Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Evaluation of Baffles for Optimisation of Waste Stabilisation Pond Hydraulics

A thesis presented in partial fulfilment of the requirements For the degree of

Masters of Engineering
in
Environmental Engineering

at Massey University, Palmerston North, New Zealand

Jill Helen Harrison

2003
ABSTRACT

Waste stabilisation ponds are a common form of treating wastewater throughout the world and they provide a reliable, low-cost, low-maintenance treatment system. A literature review undertaken highlighted the need for improved understanding of the hydraulics of such systems, and their upgrade. In particular, the application of baffles is not well understood beyond the use of longer, traditional baffles to increase the approximation to plug flow. The mechanisms and interactions behind baffles are not generally understood.

The work involved the use of CFD modelling to assess various pond designs. In addition to this, traditional tracer studies were carried out on a physical laboratory model, and on a full-scale field pond. These traditional studies highlighted the success of the computer modelling approach.

CFD modelling was used to model twenty pond designs, utilising various baffle lengths, number and position. These cases also studied inlet type and outlet position. In the second phase of the work, six of the CFD designs were tested in the laboratory setting. The final phase of work involved two tracer studies carried out on a field pond, utilising a modified inlet, then a combination of a modified inlet and the inclusion of a short (stub) baffle.

CFD modelling has shown to be an effective investigative and design tool. The addition of results from laboratory and field studies further emphasises the benefits of the CFD modelling. The work has also provided an understanding of key flow mechanisms and interactions that have previously been attributed to other factors.

Single baffles are not generally effective, and a minimum of two baffles will generally be required to achieve significant treatment improvements. The potential of short (stub) baffles has been shown, however they are sensitive to design changes and should be further researched.

Previous research has looked at the pond using a ‘black-box’ approach, this work seeks to open and explain the flow patterns within that ‘black-box’.
ACKNOWLEDGEMENTS

The completion of a Masterate thesis, while a major individual effort, could not be completed without considerable help and guidance from many people.

Firstly my supervisor, Andy Shilton – for the opportunity and the assistance throughout my period of study. It has been a great opportunity to be part of some ground-breaking research and ideas.

The larger project that this thesis contributes to had considerable funding from the following: the Sustainable Management Fund of the Ministry for the Environment, various City, District and Regional Councils. Their assistance is greatly appreciated.

The staff of the Institute of Technology and Engineering, Massey University, deserves mention, all of the Ag Eng Building staff, in particular, Don, Russell and Marcel from the workshop for all the bits and pieces they have fabricated. Richard, Paul and Katie for being a sounding board when it came to write-up time. Roanna for her invaluable help in setting up various documents.

Mention must be made of the help from Claire Driver, a 4th year research student, for her assistance in completing the laboratory modelling program.

There are many people who have helped directly or indirectly, and are too many to mention. Thanks go to IPENZ, for the awarding of the Craven Scholarship for Postgraduate Research in Engineering – valuable in easing the financial burden of postgraduate study.

As with anything undertaken in my lifetime, special thanks must go to my family. First and foremost to my parents – John and Janet Harrison, who have worked hard to provide their children with every opportunity to better ourselves, and for which I will always be grateful. And to Dean for his love and on-going support in the completion of this thesis. To Janet Orchard, a wonderful Aunty and a great proof reader.
CONTENTS

