Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Abstract

High-shear granulation is an attractive alternative to spray drying for producing dried milk products. The capital cost of a granulation circuit is likely to be much less than a spray drying circuit which will reduce the manufacturing costs of milk powders. This work investigated the high-shear granulation of milk powder using milk concentrate as a binding agent in order to determine the feasibility of granulation as an alternative to, or and improvement on, the spray drying process. This research has laid the groundwork for further investigation into milk granulation by defining the conditions for which granulation is achieved and describing the effects of processing parameters on granulation for a pilot-scale mixer granulator. The technical feasibility of granulation is shown by proving that granulation does not affect the quality of the milk. Designs for perceived continuous granulation circuits are included to aid in further milk granulation research.

Successful granulation occurs at a total moisture content of approximately 11 % (±1 %). This was found to be suitable using either reconstituted or evaporated milk concentrated binder at between 20 and 50 % total solids. The time of granulation affects the size distribution of the granules and the granule yield at the end of the process. A narrower size distribution with increasing granule sizes and a reduction in the granule yield is observed for longer granulation times.

Granules were found to have better handling qualities than spray dried milk powders. Granules performed better in many functional tests having a higher bulk density, less change in bulk density during handling, better flowability and less fines. Granulation does not affect the chemical quality of the milk providing the granules are dried immediately after granulation. However, it was found that extended exposure of dried milk solids to a moisture content of 11 % results in an unacceptable amount of insoluble material forming. Granules are well suited as a product for reconstitution but did not perform adequately in wettability tests, suggesting that their use as an instantised product would require further study and improvement.

Further research is required to understand the role of lactose crystallisation and the generation of insoluble material to ensure scaling up of granulation will be successful. An investigation into continuous granulation would be useful for further milk granulation work.
Acknowledgements

A huge number of people have helped me get through this masterate.

Most importantly, my chief supervisor, Jim Jones has been a great help, by inspiring me to do this project with him and being an excellent mentor and friend. My other supervisors, David Pearce and Tony Paterson have also provided a wealth of knowledge and experience and been great support even when I just wanted to have someone to whinge to.

Thanks also to the many people who helped with the laboratory work Kylie Foster, Marieke Koopmans, Aaron Marshall, John Edwards, Giao and Amy from the NZDRI (now FRC), Steven Werner, Patrick Rhynhart, and finally Don, Russell and Marcel from the workshop.

During the course of the past year (and a bit) I have made many new friends who although were not directly involved in this work, contributed nonetheless through keeping me sane and making my time as a postgrad fun. So thanks to Roland, Rachel, Jeremy, Crazy Eric, Chris, Juan, Reto, Saara, Melissa, Fulton and Ruth.

Finally, a big thanks to Yi Ling, who without whom I would have finished this thing ages ago but would have had much less fun doing so.
Table of contents

