. rPNGaseSp has similar characteristics to the yeast (S. cerevisiae) and mouse PNGases; it has a neutral pH optimum and is strongly inhibited by Cu\(^{2+}\), Cd\(^{2+}\) and Ni\(^{2+}\). EDTA treatment deactivates it, and the addition of Zn\(^{2+}\) could not restore its activity. Interestingly, addition of exogenous Zn\(^{2+}\) was found to strongly inhibit rPNGase Sp.
Acknowledgements

I would like to thank the following people for their assistance in the completion of this project:

My supervisor Dr. Gillian Norris for her invaluable advice, guidance, infinite patience and encouragement throughout the course of my study.

Mr. Trevor Loo for lots of technical help and useful discussions during this research.

Dr. Mark Pattchet for useful advice and providing chemicals for the reduction and alkylation experiment.

I express my gratitude to Dr. Santanu Deb Choudhury (mass spectrometry analyses), Mr. Matthew Bennett (crystal trials), Associate Prof. David Harding (chemicals for the transglutaminase assay). I also express my sincere appreciations to all the other members in the X-lab (Institute of Molecular BioScience, Massey University) for their help and support.

Thank you, Sue Flynn and Sylvia Hooker, for arranging my living and study in New Zealand. I should also thank New Zealand’s International Aid and Development Agency for awarding me a NZAID scholarship.

Finally, I would particularly like to thank my wife, Yabin, for her support, encouragement and love.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xi</td>
</tr>
</tbody>
</table>

Chapter 1 — Introduction

1.1 *N*-linked Glycosylation of Proteins .. 1
1.2 De-*N*-glycosylation .. 1
1.3 Peptide:*N*-Glycanase (PNGase) Overview 2
1.4 Potential Functions of Cytoplasmic PNGase 3
1.5 Cytoplasmic PNGases
 1.5.1 Discovery of cytoplasmic PNGases ... 4
 1.5.2 Conservation in eukaryotes .. 5
 1.5.3 Similarity to proteins of the transglutaminase-like superfamily .. 6
1.6 Crystal Structure of the Pnglp .. 8
1.7 Pnglp Proteins are Cytoplasmic PNGases 13
1.8 The Protein Interactions of Cytoplasmic PNGase 14
1.9 Common Enzymatic Properties of Pnglp
 1.9.1 Effect of pH and Temperature .. 16
 1.9.2 Effect of metal ions and dithiothreitol 17
 1.9.3 Substrate specificity ... 17
1.10 Aims of This Investigation ... 19
Table of Contents