ABSTRACT ... 1

ACKNOWLEDGEMENTS ... 2

CONTENTS ... 3

TABLE OF FIGURES ... 10

TABLE OF TABLES ... 16

1. INTRODUCTION .. 17
 1.1 THE NEED FOR THE RESEARCH ... 17
 1.2 OBJECTIVES AND APPROACH .. 18

2. LITERATURE REVIEW ... 19
 2.1 WASTE STABILISATION PONDS ... 19
 2.2 TYPES OF PONDS .. 21
 2.2.1 Anaerobic .. 21
 2.2.2 Faculative ... 22
 2.2.3 Maturation Ponds ... 23
 2.2.4 High-Rate Algal Ponds ... 24
 2.3 POND DESIGN ... 24
 2.3.1 Loading Rates .. 24
 2.3.2 Empirical Design Equations ... 25
 2.3.3 Rational Models .. 25
 2.3.3.1 Ideal Flow .. 26
 2.3.3.2 Non-Ideal Flow .. 27
 2.3.3.3 Combined Pond Models ... 28
 2.3.4 Mechanistic Modelling ... 29
 2.4 IMPORTANCE OF POND HYDRAULICS .. 31
 2.5 FACTORS AFFECTING POND HYDRAULICS 33
 2.5.1 Inlets Outlet Configuration .. 33
 2.5.2 Wind ... 37
 2.5.3 Stratification .. 38
2.6 Baffles ... 39

2.6.1. Hydraulic Investigations of Baffle Implementation 40
2.6.2. Baffles & Wind ... 46
2.6.3. Baffles & Attached Growth Systems .. 47
2.6.4. Nutrient Removal in Baffled WSP ... 47
2.6.5. Baffles in Tanks & Reservoirs ... 47
2.6.6. Chlorine Contact Tanks ... 49
2.6.7. Stormwater Detention Ponds .. 50
2.6.8. Baffles Summary .. 51

2.7 Techniques for Assessing Pond Hydraulics .. 52

2.7.1. Tracer Studies ... 52
2.7.2. CFD Modelling .. 54
2.7.2.1. CFD Modelling by Wood (1997) .. 55
2.7.2.2. CFD Modelling by Salter (1999) ... 56
2.7.2.3. CFD Modelling by Shilton (2001) ... 56
2.7.2.4. Other Work on CFD Modelling of WSP's 57
2.7.3. Laboratory Modelling ... 57
2.7.4. Drogue Studies .. 58

2.8 Summary and Conclusions .. 60

3. Methodology ... 62

3.1 Experimental Overview ... 62

3.2 CFD Modelling ... 62

3.2.1. Introduction to PHOENICS ... 62
3.2.2. Development of the Computer Model .. 63
3.2.3. Simulations Undertaken ... 64
3.2.3.1. Obtaining a Solution .. 64
3.2.3.2. Non-Steady State Runs ... 66
3.2.4. Integrating Reaction Kinetics ... 67
3.2.5. Grid Refinement .. 68
3.2.6. Turbulence ... 71

3.3 Configurations Tested Using CFD .. 71

3.4 Laboratory Studies ... 73

3.4.1. Development of Lab Models .. 73
CONTENTS

3.4.1.1. Reynolds Number versus Froude Number Design 74
3.4.2. Froude Number Based Design ... 74
3.4.3. Laboratory Pond Set-up .. 75
3.4.4. Tracer Studies ... 76
3.4.5. Configurations tested in the Laboratory 77
3.5 Field Studies .. 78

