Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
N$_2$O synthesis by microalgae: Pathways, significance and mitigations

A thesis presented in partial fulfilment of the requirement for the degree of

Doctor of Philosophy

in Environmental Engineering

At Massey University, Palmerston North, New Zealand

Maxence Plouviez

2017
Abstract

Over the last decades, various studies have reported the occurrence of emissions of nitrous oxide (N\textsubscript{2}O) from aquatic ecosystems characterised by a high level of algal activity (e.g. eutrophic lakes) as well as from algal cultures representative of the processes used by the algae biotechnology industry. As N\textsubscript{2}O is a potent greenhouse gas (GHG) and ozone depleting pollutant, these findings suggest that large scale microalgal cultivation (and possibly, eutrophic ecosystems) could contribute to the global N\textsubscript{2}O budget. Considering the current rapid development of microalgal biotechnologies and the ubiquity of microalgae in the environment, this PhD research was undertaken to determine the biochemical pathway of microalgal N\textsubscript{2}O synthesis and evaluate the potential significance of microalgal N\textsubscript{2}O emissions with regard to climate change.

To determine the pathway of N\textsubscript{2}O synthesis in microalgae, Chlamydomonas reinhardtii and its associated mutants were incubated in short-term (24 h) laboratory \textit{in vitro} batch assays. For the first time, axenic \textit{C. reinhardtii} cultures (i.e. culture free of other microorganisms such as bacteria) fed nitrite (NO\textsubscript{2}-) were shown to synthesise N\textsubscript{2}O under aerobic conditions. The results evidenced that N\textsubscript{2}O synthesis involves 1) NO\textsubscript{2}- reduction into nitric oxide (NO), followed by 2) NO reduction into N\textsubscript{2}O by nitric oxide reductase (NOR). With regard to the first step, the results show that NO\textsubscript{2}- reduction into NO could be catalysed by the dual system nitrate reductase-amidoxime reducing component (NR-ARC) and the mitochondrial cytochrome c oxidase (COX). Based on our experimental evidence and published literature, we hypothesise that N\textsubscript{2}O is
synthesised via NR-ARC-mediated NO$_2^-$ reduction under physiological conditions (i.e. low/moderate intracellular NO$_2^-$) but that under NO$_2^-$ stress (i.e. induced by high intracellular NO$_2^-$), N$_2$O synthesis involves both NR-ARC-mediated and COX-mediated NO$_2^-$ reductions. RNA sequencing analysis on *C. reinhardtii* samples confirmed that the genes encoding ARC, COX and NOR were expressed in NO$_2^-$-laden culture, although NO$_2^-$ addition did not trigger significant transcriptomic regulation of these genes. We therefore hypothesise that the microalgal N$_2$O pathway may be involved in NO regulation in microalgae where NOR acts as a security valve to get rid of excess NO (or NO$_2^-$).

To evaluate N$_2$O emissions during microalgal cultivation, N$_2$O emissions were quantified during the long term outdoor cultivation of commercially relevant microalgae species (*Chlorella vulgaris, Neochloris* sp. and *Arthrospira platensis*) in 50 L pilot scale tubular photobioreactors (92 days) and during secondary wastewater treatment in a 1000 L high rate algal pond (365 days). Highly variable N$_2$O emissions were recorded from both systems (0.0 – 38 μmol N$_2$O·m$^{-2}$·h$^{-1}$, n = 510 from the 50 L photobioreactors; 0.008 – 28 μmol N$_2$O·m$^{-2}$·h$^{-1}$, n = 50 from the high rate algal pond). Based on these data, we estimated that the large scale cultivation of microalgae for biofuel production in order to, for example, replace 30% of USA transport fuel with algal-derived biofuel (i.e. a commonly used sustainability target), could generate N$_2$O emissions representing up to 10% of the currently budgeted global anthropogenic N$_2$O emissions. In contrast, N$_2$O emissions from the microalgae-based pond systems commonly used for wastewater treatment would represent less than 2% of the currently budgeted global N$_2$O emissions from wastewater treatment. As emission factors to
predict N$_2$O emissions during microalgae cultivation and microalgae-based wastewater treatment are currently lacking in Intergovernmental Panel for Climate Change methodologies, we estimated these values to 0.1 – 0.4% (0.02 – 0.11 g N-N$_2$O·m$^{-3}$·d$^{-1}$) of the N load on synthetic media (NO$_3^-$) during commercial cultivation and 0.04 – 0.45% (0.002 – 0.02 g N-N$_2$O·m$^{-3}$·d$^{-1}$) of the N load during wastewater treatment. The accuracy of the emission factors estimated is still uncertain due to the variability in the N$_2$O emissions recorded and by consequence further research is needed. Nevertheless, further monitoring showed that the use of ammonium as N source and/or the cultivation of microalgae species lacking the ability to generate N$_2$O (e.g. A. platensis) could provide simple mitigation solutions.
Acknowledgments