Chapter 2 — Materials and Methods

2.1 Materials and Equipment .. 21

2.2 General Methods

2.2.1 Agarose gel electrophoresis ... 23

2.2.2 SDS polyacrylamide gel electrophoresis 23

2.2.3 Native polyacrylamide gel electrophoresis 23

2.3 Cloning

2.3.1 Cloning PNG1Sp into different vectors 24

2.3.2 Transformation, colony screening and plasmid DNA preparation 25

2.3.3 Sequence analyses of DNA ... 26

2.4 Protein Expression in *Escherichia coli*

2.4.1 Small-scale expression trials 27

2.4.2 Large-scale expression in Origami™ B (DE3) 28

2.5 Purification of Thioredoxin-His$_6$-tagged PNGase Sp

2.5.1 Cell lysis ... 29

2.5.2 Immobilised metal affinity chromatography (IMAC) 29

2.5.3 Proteolytic removal of fusion tag 30

2.5.4 Removal of tag using IMAC 31

2.5.5 Size exclusion chromatography (SEC) 31

2.5.6 Protein quantitation .. 31

2.6 PNGase Activity Assay .. 32

2.7 Transglutaminase Activity Assay 33

2.8 Mass Spectrometry Analyses

2.8.1 Peptide-mass fingerprinting 34

2.8.2 Electrospray Mass Spectrometry 36

2.9 Characterisation of Recombinant PNGase Sp

2.9.1 Substrate specificity ... 37

2.9.2 Effects of reductant .. 38

2.9.3 Effects of pH .. 39

2.9.4 Determination of the Michaelis Constant (K_m) and k_{cat}/K_m 39

2.9.5 Effects of metal ions .. 41
Table of Contents

2.10 Crystallisation Trials
- 2.10.1 Basic principle .. 42
- 2.10.2 Setting up crystallisation trials 44

Chapter 3 — Results and Discussion
- 3.1 Molecular Cloning .. 48
- 3.2 Expression in Origami B (DE3) Strain 50
- 3.3 Purification of rPNGase Sp ... 53
- 3.4 The Use of Different Expression Hosts and Constructs to Solve the
 Heterogeneity problem
 - 3.4.1 Premature translation termination 57
 - 3.4.2 Proteolytic degradation 57
 - 3.4.3 Stop codon read-through 59
 - 3.4.4 The use of alternative vectors and fusion partners 63
- 3.5 Anomalous SDS-PAGE Behaviour of rPNGase Sp
 - 3.5.1 Mass Spectrometry analyses of rPNGase Sp 66
 - 3.5.2 Experiments with different reducing agents and reduction regimes 68
 - 3.5.3 Analyses of expression product 72
- 3.6 Transglutaminase assay ... 73
- 3.7 Substrate Specificity of rPNGase Sp 78
- 3.8 Effects of reductant concentration on PNGase Activity 82
- 3.9 Sensitivity to nickel Ions .. 83
- 3.10 Determination of optimum pH 85
- 3.11 Kinetic Studies of the rPNGase Sp-catalysed Deglycosylation
 - 3.11.1 Determination of Michaelis constant (K_m) for FITC-Ova 87
 - 3.11.2 A comparative study on the kinetics of unlabeled and FITC-labeled substrates 90
- 3.12 Effects of Metal Ions
 - 3.12.1 Effects of metal ions on the activity of rPNGase Sp 97
 - 3.12.2 Effect of EDTA, and subsequent addition of metal ions 100
 - 3.12.3 Effect of Mn$^{2+}$ on activity 103
Table of Contents

3.13 Crystallisation Trials

- 3.13.1 Initial crystallisation trials ... 105
- 3.13.2 Optimisation of crystallisation conditions 105

Chapter 4 — Summary .. 107

Appendices

- Appendix I: PNG1Sp sequence .. 110
- Appendix II: pET32a-HTBH vector information 111
- Appendix III: Preparation of the ovalbumin glycopeptide substrate 112
- Appendix IV: In-gel tryptic digest for protein identification by peptide mapping 114
- Appendix V: FITC-labeling of ovalbumin glycopeptide 115
- Appendix VI: Experimental data sheets .. 117

References ... 120
List of Figures

Figure 1.1 The de-N-glycosylation reaction catalysed by PNGase ... 2
Figure 1.2 Schematic representation of the primary structure of various eukaryotic
PNGases .. 5
Figure 1.3 The transamidation reaction catalysed by transglutaminase 6
Figure 1.4 Schematic representation of the yPNGase-yRad23 complex 8
Figure 1.5 The structure of GlcNAc$_2$ bound to Pnglp in complex with Z-VAD-fmk
(a) and the active site of yPnglp (b) ... 11
Figure 1.6 Schematic model for Rad23-mediated substrate proteolysis in yeast (a)
and mouse (b) ... 15
Figure 1.7 High-mannose-type glycopeptides/glycoproteins .. 18
Figure 2.1 Deglycosylation reaction catalysed by PNGases ... 32
Figure 2.2 Transglutaminase activity assay ... 34
Figure 2.3 Labeling of ovalbumin glycopeptide with FITC .. 40
Figure 2.4 The hanging drop (left) and sitting drop (right) methods of protein
crystallisation .. 43
Figure 3.1 Cloning strategy .. 49
Figure 3.2 (a) PCR amplification of PNG1Sp; (b) Whole cell PCR colony
screening .. 50
Figure 3.3 SDS-PAGE analyses of the whole cell samples of IPTG induced
expression of PNGase Sp in Origami B (DE3) ... 51
Figure 3.4 Solubility analyses of rPNGase Sp produced in Origami B (DE3) cells 52
Figure 3.5 PNGase activity assay ... 52
Figure 3.6 SDS-PAGE analyses of the samples taken at various purification
stages .. 54
Figure 3.7 Size exclusion chromatography of rPNGase Sp ... 56
Figure 3.8 IMAC purification of the fusion rPNGase Sp produced from (a) Origami
B (DE3) and Rosetta (DE3), and (b) from Origami (DE3) pLysS and
Origami (DE3) pLacI at different temperatures ... 59
Figure 3.9 Part sequences surrounding the stop codons in the original and newly
constructed recombinant plasmids .. 61
List of Figures