4. RESULTS OF CFD MODELLING ... 82

4.1 Overview of CFD Models Investigated 82
4.1.1. Presentation of Results .. 84
4.2 Basic Pond ... 85
4.2.1. Case 1 ... 85
4.2.1.1. Design Rationale ... 85
4.2.1.2. Results and Discussion ... 85
4.3 Evenly Spaced Multiple Baffles, Standard Length 87
4.3.1. Case 2 Traditional two baffle design 87
4.3.1.1. Design Rationale ... 87
4.3.1.2. Results and Discussion ... 87
4.3.2. Case 3 Traditional four baffle case 89
4.3.2.1. Design Rationale ... 89
4.3.2.2. Results and Discussion ... 89
4.3.3. Case 4 Traditional six baffle design 91
4.3.3.1. Design Rationale ... 91
4.3.3.2. Results and Discussion ... 92
4.3.4. Case 5 Traditional eight baffle case 93
4.3.4.1. Design Rationale ... 93
4.3.4.2. Results and Discussion ... 93
4.3.5. Summary ... 95
4.4 Unevenly Spaced Baffles, Standard Length 95
4.4.1. Case 6 Two baffles, unevenly spaced 95
4.4.1.1. Design Rationale ... 96
4.4.1.2. Results and Discussion ... 96
4.4.2. Summary ... 97
4.5 Single Baffles .. 98
4.5.1. Case 7 – Single central baffle ... 98
 4.5.1.1. Design Rationale ... 98
 4.5.1.2. Results and Discussion ... 98
4.5.2. Case 8 – Single baffle, inlet end .. 100
 4.5.2.1. Design Rationale ... 100
 4.5.2.2. Results and Discussion ... 100
4.5.3. Case 9 and Case 10 – Single baffles, outlet end 101
 4.5.3.1. Design Rationale ... 101
 4.5.3.2. Results and Discussion ... 102
4.5.4. Case 11 – Single baffle, outlet end, outlet moved 104
 4.5.4.1. Design Rationale ... 104
 4.5.4.2. Results and Discussion ... 104
4.5.5. Case 12 – Central wall with middle opening ... 106
 4.5.5.1. Design Rationale ... 106
 4.5.5.2. Results and Discussion ... 106
4.5.6. Summary ... 108
4.6.1. Case 13 – Two stub baffles ... 108
 4.6.1.1. Design Rationale ... 108
 4.6.1.2. Results and Discussion ... 109
4.6.2. Case 14 – Two stub baffles, outlet moved .. 111
 4.6.2.1. Design Rationale ... 111
 4.6.2.2. Results and Discussion ... 111
4.6.3. Case 15 – Case 14 design, standard length baffles 113
 4.6.3.1. Design Rationale ... 113
 4.6.3.2. Results and Discussion ... 113
4.6.4. Case 16 – Single stub baffle ... 115
 4.6.4.1. Design Rationale ... 115
 4.6.4.2. Results and Discussion ... 115
4.6.5. Summary ... 116
4.7.1. Case 17 – Vertical Inlet ... 117
 4.7.1.1. Design Rationale ... 117
 4.7.1.2. Results and Discussion ... 117
CONTENTS

4.7.2. Case 18 Diffuse Inlet ... 119
 4.7.2.1. Design Rationale ... 119
 4.7.2.2. Results and Discussion .. 119
 4.7.3. Summary ... 120

4.8 Outlet Investigations ... 121
 4.8.1. Case 19 & 20 Central outlet cases .. 121
 4.8.1.1. Design Rationale ... 121

4.9 Limitations of CFD Modelling Undertaken 122
 4.9.1. Temperature ... 122
 4.9.2. Wind ... 123
 4.9.3. Sludge Deposits .. 123
 4.9.4. Other Physical Influences .. 123

4.10 Chapter Discussion & Summary .. 124

5. Results of Laboratory Studies .. 127
 5.1 Introduction .. 127
 5.2 Review of Laboratory Experiments ... 128
 5.3 Presentation of Results ... 128
 5.4 Base Case for Comparison ... 129
 5.5 Case L2 - Traditional two baffle case .. 130
 5.5.1. Flow Pattern .. 131
 5.5.2. Tracer Study Results .. 131
 5.5.3. CFD Modelling Results ... 132
 5.6 Case L4 - Traditional six baffle case .. 134
 5.6.1. Flow Pattern .. 134
 5.6.2. Tracer Study Results .. 136
 5.6.3. CFD Modelling Results ... 139
 5.7 Case L11 - Single baffle, outlet end, outlet moved 140
 5.7.1. Flow Pattern .. 140
 5.7.2. Tracer Study Results .. 141
 5.7.3. CFD Modelling Results ... 143
 5.8 Case L14 - Two stub baffles, outlet moved 144
 5.8.1. Flow Pattern .. 144
 5.8.2. Tracer Study Results .. 145
5.8.3. *CFD Modelling Results* ... 147
5.9 **CASE L15 – TWO LONG BAFFLES, OUTLET MOVED** 149
 5.9.1. *Flow Pattern* .. 149
 5.9.2. *Tracer Study Results* .. 150
 5.9.3. *CFD Modelling Results* ... 152
5.10 **CASE L17 – VERTICAL INLET** .. 153
 5.10.1. *Flow Pattern* .. 153
 5.10.2. *Tracer Study Results* .. 153
 5.10.3. *CFD Modelling Results* ... 155
5.11 **CHAPTER SUMMARY & DISCUSSION** .. 155