“Who would become a Padawan without his Jedi master?”

I thought that starting my acknowledgements with this metaphor is a suitable way of describing the importance of my main supervisor, Prof Benoit Guieysse, whom I would like to acknowledge first and foremost and also thank for his wonderful guidance, motivation and amazing supervision throughout my journey as a PhD student. I would also like to acknowledge my co-supervisors: Prof Andy Shilton for his excellent advice and teaching methods, which have been challenging at times but always in the benefit of success and Dr Mike Packer for his expertise on microalgal cultivation and biology as well as for his advice on editing.

Many thanks to Massey University staff: Mrs Ann Marie Jackson who was always really understanding and helpful with experimental requirements; Mr. John Edwards and Mr. John Sykes who helped me solve technical issues; Glenda Rosoman and Michel Wagner for their efficient and friendly help with all of the administrative aspects of my PhD and Julia Good, Judy Farrand-Collins, Nereda Corbett, Kylie Evans as well as the whole school of engineering and advanced technology (SEAT) workshop team: Anthony Wade, Morio Fukuoka, Kerry Griffiths, Ian Thomas and Clive Bardell.

Particular thanks go out to Trish McLenachan for her assistance on genomics analysis that helped me to obtain key results throughout my PhD and to Nihal Jayamaha for his great expertise and advices on statistical analysis. I also wish to thank Dr Dave
Wheeler, Dr Emanuel Sanz-Luque and Prof Emilio Fernandez for their collaboration and contribution to this project which has led to valuable results.

A big thank you to Dr Quentin Béchet for his amazing help and who was always there for me as the “senior” PhD student. Many thanks to all of my colleagues with who I shared many laughs and interesting (sometimes surprising) scientific discussions/debates: Aidan Crimp; Matthew Sell, Paul Chambonnière, Roland Schaap and Zane Norvil. Thank you to the part-time team members, our interns, who have been of a great help. I am thinking of Quentin Frigeri, Helene Thuret-Benoist, Qiao Wang, Emilie Alaux, Romain Lebrun and Mathilde Lippi.

I also wish to thank the Royal Society of New Zealand (Marsden fund MAU1102) for financially supporting my doctoral scholarship.

Finally, I could never express enough gratitude to all of my friends and family for their support. I would especially like to thank my father Yoland Plouviez and my mother Marie-Pierre Capillon without whom I could not realise all of this and also for their trust and support during my studies. Another thank you goes to my uncle Serge Weyenbergh and my fiancée Carina Svensson who have continuously believed in me and supported me during my studies.

My last thank you goes to my beautiful daughter Maeli who illuminates my life and has given me the strength to finish up performing at my best.
Table of contents

Abstract .. iii
Acknowledgments .. vi
Table of contents .. viii
List of illustrations ... xiii
List of tables .. xvi
Structure of the thesis ... xvii
List of papers and contributions ... xviii
Thesis introduction 1
List of abbreviations ... 3

Chapter 1. Literature review ... 5
 1.1 Introduction ... 7
 1.2 \(\text{N}_2\text{O} \) emissions from microalgae-based (eco)systems ... 11
 1.3 Potential significance of \(\text{N}_2\text{O} \) emissions from microalgae-based (eco)systems 18
 1.3.1 Eutrophic lakes .. 18
 1.3.2 Microalgae cultivation for biofuel production .. 19
 1.3.3 Unknown ‘unknowns’ ... 20
 1.4 Conclusions .. 22