Figure 3.10 Expression trials using Origami B (DE3) with the pET32a_HTBH_PNG_STOP vector 62
Figure 3.11 Expression trials using the pSUMO_BXH_PNG_STOP and the pMal_CHTBH_PNG_STOP vectors respectively 65
Figure 3.12 ESI-mass spectra of the samples containing the double-banded protein and the released fusion tag respectively .. 67
Figure 3.13 Size exclusion purified recombinant interferon γ receptor 68
Figure 3.14 Schematic diagram showing possible differences in the structure of a protein in the presence of SDS and reducing agents ... 69
Figure 3.15 (a) SDS gels of reduced and alkylated rPNGase Sp; (b) Native-PAGE of the fusion rPNGase Sp ... 70
Figure 3.16 SDS-PAGE analyses of fusion rPNGase Sp samples boiled for varying time (left) or with varying amount of DTT (right) 71
Figure 3.17 MALDI-TOF mass spectra of a tryptic digest of the alkylated rPNGase Sp sample ... 72
Figure 3.18 The proposed mechanism for the hydrolysis reactions carried out by both the transglutaminases and cytosolic PNGases 74
Figure 3.19 Transglutaminase activity assay of recombinant PNGase Sp 75
Figure 3.20 Gel shift assay showing the substrate specificity of rPNGase Sp 79
Figure 3.21 Effects of TCEP on deglycosylation activity of rPNGase Sp 82
Figure 3.22 The effects of Ni$^{2+}$ ions on rPNGase Sp .. 84
Figure 3.23 Influence of pH on rPNGase Sp activity ... 85
Figure 3.24 Primary estimation of optimal pH for rPNGase Sp activity using both FITC-Ova and unlabeled substrates ... 86
Figure 3.25 (a) The kinetic curve of rPNGase Sp-catalysed deglycosylation of FITC-Ova; (b) Schematic showing the substrate inhibition model 87
Figure 3.26 (a) Visualization of model derived for substrate inhibition of enzyme in Figure 3.22 b; (b) Assessment of the type of inhibition 88
Figure 3.27 (a) Hypothetical model showing the relative arrangements of the core and C-terminal domains of mPNGase; (b) Molecular model of the γPNGase-substrate complex ... 90
Figure 3.28 K_m estimation of rPNGase Sp for Ova substrate at either pH 7.0 or 6.0 . 91
List of Figures

Figure 3.29 (a) Active site of the mouse PNGase in complex with a tripeptide inhibitor carbobenzyloxy-Val-Ala-Asp-α-fluoromethylketone (Z-VAD-fmk); (b) Proposed charge-relay system for of the transglutaminase-like catalytic triad .. 93

Figure 3.30 Comparison of the reaction rates between two substrates at pH 6 and 7 94

Figure 3.31 Multiple ionisation of fluorescein, the parent compound of FITC and the structure of FITC-peptide/protein conjugates .. 96

Figure 3.32 The effect of metal ions on the activity of rPNGase Sp 97

Figure 3.33 The effects of EDTA and Zn²⁺ on rPNGase Sp activity 100

Figure 3.34 Far UV CD spectra of untreated and EDTA-treated, together with rPNGase Sp that had been treated with EDTA, then exposed to 5 mM Zn²⁺ .. 102