6. **ASHHURST POND STUDIES** ... 158
6.1 **INTRODUCTION** .. 158
6.2 **FIELD STUDY 1 – VERTICAL INLET** ... 159
 6.2.1. *Introduction* ... 159
 6.2.2. *Study Conditions* ... 160
 6.2.3. *Study Results & Discussion* ... 160
6.3 **FIELD STUDY 2 – COMBINATION OF INLET MODIFICATION AND BAFFLE** 165
 6.3.1. *Introduction* ... 165
 6.3.2. *Design Process* ... 166
 6.3.2.1. Basic Case – Unmodified Pond ... 166
 6.3.2.2. Stub Baffles ... 166
 6.3.2.3. Stub Baffles, Turned Inlet ... 167
 6.3.2.4. Inlet Manipulation .. 168
 6.3.2.5. Combination of Turned Inlet and Stub Baffle 170
 6.3.2.6. Outlet Investigations ... 171
 6.3.2.7. Vertical Inlet plus Baffles .. 172
 6.3.2.8. Standard Length, Evenly Spaced Baffles ... 173
 6.3.3. *Study Conditions* ... 175
 6.3.4. *Study Results & Discussion* ... 176
 6.3.5. *CFD modelling of Field Trial 2* .. 179
 6.3.6. *Treatment Efficiency* ... 181
6.4 **CHAPTER SUMMARY & DISCUSSION** .. 182
7. DISCUSSION ... 183

7.1 BAffLES IN WASTE STABILISATION PONDS .. 183
 7.1.1. Length of Baffles .. 183
 7.1.2. Number of Baffles .. 186
 7.1.3. Position of Baffles ... 187
 7.1.4. Traditional versus Innovative Baffle Design 187
 7.1.5. Final Evaluation ... 188

7.2 EFFECT OF INLET .. 188
 7.2.1. Diffuse Inlet .. 188
 7.2.2. Vertical Inlet ... 189
 7.2.3. Final Evaluation ... 190

7.3 EFFECT OF OUTLET ... 190
 7.3.1. Final Evaluation ... 191

7.4 FLOW MECHANISMS AND INTERACTION ... 192
 7.4.1. Does the same design work for all ponds? ... 192
 7.4.2. Channelling - Baffles ... 192
 7.4.3. Channelling - Interaction of Inlet and Walls 196
 7.4.4. Final Evaluation ... 198