Chapter 2. Microalgal \(\text{N}_2\text{O} \) pathway ... 29
 2.1 Introduction ... 32
 2.2 Materials and methods .. 34
 2.2.1 Strains selection and maintenance ... 34
 2.2.2 General protocol used during \textit{in vitro} batch assays .. 36
 2.2.3 Inhibition assays .. 37
 2.2.3.1 Nitrate reductase ... 37
3.1.2 Materials and methods .. 91
 3.1.2.1 Microalgae species and inoculum preparation ... 91
 3.1.2.2 PBR design and operation ... 92
 3.1.2.3 Liquid sampling ... 93
 3.1.2.4 Gaseous sampling and N₂O measurements .. 94
 3.1.2.5 Analytical procedures ... 95
 3.1.2.6 Microsensors for dissolved N₂O measurement .. 96

3.1.3 Results and discussion .. 97
 3.1.3.1 N₂O emissions from microalgae cultivated in 50 L PBRs 97
 3.1.3.2 Potential significance of N₂O emissions during algal biofuel production 112
 3.1.3.3 N₂O emission factors ... 113
 3.1.3.4 Mitigation strategies ... 114
 3.1.4 Conclusions .. 116

3.2 N₂O emissions from HRAP fed real domestic wastewater ... 117
 3.2.1 Introduction ... 118
 3.2.2 Materials and methods ... 120
 3.2.2.1 1000 L high rate algal pond (HRAP) design and operation 120
 3.2.2.2 Sampling and N₂O measurements ... 121
 3.2.2.3 Analytical procedures ... 123
 3.2.3 Results and discussion ... 124
 3.2.3.1 N₂O emissions from a HRAP .. 124
 3.2.3.2 N₂O emission factors ... 130
 3.2.3.3 Significance of N₂O emissions from a pilot HRAP fed with domestic wastewater .. 131
 3.2.4 Conclusions .. 134

3.3 Relevance of the monitoring studies ... 135

Chapter 4. Conclusions and future prospects ... 141

4.1 Conclusions ... 142
4.2 Future prospects ..147

Appendices .. 151

Appendix A. Description of the cultivation medium used during this PhD152

Appendix B. *Chlamydomonas reinhardtii* NOR ami-strains construction155

Appendix C. Nitrite toxicity assays ..157

Appendix D. Polymerase Chain Reaction analysis from *Chlamydomonas reinhardtii* samples ...159

Appendix E. RNA sequencing: Optimisation, results summary and supplementary results ...165

Appendix F. Gas measurement, pressure correction and GC calibration173

Appendix G. Data analysis of the positive and negative controls performed during batch assays ...179

Appendix H. Summary of the data analysis from the batch assays experiments184

Appendix I. N2O synthesis of various *Chlamydomonas reinhardtii* strains189

Appendix J. Dynamic experiment with *Chlamydomonas reinhardtii* 6145c cultures in indoor 2 L bench scale tubular photobioreactors ..191

Appendix K. NO generation during N2O synthesis in *Chlamydomonas reinhardtii*193

Appendix L. N2O synthesis by *Chlamydomonas reinhardtii* pre-cultivated with tungstate, a molybdenum enzyme inhibitor197

Appendix M. N2O synthesis by *Chlamydomonas reinhardtii* under anoxia199

Appendix N. Conferences abstracts ..201

Appendix O. Summary of the operational parameters from the monitoring study in 50 L photobioreactors ...203

Appendix P. Controls and statistical analyses performed on N2O measurements from the N2O monitoring ...204

Appendix Q. Preliminary work with N2O and NO specific microsensors208

Appendix R. Correlation between dry weight, solar irradiance, ambient air temperature, broth temperature, NO3⁻ concentration, NO2⁻ concentration and N2O production during *Chlorella vulgaris* cultivation in 50 L PBRs ...215
Appendix S. Statistical analysis of the influence of environmental and operational parameters on N₂O emissions from *Chlorella vulgaris* cultivated in 50 L PBRs fed NO₃⁻ ...218

Appendix T. Correlation between dry cell weight (DCW), optical density (OD) and cell number from *microalgae* cultures ..228

Appendix U. Daily N₂O evolution from 2 *Chlorella vulgaris* cultures in 50 L photobioreactors in August 2014 ...234

Appendix V. Daily pattern between N₂O production and light irradiance recorded during *Neochloris* cultivation in 50 L PBRs ...235

