Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Floral Induction and Development in
Myosotidium hortensia and
Phormium cookianum

A thesis presented in partial fulfilment of the requirements for the degree of
Master of Science in Plant Biology
at Massey University, New Zealand

John Creighton Harris
2004
Abstract

Little is known of the stimuli needed for flowering in two New Zealand endemic plants, *Myosotidium hortensia* and *Phormium cookianum*. These plants are widely recognised by the horticulture sector and the concerns of this thesis were to aid understanding of floral induction and development in the two species. Environmental stimuli were investigated by growing plants under factorial combinations of daylength and temperature in controlled growth rooms. The two daylengths used, termed long days (LD) and short days (SD), consisted of night / day periods of 8 / 16 h and 16 / 8 h respectively. Two night / day temperature regimes of 4 / 7°C and 18 / 24°C referred to as Cold and Warm respectively, were combined with the daylengths to make four treatments.

Floral induction in both species was unaffected by temperature or daylength, with approximately 50% of the *P. cookianum* flowering under all environmental treatments. *M. hortensia* did not flower. The absence of flowering seen in half of the *P. cookianum* plants was associated with a small size (fewer nodes at the commencement of the environmental treatments). Floral development in those plants that did flower was accelerated in *P. cookianum* by eight weeks growth under Cold compared with Warm treatment. Floral development of *P. cookianum* was further enhanced by four weeks treatment at Cold temperatures followed by transfer for four weeks at Warm temperatures. Vegetative growth was enhanced under Warm temperatures compared with Cold, in both *P. cookianum* and *M. hortensia*.

Hormonal floral stimuli were investigated by application of the gibberellin A₃, followed by growth under Cold SD conditions. The proportion of plants flowering was increased by GA₃ in *P. cookianum*. GA₃-treated *P. cookianum* flowered with fewer nodes as GA₃ concentration increased. In *M. hortensia*, GA₃ application did not cause flowering although stem elongation was increased.

A region of the *P. cookianum* FLORICAULA / LEAFY (FLO / LFY) homologue (PFL) mRNA was isolated by reverse transcriptase-PCR and sequenced, and shown to share strong sequence identity with other FLO / LFY-like genes. PFL mRNA
expression was compared with levels of actin mRNA using Real Time reverse transcriptase-PCR, performed using a LightCycler and the double stranded DNA binding dye SYBR Green 1. Upregulation of PFL mRNA at the meristem occurred over time, and increases coincided with changes in morphology from vegetative to inflorescence development. As predicted, greater PFL expression was observed in fans of larger size, these being the fans with greater likelihood of flowering.
Acknowledgements

I am most grateful towards my supervisors Dr. John Clemens and Professor Paula Jameson, you have earned my most heartfelt thanks. You make a great team. Your faith, guidance, encouragement, and smiles helped me achieve all this.

Thanks to my lab colleagues for your patience, advice, and friendship. Jason for watching over me, Alexa and Angie for your help, and Elizabeth and Anu for your smiles. Thanks to the many friends I have made in the Institute, I will always remember.

To my parents Ed and June, you have always listened. I am thankful for your interest and encouragement.

I would like to acknowledge, through a subcontract from Crop & Food Research, the Public Good Science Fund. Also the Institute of Molecular BioSciences for contributions made towards research, conference travels and general living expenses, for which I am grateful.
Table of contents

Abstract ii
Acknowledgements iv
Table of contents v
List of figures ix
List of tables xiv
Chapter 1.
Introduction
1.0 Introduction 1
1.1 The inductive pathways to flowering 1
 1.1.0 Introduction 1
 1.1.1 Photoperiod 2
 1.1.2 Vernalisation 3
 1.1.3 Gibberellic acid 4
1.2 Molecular mechanisms behind flowering: the interaction of the genome with the environment 6
 1.2.0 Introduction 6
 1.2.1 The molecular basis of the vernalisation pathway of floral induction 7
 1.2.2 Molecular basis of the photoperiod pathway of floral induction 9
 1.2.3 Molecular basis of the gibberellin pathway of floral induction 9
1.3 LEAFY, the floral meristem identity gene 10
 1.3.0 Introduction 10
 1.3.1 Mutant phenotype (lfy) 10
 1.3.2 Expression of LEAFY 11
 1.3.3 Dicotyledonous LEAFY homologues 11
 1.3.4 Monocotyledonous FLO/LEAFY homologues 12
 1.3.4.1 Oryza sativa FLORICAULA / LEAFY (OSL, RFL) (Kyozuka et al. 1998) 13
 1.3.4.2 Lolium temulentum FLORICAULA / LEAFY (LtLFY) (Gocal et al. 2001) 14
Chapter 2.