8. CONCLUSIONS .. 199

9. REFERENCES .. 201
TABLE OF FIGURES

Figure 2-1 Facultative Pond (Tchobanoglous and Schroeder, 1985, pg 635) --------23
Figure 2-2 Finite Stage Model (Watters et al., 1973, pg 16) ------------------------29
Figure 2-3 Schematic diagram of processes in a pond ecosystem (Fritz et al., 1993, pg 2725)---30
Figure 2-4 Inlet/Outlet Configuration tested by Watters et al., (1973, pg 41) -------34
Figure 2-5 Configurations tested by Persson (2000) -----------------------------------35
Figure 2-6 RTD Curves for Configurations B, Q, P, E (Persson, 2000, p246) ---------36
Figure 2-7 Inlet/Outlet Configurations tested by Fares et al., (1996, Fig.2) ---------37
Figure 2-8 Baffle configuration tested by Watters et al., 1973-------------------------40
Figure 2-9 Short-circuiting caused by 50% width baffles - Watters et al., 1973------41
Figure 2-10 Plot of number of baffles versus hydraulic performance (adapted from Watters et al., 1973, pg 47)--------------------------------------42
Figure 2-11 Vertical Baffle Configuration - Watters et al., 1973----------------------43
Figure 2-12 Longitudinal baffle configuration - Watters et al., 1973------------------44
Figure 2-13 Experimental Set-ups for water reservoir study (Grayman et al., 1996, pg. 66)--48
Figure 2-14 Dye patterns for water reservoir with dividing wall (Grayman et al., 1996, pg. 70)--49
Figure 2-15 Simulation results of on-stream stormwater pond without and with baffles (Van Buren et al., 1996, pg. 330)----------------------------------51
Figure 2-16 HRT curves for plug, mixed and dispersed flow (Levenspiel, 1972, pg. 277)--52
Figure 2-17 Tracer Results on Chesham Pond (Salter, 1999)--------------------------53
Figure 2-18 Drogue used by Shilton and Kerr (1999)-----------------------------------59
Figure 2-19" Holey-sock" drogue (Barter 2002)---60

Figure 3-1 Schematic diagram of computer model ---------------------------------------64
Figure 3-2 Example Output from PHOENICS - Steady-state Simulation ------------------65
Figure 3-3 PHOENICS Result file from a steady-state simulation ----------------------66
Figure 3-4 Grid Comparison, Velocity Plot, Case 1--------------------------------------69
Figure 3-5 Grid Comparison, Coliform Plot, Case 1--------------------------------------69
Figure 3-6 Grid Comparison, Velocity Plot, Case 2--------------------------------------70
Figure 3-7 Grid Comparison, Coliform Plot, Case 2

Figure 3-8 Laboratory model

Figure 3-9 Experimental Set-up – Laboratory Pond (Shilton 2001, pg 78)

Figure 3-10 Set-up of Tracer Study on Laboratory pond

Figure 3-11 Map of Ashhurst showing pond location

Figure 3-12 Ashhurst secondary pond

Figure 3-13 Schematic diagram of existing Ashhurst secondary pond

Figure 3-14 Fabricated insert for field trial - Ashhurst (diagram not to scale)

Figure 3-15 Schematic Layout - Ashhurst Field Trial 2 (diagram not to scale)

Figure 3-16 Fabricated insert for inlet, second Ashhurst field trial

Figure 3-17 Schematic Diagram of Baffle

Figure 4-1 Flow Pattern Case 1 (basic pond)

Figure 4-2 Coliform Concentration Case 1 (basic pond)

Figure 4-3 Flow Pattern Case 2 (traditional two baffle case)

Figure 4-4 Coliform Concentration Case 2 (traditional two baffle case)

Figure 4-5 Comparison of Outlet Velocities Case 1 – Basic Case (left) and Case 2 (right)

Figure 4-6 Flow Pattern Case 3 (traditional four baffle case)

Figure 4-7 Channelling due to 90% width baffles (Watters et al., 1973, pg 49)

Figure 4-8 Coliform concentration profile - Case 3 (traditional four baffle case)

Figure 4-9 Flow Pattern Case 4 (traditional six baffle case)

Figure 4-10 Coliform Concentration Case 4 (traditional six baffle case)

Figure 4-11 Flow Pattern Case 5 (traditional eight baffle case)

Figure 4-12 Coliform Concentration Profile Case 5 (traditional eight baffle case)

Figure 4-13 Flow Pattern Case 6 (two baffles evenly spaced)

Figure 4-14 Coliform Concentration Case 6 (two baffles, evenly spaced)

Figure 4-15 Flow Pattern Case 7 (single central baffle)

Figure 4-16 Coliform Concentration Case 7 (single central baffle)

Figure 4-17 Flow Pattern Case 8 (single baffle, inlet end)