Appendix W. Correlation between monthly averaged N₂O production and monthly averaged biomass specific light availability ...236

Appendix X. N₂O production by *Chlorella vulgaris* cultures in 2 L bench scale reactors when fed NH₄⁺ or NO₃⁻ supplied with 0.5 mM NO₂⁻ .. 239

Appendix Y: Data distribution (dry weight, light intensity, air temperature and N₂O production) over the data range chosen for simulation (first and third quartile of N₂O production during *Chlorella vulgaris* cultivation in 50 L PBRs fed NO₃⁻) .. 241

Appendix Z. N₂O quantification from a HRAP treating domestic wastewater242

Appendix AA. Distribution of the N₂O production measured from HRAP microcosms and statistical analysis of the data between operation at 7 and 10 days HRT245

Statements of contribution to doctoral thesis containing publications247
List of illustrations

Figure 1.1: Common N₂O pathways a) N₂O synthesis by bacteria adapted from Wrage et al, (2001) N₂O synthesis during nitrification (solid line), denitrification (dot dash line) and nitrifier-denitrification (dashed line). The overlaps between the processes show the possible link occurring in particular environments such as coupled nitrification-denitrification at the aerobic/anaerobic interface; b) Fungal denitrification pathway.. 13

Figure 1.2: Nitrate assimilation in microalgae and N₂O putative pathways (bold).......................... 17

Figure 2.1: N₂O produced (average nmole ± SD) in triplicates of sealed batch cultures of C. reinhardtii 6145c (initial DCW of 0.22 g-DCW·L⁻¹) with or without 10 mM NO₂⁻ supplementation and incubated for 24 h in darkness or illumination; sterile N-free medium with or without NO₂⁻ supplementation; and autoclaved culture of C. reinhardtii 6145c supplied with 10 mM NO₂⁻ and incubated in darkness. .. 43

Figure 2.2: N₂O production (average nmol·g-DCW⁻¹ ± SD) by triplicate cultures of C. reinhardtii 6145c at 3 different initial cellular concentrations (0.1, 0.25, 0.4 g-DCW·L⁻¹) incubated for 24 h with 10 mM NO₂⁻ in darkness. ... 44

Figure 2.3: N₂O production (nmol·g-DCW⁻¹) between a) 0 – 5 h and b) 4 – 52 h by C. reinhardtii 6145c (initial DCW of 0.22 g-DCW·L⁻¹) supplied with 10 mM NO₂⁻ incubated in darkness. .. 46

Figure 2.4: Diagram summarising the findings from Section 2.3.1: N₂O emissions from axenic C. reinhardtii cultures. ... 47

Figure 2.5: N₂O production (nmol·g-DCW⁻¹) by cultures of C. reinhardtii 6145c (initial DCW of 0.22 g-DCW·L⁻¹) supplied with either 10 mM NO₂⁻ or NO₃⁻ or NH₄⁺ and incubated in darkness or under illumination for 24 h. .. 48

Figure 2.6: N₂O production (average nmol·g-DCW⁻¹ ± SD) by triplicate cultures of C. reinhardtii 6145c (initial DCW of 0.25 g-DCW·L⁻¹) incubated for 24 h in darkness supplied with 3, 6, 12, or 24 mM NO₂⁻. .. 49

Figure 2.7: N₂O production (average nmol·g-DCW⁻¹ ± SD) by triplicate culture of C. reinhardtii 6145c (initial DCW of 0.25 g-DCW·L⁻¹) supplied with either NO₂⁻ 10 mM, or L-arg 10 mM, or L-Arg and NO₂⁻ at 10 mM, or L-arg, NNA and NO₂⁻ at 10 mM or NNA and NO₂⁻ at 10 mM and incubated for 24 h in darkness. ... 50

Figure 2.8: Diagram summarising the findings from Section 2.3.2: NO₂⁻ acts as substrate during microalgal N₂O synthesis... 51
Figure 2.9: Diagram summarising the findings from Section 2.3.3: NO is a key intermediate during N₂O synthesis. .. 56

Figure 2.10: N₂O production (nmol·g-DCW⁻¹) between 0 – 15 min; 15 min – 3 h; 3 – 24 h C. reinhardtii 6145c (initial DCW of 0.25 g-DCW·L⁻¹) and NR deficient mutant 2929 (initial DCW of 0.25 g-DCW·L⁻¹) supplied with 10 mM NO₂⁻ and incubated in darkness. See Appendix H, Table H.1 and Table H.2, for the results from all replicates. 58

