Gene expression in the precocious germination of late maturation *Phaseolus vulgaris* L. seeds.

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Plant Biology at Massey University

Howard Russell Smith 1994
ACKNOWLEDGEMENTS

I would like to thank my family and friends for their support and encouragement particularly Betty for her tireless efforts in typing much of this thesis.

I wish to thank Liz Nickless, Edwin Smith, and Carolyn Young for their cheerful technical help and Lynda Dixon for her excellent tending of the plants.

I gratefully acknowledge the technical advice of Dr Graeme King, Dr Kevin Davies, and Dr Simon Deroles of Crop and Food Research, Levin. Thanks also to Dr Jocelyn Eason for helpful comments on thesis preparation.

Finally thanks to Dr David Fountain and Dr Clive Cornford for their patient supervision, advice, and encouragement.
TABLE OF CONTENTS

Page

TITLE PAGE i
ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
LIST OF FIGURES iv
LIST OF TABLES vi
LIST OF ABBREVIATIONS vii

ABSTRACT 1
INTRODUCTION 2
METHODS 9
RESULTS 21
DISCUSSION 43
REFERENCES 68
APPENDICES 76
FIGURE 1	Stages of pod and seed development in *Phaseolus vulgaris*.	10
FIGURE 2	Gas-tight containers used for the incubation of *Phaseolus vulgaris* embryos.	11
FIGURE 3	Typical responses of *Phaseolus vulgaris* seeds and embryos to the experimental treatments.	22
FIGURE 4	Fresh weight changes and radicle elongation of *Phaseolus vulgaris* embryos and seeds during incubation.	23
FIGURE 5	Agarose gel electrophoresis of *Phaseolus vulgaris* RNA isolated using guanidinium and phenol/chloroform extraction procedures (Gel A).	26
FIGURE 6	Agarose gel electrophoresis of *Phaseolus vulgaris* RNA isolated using guanidinium and phenol/chloroform extraction procedures (Gel B).	28
FIGURE 7	Gradient SDS-polyacrylamide gel electrophoresis of in vitro translation products.	33
FIGURE 8	Protein content of putative protein-body enriched and protein-body depleted fractions over development and germination.	37
FIGURE 9	SDS-polyacrylamide gel electrophoresis of protein-body depleted fractions prepared from development and germination stages of *Phaseolus vulgaris*.	39
FIGURE 10	SDS-polyacrylamide gel electrophoresis of protein-body enriched fractions prepared from development and germination stages of *Phaseolus vulgaris*.	40
FIGURE 11	The response to energy capture by individual silver halide grains in film.	46
FIGURE 12	Agarose gel electrophoresis of RNA extracted from axes and cotyledons of *Phaseolus vulgaris*.	
FIGURE 13	Agarose gel electrophoresis of RNA extracted from axes and cotyledons of *Phaseolus vulgaris*.	
FIGURE 14	Isolation from *Phaseolus vulgaris* total RNA of a poly(A)* fraction by the technique of oligo-dT-cellulose chromatography.	
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1</td>
<td>Yields and purity of Phaseolus vulgaris RNA isolated using guanidinium and phenol/chloroform extraction procedures.</td>
<td>25</td>
</tr>
<tr>
<td>TABLE 2</td>
<td>Incorporation of 35S-methionine into TCA-precipitable protein by in vitro translation of Phaseolus vulgaris RNA.</td>
<td>30</td>
</tr>
<tr>
<td>TABLE 3</td>
<td>Incorporation of 38S-methionine into TCA-precipitable protein by in vitro translation of Phaseolus vulgaris RNA.</td>
<td>31</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

1-D one dimensional
2-D two dimensional
A\textsubscript{260} absorbance at 260nm
ABA abscisic acid
AU absorbance unit
AUmm absorbance unit times millimetres (a measure of peak area)
cpm counts per minute
DAA days after anthesis
DEPC diethylpyrocarbonate
EDTA ethylenediaminetetraacetic acid
FW fresh weight
kb kilobase
kD kilodalton
LEA late embryogenesis abundant (protein)
MOPS 3-[N-Morpholino]propanesulfonic acid
MW molecular weight
PCR polymerase chain reaction
pI isoelectric point
ppm parts per million
PPO 2,5-diphenyloxazole
SDS sodium dodecylsulphate
SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis
TBE Tris-borate EDTA
TCA trichloroacetic acid
TEMED N,N,N',N'-tetramethylethylenediamine
TMV tobacco mosaic virus
ABSTRACT

Ethylene induces precocious germination in late maturation embryos (32-40 days after anthesis) of Phaseolus vulgaris L. cv. Seminole, thus overriding the endogenous controls which normally maintain quiescence. The possibility that ethylene exerts its effects at the gene expression level was investigated by in vitro translation of RNA extracted from embryo axis tissue of seeds induced to germinate precociously by incubation with ethylene. ^35^S-labelled products so produced were analyzed by electrophoresis, fluorography, and scanning densitometry. Results were compared with normally germinating seeds and with embryos incubated in the absence of ethylene. Ethylene was found to induce a qualitative and quantitative change in gene expression in late maturation embryos detectable within 6 hours of ethylene exposure. Two products (37-38kD and 27kD) were up-regulated within 24 hours in both ethylene-induced precocious germination and normal germination. Four products (71kD, 67-68kD, 65-66kD, and 41-42kD) which appeared in normal germination were evidently not required for ethylene-induced precocious germination. In contrast with the findings of Misra & Bewley (1985;1986) for maize(Zea mays L.) no products could be identified as being unique to the developmental phase, however two products (38-39kD and 28kD) were strongly present in development but disappeared shortly after germination. A product of 22-23kD was apparently unique to the ethylene-induced precocious germination treatment and may represent a gene regulated by ethylene. This product was not seen until 24 hours after ethylene introduction. An attempt was made using SDS-PAGE to identify the major storage proteins of P.vulgaris to use as markers of the developmental phase, however this was only partially successful. Suggestions are made as to approaches and methods for future research.