Figure 4-18 Coliform Concentration Case 8 (single baffle, inlet end)

Figure 4-19 Flow Pattern Case 9 (single baffle, outlet end)

Figure 4-20 Flow Pattern Case 10 (single baffle, outlet end)

Figure 4-21 Coliform Concentration Case 9 (single baffle, outlet end)
Figure 4-22 Coliform Concentration Case 10 (single baffle, outlet end) -- 103
Figure 4-23 Flow Pattern Case 11 (single baffle, outlet end, outlet moved) -- 105
Figure 4-24 Coliform Concentration Case 11 (single baffle, outlet end, outlet moved)
-- 105
Figure 4-25 Flow Pattern Case 12 (central wall with middle opening) -- 107
Figure 4-26 Coliform Concentration Case 12 (central wall with middle opening) 107
Figure 4-27 Flow Pattern Case 13 (two stub baffles) -- 109
Figure 4-28 Coliform Concentration Case 13 (two stub baffles) -- 109
Figure 4-29 Enlargement of Inlet Corner of Case 13 -- 110
Figure 4-30 Flow Pattern Case 14 (two stub baffles, outlet moved) -- 111
Figure 4-31 Coliform Concentration Case 14 (two stub baffles, outlet moved) -- 112
Figure 4-32 Flow Pattern Case 15 (two standard baffles, outlet moved) -- 113
Figure 4-33 Coliform Concentration Case 15 (two standard baffles, outlet moved)
-- 114
Figure 4-34 Comparison of velocity vectors: Case 14 and Case 15, yellow lines
indicate extent of higher velocity area -- 114
Figure 4-35 Flow Pattern Case 16 (one stub baffle) -- 115
Figure 4-36 Coliform Concentration Profile Case 16 (one stub baffle) -- 116
Figure 4-37 Case 17 (vertical inlet) - Coliform profile, arrows indicating circulation
direction -- 118
Figure 4-38 Flow Pattern Case 18 (diffuse inlet) -- 119
Figure 4-39 Coliform Concentration Case 18 (diffuse inlet) -- 120

Figure 5-1 Full Tracer Study Results - Base Case (Shilton, 2001) -- 129
Figure 5-2 Tracer Study Results - Base Case, First 120 minutes (Shilton 2001) -- 130
Figure 5-3 Dye flow path - Lab Tracer Study Case L2 -- 131
Figure 5-4 Tracer Study Results Case L2 (traditional two baffle case) -- 132
Figure 5-5 Comparison Plot - CFD & Laboratory Tracer Studies, Case L2 -- 133
Figure 5-6 Dye Flow Path - Lab Tracer Study Case L4 (traditional six baffle case)
-- 135
Figure 5-7 Slug of Dye, Case L4 (traditional six baffle case) -- 136
Figure 5-8 Full Tracer Study Results Case L4 (traditional six baffle case) -- 136
Figure 5-9 Comparison HRT - Case L2 (traditional two baffle) and Case L4
(traditional six baffle) Full Results -- 137

12
Figure 5-10 Cell flow pattern, showing channelling, Case L4

Figure 5-11 Currents caused by 90% width baffles (Watters et al., 1973, pg 49) -

Figure 5-12 Cells of Case L2, showing they are well-mixed

Figure 5-13 Comparison Plot - CFD and Laboratory Tracer Studies, Case L4

Figure 5-14 Dye Flow Pattern - Lab Tracer Study Case L11

Figure 5-15 Full Tracer Study Results Case L11

Figure 5-16 Comparison HRT - Case L2 (traditional two baffle) and Case L11
 (single baffle, outlet end, outlet moved), first 120 minutes

Figure 5-17 Comparison plot - CFD and Laboratory results, Case L11

Figure 5-18 Dye Flow Pattern - Case L14 Laboratory tracer study

Figure 5-19 Tracer study results Case L14 (two stub baffles, outlet moved)