Figure 2.11: N₂O production (average nmol·g-DCW⁻¹ ± SD) by triplicate cultures of C. reinhardtii NiR mutant M3 (initial DCW of 0.25 g-DCW·L⁻¹) supplied with either NO₂⁻ or NO₃⁻ at 10 mM and incubated for 24 h in darkness or under illumination. 59

Figure 2.12: Diagram summarising the findings from section 2.3.4: Short-term N₂O synthesis involves NR but late synthesis involves other enzymes in C. reinhardtii, and 2.3.5: NR and NiR activities impacts N₂O synthesis under NO₃⁻ supply. .. 61

Figure 2.13: N₂O production (average nmol·g-DCW⁻¹ ± SD) by triplicate cultures of C. reinhardtii 6145c (0.25 g·L⁻¹) and cultures of C. reinhardtii 2929 (0.25 g·L⁻¹) supplied 10 mM NO₂ and 2 mM KCN (”CN⁻”) against CN⁻ free cultures (”control”); all cultures were incubated for 24 h in darkness. .. 63

Figure 2.14: Diagram summarising the findings from Section 2.3.6: Late N₂O synthesis involves NO₃⁻ reduction to NO by mitochondrial COX and Section 2.3.7: Possible role of hemoglobins during N₂O synthesis in C. reinhardtii. .. 65

Figure 2.15: N₂O production (nmol·g-DCW⁻¹) by triplicate cultures of C. reinhardtii 704 (initial DCW of 0.25 g-DCW·L⁻¹) and amiCYP55 (CYP55-silenced) mutant (initial DCW of 0.25 g-DCW·L⁻¹) supplied with 10 mM NO₃⁻ and incubated for 24 h in darkness. 66

Figure 2.16: Diagram summarising the findings from Section 2.3.8: N₂O synthesis by C. reinhardtii involves NO reduction into N₂O by NOR. .. 67

Figure 2.17: N₂O synthesis in C. reinhardtii. The dashed box represents the new knowledge introduced to the field of microalgal biochemistry. NR = nitrate reductase, NR-ARC = dual system of NR and ARC, also called NR-NOFNiR, NiR = nitrite reductase, GS = Glutamine synthase, AA = amino acid; NOR = nitric oxide reductase; COX = Cytochrome c oxidase, THB1 = hemoglobin 1, ? = putative molecule). .. 76

Figure 3.1: C. vulgaris cultivated in 50 L bubble column photobioreactors (2 m × 0.19 m inner diameter, 1 m² of illuminated area as described by Béchet et al. (2010)). ... 93

Figure 3.2: Histograms of dry cell weight (g-DCW·L⁻¹), solar irradiance (W·m⁻²), air temperature (°C), broth temperature (°C), and N₂O production (nmol·m⁻²·h⁻¹) measured during C. vulgaris cultivation in 50 L photobioreactors. ... 101
Figure 3.3: N₂O production (nmol·m⁻²·h⁻¹) as a function of daily biomass concentration (g-DCW·L⁻¹) for each daily DCW population decile (in each decile n = 32).. 103

Figure 3.4: N₂O production (nmol·m⁻²·h⁻¹) as a function of predicted instantaneous biomass productivities (kg-DW·s⁻¹) for each C. vulgaris cultures (PBRs 1 – 4) from the monitoring performed in June 2012.. 106

Figure 3.5: a) N₂O production (nmol·m⁻²·h⁻¹) as a function of solar irradiance (W·m⁻²) for each solar irradiance population decile (in each decile n = 32). b) Weekly averaged N₂O production (nmol·m⁻²·h⁻¹) as a function of weekly averaged solar irradiance (W·m⁻²).. 107

Figure 3.6: Changes in N₂O production (black ◊, nmol·m⁻²·h⁻¹) and solar irradiance (∗, W m⁻²) during C. vulgaris cultivation in 50 L PBR: the shaded area (75 – 300 min) represents the time when the reactor was shaded from the sun.. 108