Figure 3.35 The effects of Mn²⁺ on the activity of EDTA-treated rPNGase Sp 103

Figure 3.36 rPNGase Sp crystals obtained from initial crystallisation screens at room temperature ... 105

Appendix Figures

Figure 1 pET32a HTBH vector information ... 111

Figure 2 SEC purification (a), HPLC purification (b) and ESI mass spectrum (c) of the 11-mer glycopeptide substrate, Ova ... 113

Figure 3 HPLC-chromatogram for the purification of the labelled product (FITC-Ova) ... 116

Figure 4 A typical HPLC-chromatogram showing the assay for rPNGase Sp activity with FITC-Ova as substrate 116
List of Tables

Table 2.1 Plasmids used in this study .. 46
Table 2.2 *E. coli* strains used in this study ... 47
Table 3.1 Purification table of rPNGase Sp .. 56
Table 3.2 Observed and calculated masses of the tryptic peptides from the
 alkylated rPNGase Sp sample ... 72
Table 3.3 Values of K_m, k_{cat}, and k_{cat}/K_m for rPNGase SP and Ova and FITC-Ova . 92
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~</td>
<td>approximately</td>
</tr>
<tr>
<td>Mwt</td>
<td>molecular weight</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>ERAD</td>
<td>endoplasmic reticulum associated degradation</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribose nucleotide triphosphate</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxyribose nucleotide triphosphate</td>
</tr>
<tr>
<td>Trx</td>
<td>thioredoxin</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia Coli</td>
</tr>
<tr>
<td>Amp</td>
<td>ampicillin</td>
</tr>
<tr>
<td>Tet</td>
<td>tetracycline</td>
</tr>
<tr>
<td>Kan</td>
<td>kanamycine</td>
</tr>
<tr>
<td>Cam</td>
<td>chloramphenicol</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Broth</td>
</tr>
<tr>
<td>IPTG</td>
<td>iso-propyl-beta-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>DNase</td>
<td>deoxyribonuclease</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetra-acetate</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>TCEP</td>
<td>Tris (2-carboxy-ethyl) phosphine hydrochloride</td>
</tr>
<tr>
<td>IMAC</td>
<td>immobilised metal affinity chromatography</td>
</tr>
<tr>
<td>rTEV</td>
<td>recombinant tobacco etch virus</td>
</tr>
<tr>
<td>SEC</td>
<td>size exclusion chromatography</td>
</tr>
<tr>
<td>FPLC</td>
<td>fast protein liquid chromatography</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance/pressure liquid chromatography</td>
</tr>
<tr>
<td>TCA</td>
<td>trichloroacetic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>MALDI</td>
<td>matrix assisted laser desorption ionization</td>
</tr>
<tr>
<td>TOF</td>
<td>time-of-flight</td>
</tr>
<tr>
<td>PMF</td>
<td>peptide-mass fingerprinting</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge ratio</td>
</tr>
<tr>
<td>UV</td>
<td>ultra-violet</td>
</tr>
<tr>
<td>HEPES</td>
<td>2-(4-(2-hydroxy-ethyl)-1-piperazinyl) ethane sulfonic acid</td>
</tr>
<tr>
<td>MES</td>
<td>2-(N-morpholino) ethane sulfonic acid</td>
</tr>
<tr>
<td>Tris</td>
<td>tris (hydroxymethyl) aminomethane</td>
</tr>
<tr>
<td>F.C.</td>
<td>final concentration</td>
</tr>
<tr>
<td>rPNGase Sp</td>
<td>recombinant Peptidc:N-Glycanase from S. pombe</td>
</tr>
<tr>
<td>TGase</td>
<td>transglutaminase</td>
</tr>
<tr>
<td>Ova</td>
<td>hen egg ovalbumin-derived 11-mer glycopeptide</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FITC-Ova</td>
<td>FITC-dilabeled ovalbumin 11-mer glycopeptide</td>
</tr>
</tbody>
</table>