Figure 5-20 Comparison HRT of Case L2 (traditional two baffle) and Case L14 (two stub baffles, outlet moved)

Figure 5-21 Comparison Plot - CFD and Laboratory Tracer Studies, Case L14

Figure 5-22 Outlet end of Case L15 (two long baffles, outlet moved) showing channelling pattern

Figure 5-23 Tracer study results Case L15 (two long baffles, outlet moved)

Figure 5-24 Comparison HRT of Case L14 (two stub baffles, outlet moved) and Case L15 (two long baffles, outlet moved)

Figure 5-25 Lab and CFD Tracer study results - Case L15 (two long baffles, outlet moved)

Figure 5-26 Dye flow pattern - Case L17 (vertical inlet)

Figure 5-27 Full Tracer Study Results Case L17 (vertical inlet)

Figure 5-28 Comparison Plot of Laboratory Results - Basic Case (Run 9, Shilton, 2001) and Case L11

Figure 5-29 Comparison Plot of CFD Results - Basic Case (Run 9, Shilton, 2001)

Figure 6-1 Ashhurst secondary pond

Figure 6-2 Auto-sampler set-up at outlet - Ashhurst pond

Figure 6-3 Tracer welling up from vertical inlet - Ashhurst Field Trial 1

Figure 6-4 Dye movement - Ashhurst Field Trial 1

Figure 6-5 Diagram depicting dye movement - Ashhurst Field Trial 1

Figure 6-6 Full Tracer Response - Vertical inlet trial, Ashhurst
Figure 6-7 Comparison HRT plot - normal & vertical inlet, Ashhurst ------------ 163
Figure 6-8 Comparison HRT Curve - normal & vertical inlet, Ashhurst - first portion of tracer run --- 163
Figure 6-9 Flow pattern at Floor Level in Water Reservoir (Shilton et al., 2000a, pg 7) --- 165
Figure 6-10 Case AshA - Unmodified Ashhurst Pond --- 166
Figure 6-11 Cases AshB and AshC - two stub baffles --- 167
Figure 6-12 Cases AshD to AshG - Two stub baffle, inlet turned. -------------------------------------- 168
Figure 6-13 Cases Ash to AshJ - Inlet Manipulation --- 169
Figure 6-14 Flow Pattern - Case AshI --- 169
Figure 6-15 Case AshK - Combination of turned inlet and stub baffle --------- 170
Figure 6-16 Cases AshL and AshM - Manipulations of Case AshK -------------- 171
Figure 6-17 Cases AshN to AshR - Central Outlet Investigations --------------------------------- 172
Figure 6-18 Case AshS - Vertical Inlet plus Baffles --------------------------------- 173
Figure 6-19 Case AshT - Standard length, evenly spaced baffles------------------- 174
Figure 6-20 Second Field Trial Design - Ashhurst Pond ---------------------------------- 174
Figure 6-21 Second monitoring point - second field trial-------------------------- 175
Figure 6-22 Dye flow pattern, Field Trial 2 -------------------------------------- 175
Figure 6-23 Dimensionless tracer study results - Field Trial 2, main outlet and baffle outlet, full data ----------------------------------- 177
Figure 6-24 Dimensionless tracer study results - Field Trial 2, main outlet, initial data --- 177
Figure 6-25 Comparison Plot - Field Trial 2 and Un-modified Pond---------------- 178
Figure 6-26 Comparison Plot - Field Trial 2 and Un-modified Pond, initial data-- 179
Figure 6-27 Comparison plot - CFD and actual results, main outlet, Field Trial 2 180
Figure 6-28 Comparison plot - CFD results, main and baffle outlets, Field Trial 2 181