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>II</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>III</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>VI</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>VIII</td>
</tr>
<tr>
<td>CHAPTER 1 – INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>1.2 PROJECT OBJECTIVES</td>
<td>1</td>
</tr>
<tr>
<td>1.3 THESIS OUTLINE</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2 – LITERATURE REVIEW</td>
<td>3</td>
</tr>
<tr>
<td>2.1 INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1 Granulation</td>
<td>3</td>
</tr>
<tr>
<td>2.1.2 Granulation of milk powder</td>
<td>3</td>
</tr>
<tr>
<td>2.2 GRANULATION PROCESSES</td>
<td>4</td>
</tr>
<tr>
<td>2.2.1 Low-shear granulation</td>
<td>4</td>
</tr>
<tr>
<td>2.2.2 High-shear granulation</td>
<td>4</td>
</tr>
<tr>
<td>2.2.3 Binder addition</td>
<td>5</td>
</tr>
<tr>
<td>2.3 GRANULATION THEORY</td>
<td>6</td>
</tr>
<tr>
<td>2.3.1 Granule growth mechanisms</td>
<td>6</td>
</tr>
<tr>
<td>2.3.2 Nucleation and wetting</td>
<td>8</td>
</tr>
<tr>
<td>2.3.3 Coalescence and consolidation</td>
<td>8</td>
</tr>
<tr>
<td>2.3.4 Attrition and breakage</td>
<td>11</td>
</tr>
<tr>
<td>2.4 PROCESS VARIABLES</td>
<td>11</td>
</tr>
<tr>
<td>2.4.1 Impeller speed</td>
<td>12</td>
</tr>
<tr>
<td>2.4.2 Granulator component design</td>
<td>12</td>
</tr>
<tr>
<td>2.4.3 Power input</td>
<td>12</td>
</tr>
<tr>
<td>2.4.4 Liquid saturation</td>
<td>13</td>
</tr>
<tr>
<td>2.4.5 Temperature</td>
<td>13</td>
</tr>
<tr>
<td>2.4.6 Humidity</td>
<td>14</td>
</tr>
<tr>
<td>2.4.7 Batch load of the granulator</td>
<td>14</td>
</tr>
<tr>
<td>2.5 COMPOSITION</td>
<td>14</td>
</tr>
<tr>
<td>2.5.1 Effect of binder viscosity</td>
<td>14</td>
</tr>
<tr>
<td>2.5.2 Particle size and shape</td>
<td>15</td>
</tr>
<tr>
<td>2.5.3 Cohesiveness of the powder</td>
<td>15</td>
</tr>
<tr>
<td>2.5.4 Solubility of the powder in the binder</td>
<td>16</td>
</tr>
<tr>
<td>2.6 INSTRUMENTATION AND CONTROL OF GRANULATION</td>
<td>16</td>
</tr>
<tr>
<td>2.6.1 Power consumption</td>
<td>16</td>
</tr>
<tr>
<td>2.6.2 Impeller shaft torque</td>
<td>16</td>
</tr>
<tr>
<td>2.6.3 Humidity control</td>
<td>17</td>
</tr>
<tr>
<td>2.7 CHEMISTRY OF MILK WITH REGARDS TO GRANULATION</td>
<td>17</td>
</tr>
<tr>
<td>2.7.1 Introduction</td>
<td>17</td>
</tr>
<tr>
<td>2.7.2 Lactose</td>
<td>18</td>
</tr>
<tr>
<td>2.7.3 Protein</td>
<td>18</td>
</tr>
<tr>
<td>2.7.4 Fat</td>
<td>19</td>
</tr>
<tr>
<td>2.8 PROCESSING OF MILK BY GRANULATION</td>
<td>19</td>
</tr>
<tr>
<td>2.8.1 Heating of milk</td>
<td>20</td>
</tr>
<tr>
<td>2.8.2 Shearing of milk</td>
<td>21</td>
</tr>
<tr>
<td>2.9 CHAPTER CLOSURE</td>
<td>21</td>
</tr>
</tbody>
</table>
CHAPTER 3 - EQUIPMENT AND LABORATORY TECHNIQUES 22

3.1 INTRODUCTION 22
3.2 HIGH-SHEAR MIXER GRANULATOR 23
 3.2.1 Granulator bowl and mixing blades 23
 3.2.2 Control and instrumentation 23
3.3 BINDER DELIVERY 24
3.4 DRYING EQUIPMENT 25
 3.4.1 Open air drying 25
 3.4.2 Fluidised bed dryer 26
 3.4.3 Glatt fluidised bed dryer 28
 3.4.4 Moisture content analysis 28
3.5 OTHER EQUIPMENT USED 29
 3.5.1 Viscometer 29
 3.5.2 Milk reconstitution 29
 3.5.3 Mercury porosimeter 30
 3.5.4 Water activity measurement 30
3.6 LABORATORY TESTING METHODS 31
 3.6.1 Particle size analysis 31
 3.6.2 Functional testing using NZDRI standard tests 32

CHAPTER 4 - DEVELOPMENT OF EXPERIMENTAL METHODS 33

4.1 INTRODUCTION 33
4.2 DEVELOPMENT OF SPRAYING DEVICE 33
 4.2.1 Nozzle selection based on spray pattern and flowrate 33
 4.2.2 Determining spray distance and pattern 34
 4.2.3 Spray angle 36
 4.2.4 Spray timing 37
 4.2.5 Using a higher pressure to spray 38
4.3 BINDER RECONSTITUTION 39
 4.3.1 Introduction 39
 4.3.2 Reconstitution methodology 39
4.4 HUMIDITY OF THE GRANULATION 40

CHAPTER 5 - GRANULATION OF WHOLE MILK POWDER 42

5.1 INTRODUCTION 42
 5.1.1 Process selection 42
 5.1.2 High shear granulator 42
5.2 ACHIEVING SUCCESSFUL GRANULATION 43
 5.2.1 Experiments set-up 43
5.3 OPTIMISING MIXER SPEED, CHOPPER BLADE SPEED, AND THE AMOUNT OF BINDER 45
5.3.3 RESULTS AND DISCUSSION 46
5.3.4 CONCLUSIONS 51
5.4 EFFECT OF CHANGING THE SOLIDS CONCENTRATION OF THE BINDER 52
 5.4.1 Experimental set-up 52
 5.4.2 Results and discussion 54
 5.4.3 Conclusions 55
5.5 EFFECTS OF CHANGING GRANULATION TIME 56
 5.5.1 Experimental set-up 56
 5.5.2 Results and discussion 57
 5.5.3 Conclusions 59
5.6 CHAPTER CLOSURE 60