Floral Induction and development in *Myosotidium hortensia* and *Phormium cookianum*

1.4 Species description
1.4.1 *Myosotidium hortensia*
1.4.2 *Phormium cookianum*

1.5 Floral Induction In Related Species

1.6 Aims And Objectives
2.4 Discussion

2.2.2.1 Morphological changes at the meristem

2.2.2.2 Gibberellin experiment

2.2.2.1.2 Vegetative growth

2.4 Discussion

Chapter 3.

Effects of gibberellin A\textsubscript{3} and size/age factors on FLORICAULA / LEAFY expression in Phormium cookianum

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 Introduction</td>
<td>50</td>
</tr>
<tr>
<td>3.1 Materials and methods</td>
<td>51</td>
</tr>
<tr>
<td>3.1.1 PFL isolation and sequencing</td>
<td>51</td>
</tr>
<tr>
<td>3.1.1.1 RNA extraction</td>
<td>51</td>
</tr>
<tr>
<td>3.1.1.2 Reverse transcriptase reaction</td>
<td>52</td>
</tr>
<tr>
<td>3.1.1.3 Primer design</td>
<td>53</td>
</tr>
<tr>
<td>3.1.1.4 PCR reactions</td>
<td>53</td>
</tr>
<tr>
<td>3.1.1.5 Visualisation of PCR products and gel extraction</td>
<td>55</td>
</tr>
<tr>
<td>3.1.1.6 Sequencing of products</td>
<td>56</td>
</tr>
<tr>
<td>3.1.1.7 Actin as a positive control</td>
<td>56</td>
</tr>
<tr>
<td>3.1.2 PFL expression during floral induction and organogenesis</td>
<td>56</td>
</tr>
<tr>
<td>3.1.2.1 Experimental treatments</td>
<td>56</td>
</tr>
<tr>
<td>3.1.2.2 RNA extraction</td>
<td>57</td>
</tr>
<tr>
<td>3.1.2.3 PFL and actin specific primers</td>
<td>57</td>
</tr>
<tr>
<td>3.1.2.4 Deoxynuclease treatment of RNA extractions and reverse transcriptase reaction</td>
<td>57</td>
</tr>
<tr>
<td>3.1.2.5 Real Time PCR reaction</td>
<td>59</td>
</tr>
<tr>
<td>3.2 Results</td>
<td>65</td>
</tr>
<tr>
<td>3.2.1 PFL and actin isolation and sequencing</td>
<td>65</td>
</tr>
<tr>
<td>3.2.2 Effects of GA\textsubscript{3} on floral induction</td>
<td>66</td>
</tr>
<tr>
<td>3.2.3 Expression levels of PFL during inflorescence development</td>
<td>66</td>
</tr>
<tr>
<td>3.3 Discussion</td>
<td>71</td>
</tr>
</tbody>
</table>
Chapter 4.
General Discussion
References
Appendix A: Statistical tests of significance for vegetative and floral growth in *Myosotidium hortensia* and *Phormium cookianum*
Appendix B: Statistical tests for homogeneity and normality of the residuals from vegetative growth data (Chapter 2).
Appendix C: Alignment of *Phormium cookianum* sequences with homologues
Appendix D: Primer sequences used in PCR and Real Time PCR reactions
List of figures

Figure 1.1: A simplified model of the possible interactions between genes and pathways controlling flowering time in Arabidopsis (Perilleux and Bernier 2002). 8

Figure 1.2: An experimental subject (*Myosotidium hortensia*) 17

Figure 1.3: Flowering *Myosotidium hortensia* (picture sourced from www.liddlewonder.co.nz) 17

Figure 1.4: An experimental subject (*Phormium cookianum*) 18

Figure 1.5: Flowering *Phormium cookianum* (Experimental subject) 18

Figure 2.1: Effect of daylength and temperature treatments applied for 56 days on leaf growth in *Phormium cookianum*. Plants were transferred to a warm greenhouse on Day 56. Refer to Materials and Methods for treatment specifications. 27

Figure 2.2: Microscopic study of the shoot apical meristem of *P. cookianum* plants after four weeks of daylength and temperature treatment. Subjects chosen to display the range in developmental stages, not representative of all meristems under a particular treatment. (A & B) Cold LD grown meristems. (C & D) Cold SD grown meristems. 29

Figure 2.3: Microscopic study of the shoot apical meristem of *P. cookianum* plants after eight weeks of daylength and temperature treatment. Subjects chosen to display the range in developmental stages, not representative of all meristems under a particular treatment. (A) Cold LD grown meristem. (B) Cold SD grown meristem. (C) Warm LD grown meristem. (D) Warm SD grown meristems. 30

Figure 2.4: Effect of daylength within Warm temperature treatments applied for 56 days on leaf growth in flowering (F) and non-flowering (NF) plants of *Phormium cookianum*. Plants were transferred to a warm greenhouse on Day 56. Refer to Materials and Methods for treatment specifications. 34

Figure 2.5: Effect of daylength within Cold temperature treatments applied for 56 days on leaf growth in flowering (F) and non-flowering (NF)
plants of *Phormium cookianum*. Plants were transferred to a warm greenhouse on Day 56. Refer to Materials and Methods for treatment specifications.