Figure 3.7: N₂O production (nmol·m⁻²·h⁻¹) recorded during C. vulgaris cultivation in 50 L PBR and supplemented with 2 mM NO₂⁻ (the arrow indicates when NO₂⁻ was added) or kept free of external NO₂⁻ as control.. 110

Figure 3.8: a) N₂O production (nmol·m⁻²·h⁻¹) as a function of air temperature (°C) for each air temperature population decile (in each decile n = 32). b) N₂O emissions (nmol·m⁻²·h⁻¹) as a function of broth temperature (°C) for each broth temperature population decile (in each decile n = 18). ... 112

Figure 3.9: 1000 L HRAP fed primary wastewater... 120

Figure 3.10: a) N₂O production (nmol·m⁻²·h⁻¹) from weekly samples when the HRAP was operated at 10 days HRT. b) N₂O production (nmol·m⁻²·h⁻¹) from weekly samples when the HRAP was operated at 7 days HRT (the error bars represent the (Max – Min)/2 value between duplicates). ... 125

Figure 3.11: N₂O production (nmol·m⁻²·h⁻¹) against TSS (mg·L⁻¹), NO₂⁻ (mg·L⁻¹), pH, solar irradiance (W·m⁻²), T (°C), and DO (mg·L⁻¹) during wastewater treatment in a HRAP operated at 10 and 7 days HRT.. 127

Figure 3.12: NO₃⁻ (mg·L⁻¹), NO₂⁻ (mg·L⁻¹) and NH₄⁺ (mg·L⁻¹) concentrations in the filtered HRAP microalgal/bacterial suspension... 129

Figure 3.13: a) Comparison of N₂O emission factors documented in the literature and estimated from the N₂O measured from a 1000 L HRAP. b) IPCC methodology to estimate N₂O emissions from wastewater. ... 131
List of tables

Table 1.1: N₂O emissions reported from studies acknowledging algal N₂O synthesis (chronological order of publication). ... 9

Table 1.2: Biological, environmental, operational and design parameters potentially triggering microalgal N₂O emissions ... 21

Table 2.1: Reference strain, wildtype, and mutant strains used during this study (strain numbers refer to the number given by Chlamydomonas centre http://chlamycollection.org). .. 35

Table 2.2: Fluorescence of C. reinhardtii 6145c cells incubated with DAF FM Diacetate and supplied NO₂⁻. Under the hypothesis that NO₂⁻ biological reduction yielded NO; red text shows negative control (when DAF FM diacetate and/or NO₂⁻ were not present), whereas the green text show the treatment (DAF FM diacetate and NO₂⁻ were both present). Microscopic photographs were taken with a Micropublisher 5 colour CCD camera (QImaging, Canada). ... 54

Table 2.3: Log2FC between control and treatment groups of candidate genes potentially involved in microalgal N₂O synthesis. Numbers in parenthesis represent mean normalised counts. .. 69

Table 3.1: N₂O emissions recorded during microalgae cultivation in 50 L column photobioreactors (n = sampling size for N₂O measurements). Summary of operational parameters can be found in Appendix O ... 98
Structure of the thesis

This thesis is based on manuscripts that have been published in, accepted in or ready to be submitted for publication in international peer-reviewed journals (Chapter 1–3). Some of the key results have also been peer-reviewed and accepted for presentation in international conferences (Chapter 3). The content of Chapter 1-3 therefore supports the thesis conclusions discussed in Chapter 4.

To link the chapters together and illustrate the logic to achieve the research objectives; a preface is included at the beginning of Chapter 1–3. The content of the chapters is the same as the manuscripts they are based on; however, in some cases supporting information is given to improve clarity. For example, in Chapter 2 supplementary figures have been added in the core of the chapter to make the reading easier by directly showing all the evidences supporting each conclusion.

The relevant publications for each chapter are presented in the next section. The structure of this thesis complies with Massey University guidelines for doctoral thesis by publication, 2015.
List of papers and contributions

Chapter 1

Chapter 2

Chapter 3

Plouviez, M.; Shilton, A.; Packer, M.; Thuret-Benoist H.; Alaux, E.; Guieysse, B. Nitrous oxide (N\textsubscript{2}O) emissions from microalgae cultures in 50 L photobioreactors. *(Accepted (with revisions) in Algal Research).*

Some of the key results discussed in Chapter 3 were also presented at the following conferences:

- International Water Association, Ecotechnologies for wastewater treatment, Cambridge, United Kingdom (June 2016): Plouviez, M.; Posadas, E.; Lebrun,
R.; Munoz, R.; Guieysse, B. Direct and indirect N₂O emissions during secondary domestic wastewater treatment in a pilot-scale high rate algal pond.