CHAPTER 6 - FUNCTIONAL TESTING OF GRANULES 61

6.1 INTRODUCTION 61
6.2 RECONSTITUTION FUNCTIONAL TESTING 61
 6.2.1 Isolating the storage problem 61
 6.2.2 The effect of time and moisture on the solubility index 63
 6.2.3 Wettability of milk granules 64
6.3 BULK DENSITY, PARTICLE DENSITY AND POROSITY OF GRANULES 64
6.3.1 Bulk density and particle density changes
6.3.2 Porosity of granules
6.4 UHT TREATMENT
6.4.1 Fouling during UHT treatment
6.4.2 Fat rise and sedimentation during storage
6.5 BATCH DRYING CURVE FOR GRANULES
6.6 CHAPTER CLOSURE

CHAPTER 7 – CONTINUOUS GRANULATION AND FURTHER WORK

7.1 INTRODUCTION
7.2 CONTINUOUS GRANULATION
7.2.1 Introduction
7.2.2 Continuous granulation process design
7.2.3 Mass balance and process design
7.3 SIMULATION OF CONTINUOUS CONDITIONS
7.3.1 Experimental set-up
7.3.2 Results and discussion
7.3.3 Conclusions and recommendations
7.4 FURTHER WORK
7.4.1 Skim milk powders

CHAPTER 8 – CONCLUSIONS AND RECOMMENDATIONS

REFERENCES
List of figures

Figure 2A The present understanding of granulation mechanisms divided into three categories as described by Ennis and Litster (1997). 7
Figure 2B The progress of consolidation according to Newitt and Conway-Jones (1958) showing the pendular, funicular and capillary states. 10
Figure 2C The York and Rowe (1994) addition to the states of consolidation showing the droplet and pseudo droplet states. 10
Figure 3A Experimental set up of the mixer-granulator. 22
Figure 3B Granulator bowl and blades. 23
Figure 3C Binder delivery equipment. 24
Figure 3D Binder spray nozzle. 25
Figure 3E Fluidised bed drier. 26
Figure 3F Fluidised bed drying effect on particle size distribution. 27
Figure 3G Glatt fluidised bed dryer. 28
Figure 3H Milk powder being reconstituted. 30
Figure 3I Water activity measurement. 31
Figure 4A Experimental set-up for recording spray pattern. 35
Figure 4B Spray angle and spray footprint. 37
Figure 4C Torque profile for mixer drive shaft during binder addition. 38
Figure 5A Moisture content for experiments with varied chopper speed, mixer speed and binder amount. 48
Figure 5B Granule temperature and amount of granules removed after granulation for experiment with varied chopper speed, mixer speed and binder amount. 49
Figure 5C Particle size distributions for varied chopper speed, mixer speed and amount of binder. 50
Figure 5D Granule size distribution for runs using evaporated concentrate as binder at 40 % and 50 % solids to produce granules of 11 % and 12 % total moisture. 55
Figure 5E Mixer torque profiles for granulation runs with varied granulation time. 58
Figure 5F Chopper torque profiles for granulation runs with varied granulation time. 58
Figure 5G Granule size distributions for granulation runs with varied granulation time. 59
Figure 6A Insoluble material generation over time as a function of granule storage. 63
Figure 6B Comparison of particle size distributions for powder and granules using Malvern Mastersizer 2000. 65
Figure 6C Pore size distribution for granules.

Figure 6D Comparison between fouling rate of reconstituted milk during UHT treatment for spray dried milk powder (control) and granulated spray dried milk powder.

Figure 6E Comparison of change in heat transfer coefficient over time during UHT treatment.

Figure 6F Batch drying curves for granules compared with instant (8830) and non-instant (8050) spray dried milk powders.

Figure 7A Continuous granulation circuit including spray dried milk powder in solids feed.

Figure 7B Continuous granulation circuit design using milk concentrate as the sole milk solids input.

Figure 7C Mass balance diagram for continuous granulation circuit.
List of tables