Figure 2.6: Effect of GA3 on the proportion of fans of *P. cookianum* flowering, and the number of flowers per inflorescence.

Figure 2.7: The influence of node number on floral induction in *Phormium cookianum* plants grown under the four different environments of the photoperiod and temperature experiment (Section 2.2.1.1.1). See section 2.1.2 Photoperiod and temperature treatments, for conditions of treatment and growth.

Figure 2.8: Effect of daylength and temperature treatments applied for 56 days on leaf growth in *Myosotidium hortensia*. Plants were transferred to a warm greenhouse on Day 56. Refer to Materials and Methods for treatment specifications.

Figure 2.9: Microscopic study of the shoot apical meristem of *M. hortensia* plants after eight weeks of daylength and temperature treatment.

Figure 2.10: Internode elongation of *Myosotidium hortensia* treated with 100µg GA3 (Extended internodes shown by arrows).

Figure 3.1: Position of primers on the *Lolium temulentum* mRNA *LFY* sequence.

Figure 3.2: Melting curve of actin and *PFL* products generated from genomic DNA contamination of RNA extractions. The peaks represent distinct drops in fluorescence as double stranded DNA products separate (or melt) at particular temperatures (Tm). The peak at 83°C represents the Tm of actin primer dimers, 92°C the Tm of product generated from RNA using actin specific primers, and 93°C the Tm of product generated using cDNA and actin specific primers.

Figure 3.3: Melting curve of *PFL* and actin primer dimers and PCR products generated from genomic DNA contamination in RNA samples. A) Melting peak of *PFL* primer dimers and *PFL* and actin product. B) Melting peak of actin primer dimers and *PFL* and actin product. Data was acquired at 84°C (vertical line) to avoid primer dimer fluorescence, as dimers melt below this temperature.
Figure 3.4: Gel analysis of actin (435 base pairs) and PFL (262 base pairs) products. Top lanes are, lane 1: 1 Kb+ ladder, lanes 2 - 4: calibrator PFL product, lanes 5 - 7: calibrator actin product, lanes 8 - 17: examples of paired PFL and actin products of cDNA samples from different RNA extractions. Bottom lanes are, lane 1: 1 Kb+ ladder, lanes 2 - 14 examples of pairs of alternating PFL and actin cDNA products.

Figure 3.5: The increase in fluorescence as cDNA products are amplified exponentially used to determine the cycle number where fluorescence rises above background levels. Overlapping fluorescence levels are seen for PFL and actin products generated in triplicate from calibrator cDNA (A), cDNA generated from Time 3, large, GA$_3$-treated RNA samples amplified with actin (B) or PFL (C) specific primers was also performed in triplicate.

Figure 3.6: Efficiency of the Real Time PCR reactions for PFL (A) and actin (B) over a dilution series (CP = crossing point, cycle number)

Figure 3.7: Proportion of plants flowering for fans of different sizes treated with EtOH (A) or GA$_3$/EtOH (B). Refer to materials and methods for size definitions.

Figure 3.8: Relative expression of PFL in different sized fans treated with EtOH control (A) or GA$_3$/EtOH (B). See section 3.1.2 PFL expression during floral induction and organogenesis upon GA$_3$ application for treatment details.

Figure 3.9: A representative vegetative meristem of large untreated-fans at Time 0 and Time 1.

Figure 3.10: Sections of meristematic samples taken at Time 2 from large untreated-fans displaying varying degrees of floral development.

Figure 3.11: Section of meristematic sample of a large untreated-fan, taken at Time 3, displaying advanced inflorescence development.

Figure B.1: Residual plot of $P. cookianum$ vegetative growth data, with the General Linear Model used to account for the observations taking blocking effects into consideration.
Figure B.2: Normal probability plot of *P. cookianum* vegetative growth data, with the General Linear Model used to account for the observations taking blocking effects into consideration. 92

Figure B.3: Residual plot of *P. cookianum* vegetative growth data, with the General Linear Model used to account for the observations not taking into account any effects blocking within the rooms may have had on growth. 93

Figure B.4: Residual plot of logarithm transformed *P. cookianum* vegetative growth data, with the General Linear Model used to account for the observations not taking into account any effects blocking within the rooms may have had on growth. 95

Figure B.5: Normal probability plot of Logarithm transformed *P. cookianum* vegetative growth data, with the General Linear Model used to account for the observations not taking into account any effects blocking within the rooms may have had on growth. 96