Figure 7-1 Number of Baffles versus Coliform Concentration at outlet --------- 184
Figure 7-2 Flow pattern within each cell, 6 baffle case (Case 4) --------------- 193
Figure 7-3 Channelling caused by 90% width baffles (Watters et al., 1973) ----- 193
Figure 7-4 Outlet end of Case 15 (two long baffles, outlet moved) showing channelling pattern -- 194
Figure 7-5 Number of baffles versus outlet coliform concentration, CFD modelling, Chapter 4 -- 195
Figure 7-6 Ashhurst model, inlet turned into side wall 196
Figure 7-7 Ashhurst, inlet turned back to wall, 14m baffle located 1/3 length from end wall .. 197
Figure 7-8 Ashhurst, coliform concentration profile, inlet turned into side wall and 14m baffle, star indicates second monitoring point 197
TABLE OF TABLES

Table 1 - Configurations tested using CFD (diagrams not to scale) 72
Table 2 - Configurations tested in the Laboratory (diagrams not to scale) 77
Table 3 - Cases modelled using CFD (diagrams not to scale) 83
Table 4 - Performance Summary - CFD Modelling of a Theoretical Pond 125
Table 5 - Cases investigated in the Laboratory (diagrams not to scale) 128
Table 6 - Summary table - Time to short-circuiting for laboratory tracer studies 155
Table 7 - Treatment Efficiency Data, Ashhurst Pond 181
1. INTRODUCTION

This section will briefly introduce the need for the research, and the objectives and approach of the work.

1.1 The Need for the Research

Waste stabilisation ponds are a common technology used for treating domestic, agricultural and industrial wastewaters. They are common in New Zealand, but are also a low-cost, low-technology application for wastewater treatment in developing countries.

The overall efficiency of these systems is dependent on a number of factors. Watters (1971) cites biological factors as having been considered the most important, and hydraulic factors were given little attention. Over recent years, research has given more importance to hydraulic factors.

Hydraulic flow characteristics such as bulk flow patterns, short-circuiting, inlet and outlet positioning, presence of ‘dead spaces’ and the use of baffles are of significant importance to the overall efficiency of a pond system. Baffles can offer such improvements if properly designed. They can direct flow in such a way as to reduce hydraulic short-circuiting and the presence of dead spaces.

There are a great number of ponds used in New Zealand and throughout the world. These existing ponds are likely to be suffering from poor hydraulic, and therefore, treatment efficiency. This lack of efficiency can give ponds a bad reputation.

Despite the popularity of waste stabilisation ponds in New Zealand, and throughout the world, there is a clear lack of guidelines for engineers on the improvement of their hydraulic, and therefore, treatment efficiency. As they are in common usage, an improvement method that is efficient, and cost-effective, needs to be available.
INTRODUCTION

1.2 Objectives and Approach

The aim of this research was to contribute to the improved understanding of baffle design and use in waste stabilisation ponds. The use of computational fluid dynamics (CFD) modelling as a design tool was also evaluated. The specific objectives of the thesis are given below:

- To investigate the use of baffles in waste stabilisation ponds in terms of:
 - Length of baffles
 - Number of baffles
 - Position of baffles
- To investigate the effect of inlet type, and outlet position
- To evaluate the use of CFD as a design tool to investigate various baffle configurations
- To apply the findings of the work into the field environment

To achieve the given objectives, the work was completed in three phases. In the first phase of work, a range of pond configurations was tested within the CFD environment. This produced an idea of the hydraulic and treatment efficiency of each configuration and allowed a large range of designs to be tested in a timely manner. The time and cost involved with laboratory models and field studies can often be prohibitive.

The second phase of the work involved taking some well-performing configurations from the CFD environment and testing them in a laboratory model pond. The use of CFD modelling as a design tool is relatively new to the field of waste stabilisation ponds, therefore the comparison between the CFD results and a traditional testing method was beneficial.

The final phase of work involved the implementation of two pond configurations in a full-scale field pond. The results were compared with those obtained from the CFD and laboratory modelling. The ultimate test of any design is how it performs in the field situation and therefore the field studies performed for this work offered the final test of the CFD modelling tool.