Table 2.7 Composition of mature cow's milk (Macie et al. 1953). 18
Table 3A Summary of NZDRI powder and granule functional tests. 32
Table 4.1 Spray pattern footprint at varying distances. 35
Table 4.2 Increasing viscosity of milk concentrates at a shear rate of 330 s⁻¹. 39
Table 4.3 Impeller design and success of reconstitution. 40
Table 5.1 Granulation parameters to be tested. 43
Table 5.2 Operating conditions for preliminary experiment to determine correct binder volume. 44
Table 5.3 Observations for determining optimal binder amount. 44
Table 5.4 Experimental conditions for three-factor investigation into mixer speed, chopper speed and binder amount. 45
Table 5.5 Experimental design to investigate the effects of mixer and chopper speeds and the amount of binder used for granulation. 46
Table 5.6 Summary table of mixer speed, chopper speed and binder addition experimental results. 47
Tables 5.7 Experimental set-up to investigate the effect of using evaporated milk concentrate binder at different solids concentrations. 53
Table 5.8 Experimental conditions for the investigation into the effect of evaporated binder concentration on granulation. 54
Table 5.9 Results of using 40 % and 50 % solids evaporated milk concentrate binder at total granule moisture contents of 11 % and 12 %. 54
Table 5.10 Granule size distribution for run 4. Evaporated concentrate binder at 40 % solids to achieve an 11 % granule moisture content. 55
Table 5.11 Experimental conditions for the investigation into the effect of granulation time on milk granules. 56
Table 5.12 Results of varying granulation time runs. 57
Table 6.1 Granulation conditions of granules produced for functional tested. 61
Table 6.2 Solubility Index (SI) results for ambient open-air dried granules produced with various granulation times. 62
Table 6.3 Solubility Index (SI) for milk granules produced under favourable conditions. 62
Table 6.4 Granule storage conditions for functional property changes over time experiment. 63
Table 6.5 Bulk density and particle density changes due to granulation. 65
Table 6.6 Fat rise and sedimentation during storage of UHT treated reconstituted milk made from granules.

Table 7.1 Experimental conditions for continuous granulation simulation.

Table 7.2 Granule moisture content effect on amount of granules recovered from granulator.

Table 7.3 Functional testing comparison of granules made using continuous simulation with batch granules and powder.
Chapter 1 – Introduction

1.1 Background

The New Zealand dairy industry produces over 1.2 million tonnes of powders manufactured from milk each year (NZMP, 2001). Powders have low transport cost and can be stored for an extended time due to their low water activity. The handleability and flowability are important physical properties for powders as well as the ease of reconstitution when being used by the consumer. These are influenced by the composition of the powder, the particle size distribution and the surface area.

Dairy powders are almost universally produced by spray drying (Caric, 1994) due to the short drying time and the adaptability of the equipment to manufacture different products. The disadvantages are the high capital costs of the spray drying equipment, the high-energy load required for the evaporation and the generation of fines. This necessitates further handling and recycling during manufacture, as well as an increased possibility of product loss during packaging and end-use of the product.

This project looks at granulation as either an alternative or an improvement to the spray drying process for producing whole milk powder. Granulation is a method used to improve the physical properties of powders by increasing the size of the powder particles (Hounslow et al, 1988). Granulation typically improves the flowability and wettability of powders, producing larger, more spherical particles. In addition, fines are eliminated and the bulk density is less likely to change during storage and transport (Jones, 2001). Granulation can be achieved in a batch, semi-batch or continuous process using a high-shear or low-shear system. High-shear mixer granulation was identified as being the most suitable process for whole milk powder due to the capability of the process for handling sticky materials.

1.2 Project Objectives

The objectives of this research were to:

- granulate milk using a high-shear granulator in a batch process
- investigate the physical changes that may occur to the milk during granulation
- design and simulate a continuous granulation process that will be able to granulate milk using milk concentrate as the sole ingredient.

1.3 Thesis Outline

This thesis aims to investigate the high-shear granulation of whole milk powder and seeks to provide an understanding of the subsequent effects of granulation on the functional quality of dried milk.

Chapter 2 reviews the literature and summarises the knowledge relevant to granulation of milk powders. The scope of the project limits the review primarily to
the particle technology aspects of granulation. As the project progressed there was a lot of knowledge outside the field of particle technology that was relevant. The knowledge of other issues, such as milk chemistry and surface science, are extensive but are herein only covered in summary.

Chapter 3 describes the equipment used for this research. Chapter 4 describes the alterations undertaken of a current batch high-shear granulation rig and the development of suitable experimental conditions for achieving milk granulation.

Chapter 5 describes a series of experiments performed to analyse the optimal process conditions to achieve successful granulation. The effects of varying process conditions on granule physical properties and the efficiency of the granulation are also covered.

Chapter 6 looks at the physical and functional effects of granulation on the granules produced in order to test the technical feasibility of milk granulation. A comparison between the original spray dried milk powder used as feed for the granulator and the final granules is given.

Chapter 7 investigates continuous granulation of milk powder. The results of a simulation of a continuous granulation process are presented. This determines whether continuous granulation is technically feasible. Process block diagrams are proposed for likely continuous granulation circuits, and their merits are discussed. The chapter also summarises suggested further work that is recommended.

The thesis finishes with a final chapter describing the major conclusions and recommendations.