Figure B.6: Analysis of Square Root transformed *P. cookianum* vegetative growth data. A) Residual plot. B) Normal Probability plot. C) Levene’s test of variance homogeneity. D) Tests of Normality. 98

Figure B.7: Linear regression model of logarithm transformed *P. cookianum* vegetative growth data. 99

Figure B.8: Analysis of Power transformed *P. cookianum* vegetative growth data. A) Residual plot. B) Normal Probability plot. C) Levene’s test of variance homogeneity. D) Tests of Normality. 100

Figure B.9: Analysis of *M. hortensia* vegetative growth data. A) Residual plot. B) Normal Probability plot. C) Tests of Normality. 102

Figure B.10: Residual plot of *M. hortensia* vegetative growth data, with the General Linear Model used to account for the observations not taking into account any effects blocking within the rooms may have had on growth. 103

Figure B.11: Analysis of Logarithm transformed *M. hortensia* vegetative growth data. A) Residual plot. B) Normal Probability plot. C) Levene’s test of variance homogeneity. D) Tests of Normality. 105

Figure C.1: Comparison of partial Mitochondrial 26S rRNA homologues

Figure C.2: Partial cDNA comparison of *FLO / LFY* homologues

Figure C.3: Partial amino acid sequence comparison of *FLO / LFY* homologues

Figure C.4: Partial cDNA comparison of actin homologues

Figure D.1: Sequences of primers used to isolate *PFL* cDNA.

Figure D.2: Sequences of primers used to isolate *P. cookianum* actin cDNA.

Figure D.3: Sequences of *PFL* and actin specific primers used in Real Time reverse transcriptase-PCR
List of tables

Table 2.1: The effect of GA₃ applied to *P. cookianum* and node number on the proportion of plants flowering (Section 2.2.1.2.1). See section 2.1.3 Gibberellin applications, for conditions of treatment and growth. 39

Table 3.1: Expected sizes of amplified *PFL* fragments (bp) from using different primer pair combinations. 54

Table A.1: Main plot or ‘between subjects’ ANOVA 82

Table A.2: Split plot or ‘within subjects’ ANOVA 82

Table A.3: Linear contrasts 82

Table A.4: Observed and expected frequencies of induction on treatment, Cold temperatures versus Warm 82

Table A.5: Statistics for Table of treatment by induction, Cold temperatures versus Warm 83

Table A.6: Observed and expected frequencies of induction on treatment, Short day versus Long day 83

Table A.7: Statistics for Table of treatment by induction, Short day versus Long day 83

Table A.8: Observed and expected frequencies of anthesis on temperature 83

Table A.9: Statistics for table of treatment by anthesis 84

Table A.10: T Test procedure for the number of flowers per plant under Cold and Warm temperatures 84

Table A.11: T Test procedure for the node with the first floral branch under Cold and Warm temperatures 84

Table A.12: T Test procedure for the number of floral axes per plant under Cold and Warm temperatures 85

Table A.13: T Test procedure for the height of inflorescence bolt under Cold and Warm temperatures 85

Table A.14: Main plot or ‘between subjects’ ANOVA 85

Table A.15: Split plot or ‘within subjects’ ANOVA 85

Table A.16: Linear contrasts 85

Table A.17: T Test procedure for the number of flowers for transferred and Cold grown plants 86
Table A.18: T Test procedure for the node with the first floral branch for transferred and Cold grown plants 86
Table A.19: T Test procedure for the number of floral branches for transferred and Cold grown plants 86
Table A.20: T Test procedure for the height of inflorescence for transferred and Cold grown plants 86
Table A.21: Observed and expected frequencies of flowering in *P. cookianum* on GA3 concentration 87
Table A.22: Statistics for table of GA3 concentration by induction 87
Table A.23: Completely randomised design ANOVA 87
Table A.24: Main plot or 'between subjects' ANOVA 87
Table A.25: Split plot or 'within subjects' ANOVA 88
Table A.26: Linear contrasts 88
Table B.1: Tests for Normality performed on *P. cookianum* vegetative growth data residuals. 93
Table B.2: Levene's Test for homogeneity of *P. cookianum* vegetative growth data variance, with the General Linear Model used to account for the observations not taking into account any effects blocking within the rooms may have had on growth. 93
Table B.3: Levene's Test for Homogeneity of logarithm transformed *P. cookianum* vegetative growth data variance, with the General Linear Model used to account for the observations not taking into account any effects blocking within the rooms may have had on growth. 95
Table B.4: Tests for Normality performed on Logarithm transformed *P. cookianum* vegetative growth data residuals. 96
Table B.5: Levene's Test for homogeneity of *M. hortensia* vegetative growth data variance, with the General Linear Model used to account for the observations not taking into account any effects blocking within the rooms may have had on growth. 103