Maxence Plouviez was the main contributor and lead author on all the papers and also presented at the conference Biorefinery for Food & Fuels & Materials. While Maxence Plouviez designed and conducted all the experimental work and analysed the results, his supervisors offered advice and help editing papers (the statements of contribution to doctoral thesis containing publications can be found at the end of the appendices).
Thesis introduction

In recent years, billions of dollars have been invested in microalgal biotechnologies\(^1\) with the main belief that microalgae-based products (e.g. biofuels, animal feed) and services (e.g. pollution control) have intrinsic low carbon footprints. This is, however, without considering that microalgae can generate the potent greenhouse gas and ozone depleting pollutant, nitrous oxide (N\(_2\)O)\(^2\). Although carbon neutrality may be achieved via the recycling of atmospheric carbon dioxide (CO\(_2\)) during photosynthesis, N\(_2\)O emissions during microalgal cultivation have not yet been properly investigated.

The potential of microalgae to synthesise N\(_2\)O is of broad significance due to potential adverse effects on the environment. However, the mechanisms involved and the magnitude of microalgal N\(_2\)O emissions from microalgae-based engineered (and natural\(^3\)) systems are largely unknown, raising research questions such as: How and why microalgae synthesise N\(_2\)O? Could microalgal N\(_2\)O emissions impact the sustainability of the microalgae industry? How could these emissions be mitigated? In order to answer these critical questions, this PhD thesis seeks to achieve the following objectives:

1. Acquire knowledge on microalgal N\(_2\)O biochemistry and understand the metabolism behind N\(_2\)O synthesis.

2. Evaluate N\(_2\)O emissions from microalgal engineered systems.

\(^2\) The ability of microalgae to synthesise N\(_2\)O was suggested more than 40 years ago and demonstrated in two mid-1980 studies.

\(^3\) As it will be discussed in Chapter 1, there is clear evidence that microalgal N\(_2\)O emissions may be significant during microalgal cultivation but also from natural ecosystems which was to our knowledge completely dismissed among expert committees.
3. Evaluate the potential environmental significance of microalgal N\textsubscript{2}O emissions, and propose mitigation strategies.

Chapter 1 defines the scope of the thesis and critically discusses the current knowledge about N\textsubscript{2}O synthesis in microalgae and N\textsubscript{2}O emissions from microalgae (eco)systems. Chapter 2 presents and discusses new findings about the biochemical pathway of N\textsubscript{2}O synthesis in microalgae. Chapter 3 presents the first long term investigations of N\textsubscript{2}O emissions from outdoor microalgal cultivation systems, followed by a discussion on significance, mitigation solutions, and future guidance. Chapter 4 then presents conclusions on all the findings obtained during this research and discusses future prospects.
List of abbreviations

AOA: Ammonia-oxidizing archaea
AOB: Ammonia-oxidizing bacteria
AOX: Alternative oxidase
ARC: Amidoxime reducing component
CN⁻: Cyanide ion
COX: Cytochrome c oxidase
DAF FM Diacetate: 4-amino-5-methylamino-2’7’-difluore-fluorescein diacetate
DEA NONOate: diethylamine NONOate
DCW: Dry cell weight
DO: Dissolved oxygen
E-flasks: Erlenmeyer flasks
EFs: Emissions factors
Fd: Ferredoxin
GC: Gas chromatography
GHG: Greenhouse gas
HNO: Nitroxylic
HRAP: High rate algae pond
IPCC: Intergovernmental Panel for Climate change
L-Arg: L-arginine
L-NNA: Nω-nitro-L-arginine
Log2FC: Log 2 fold change
NAD(P)H: Nicotinamide adenine dinucleotide phosphate
NH₃: Ammonia
NH₄⁺: Ammonium
NiR: Nitrite reductase
NO: Nitric oxide
NOFNiR: Nitric Oxide Forming Nitrite Reductase
NOR: Nitric oxide reductase
NO₂⁻: Nitrite
NO₃⁻: Nitrate