Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Actinidin Treatment and *Sous Vide* Cooking: Effects on Tenderness and *In Vitro* Protein Digestibility of Beef Brisket

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Food Technology

at Massey University, Manawatū,

New Zealand

Xiaojie Zhu

2017
Abstract

Actinidin from kiwifruit can tenderise meat and help to add value to low-value meat cuts. Compared with other traditional tenderisers (e.g. papain and bromelain) it is a promising way, due to its less intensive tenderisation effects on meat. But, as with other plant proteases, over-tenderisation of meat may occur if the reaction is not controlled. Therefore, the objectives of this study were (1) finding a suitable process to control the enzyme activity after desired meat tenderisation has been achieved; (2) optimising the dual processing conditions—actinidin pre-treatment followed by sous vide cooking to achieve the desired tenderisation in shorter processing times. The first part of the study focused on the thermal inactivation of actinidin in freshly-prepared kiwifruit extract (KE) or a commercially available green kiwifruit enzyme extract (CEE). The second part evaluated the effects of actinidin pre-treatment on texture and in vitro protein digestibility of sous vide cooked beef brisket steaks.

The results showed that actinidin in KE and CEE was inactivated at moderate temperatures (60 and 65 °C) in less than 5 min. However, the enzyme inactivation times increased considerably (up to 24 h at these temperatures) for KE/CEE-meat mixtures, compared with KE/CEE alone. The thermal inactivation kinetics were used as a guide for optimising actinidin application parameters during the second phase of the study.

For the final experiments, beef steaks were injected with 5 % (w/w, extract/meat) of CEE solution (3 mg/mL) followed by vacuum tumbling (at 4 °C for 15 min) and cooking
(at 70 °C for 30 min) under sous vide conditions. This cooking time was considerably less than usual sous vide cooking times used in the meat industry. The actinidin-treated meat had no change in pH and colour, but showed a lower instrumental shear force; and improved sensory scores for tenderness, juiciness and flavour than the untreated meat steaks when tested by a sensory panel. Improved tenderness agreed well with the Transmission Electron Microscopy (TEM) results that showed considerable breakdown of the myofibrillar structure, particularly around the Z line. The addition of actinidin enhanced the rate of breakdown of muscle proteins, as shown by Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and led to an increase in both protein solubility and ninhydrin-reactive free amino N release, during simulated gastric digestion. These results demonstrate the positive effects of actinidin on meat tenderness and meat protein digestibility during gastric digestion in vitro.
Acknowledgements

I would like to express my most honest appreciation to all the people who help me to complete this project. A special gratitude I give to my chief supervisor Dr Lovedeep Kaur, whose contribution in instructing, suggesting and supporting, helped me to coordinate my project and finish my report in time. I also appreciate my co-supervisor Dr Mike Boland, who provided many valuable suggestions and guidance along the way.

I am also thankful to Drs Maryann Pire, Kevin Taukiri and Mustafa Farouk from AgResearch (Hamilton, NZ) for their help in carrying out the sensory analysis; Feng Ming Chian (PhD student) from Riddet Institute (Palmerston North, NZ) for help with digestion experiments; Jordan Taylor from Massey University Manawatu Microscopy and Imaging Centre (Palmerston North, NZ) for help with microstructure imaging; and Aden Fareh (PhD) from Massey University (Palmerston North, NZ) for help with collagen solubility experiments.

Furthermore I would also like to acknowledge with much appreciation the staff of the lab, who gave the permission and instruction to use all required equipment and the necessary materials to complete the task, and staff of the Riddet Institute and Massey Institute of Food Science and Technology, who gave me comments and encouragement to carry on my project. I am thankful to FIET research programme for providing me the scholarship to complete my Masters project. Last but not least, a special thank goes to my
family, who supported the funding and gave me the opportunity to study at Massey University.
Table of Contents

Actinidin Treatment and *Sous Vide* Cooking: Effects on Tenderness and *In Vitro* Protein Digestibility of Beef Brisket .. i

Abstract ... iii

Acknowledgements ... v

Table of Contents ... vii

List of figures ... xiii

List of tables ... xvi

Abbreviations .. xviii

Chapter 1. Introduction .. 1

Chapter 2. Review of Literature .. 4

2.1. Toughness of meat... 4

2.1.1. Muscle composition and structure .. 4

2.1.2. Post-mortem conditions and the effects of endogenous proteases in meat 9

2.1.2.1. Calpains ... 11

2.1.2.2. Cathepsins .. 11

2.1.2.3. Collagenase ... 12

2.2. Techniques for improvement of meat tenderness .. 12

2.2.1. Physical processing .. 12
2.2.2. Chemical processing .. 13

2.2.3. Enzymatic processing ... 13

2.2.3.1. Methods of enzyme application 14

2.3. Exogenous proteases ... 15

2.3.1. Plant-derived enzymes .. 15

2.3.2. Microbial and animal proteases ... 21

2.4. Kiwifruit and Actinidin ... 23

2.4.1. Kiwifruit .. 23

2.4.2. Kiwifruit proteins and enzymes .. 23

2.4.3. Actinidin ... 24

2.4.4. Applications of actinidin in food processing 25

2.4.5. The effect of kiwifruit on digestion 26

2.5. Factors affecting kiwifruit enzyme activity 27

2.5.1. Temperature ... 27

2.5.2. pH of enzyme solution .. 28

2.5.3. High pressure ... 29

2.5.4. Salt solutions ... 29

2.5.5. Inhibitors ... 30

2.6. Evaluation of enzyme-tenderised meat .. 32

2.6.1. Enzyme activity measurements .. 32

2.6.2. Colour measurements and the CIELAB system 32

2.6.3. Texture analysis ... 34
2.6.4. Sensory assessment ... 35

2.6.5. Protein digestibility assessment ... 36

2.7. Importance and purpose of this study .. 38

Chapter 3. Materials and Methods .. 40

3.1. Materials ... 40

3.2. Methods .. 40

3.2.1. Part I- Kiwifruit enzyme inactivation 43

3.2.1.1. Fresh kiwifruit extract (KE) preparation 43

3.2.1.2. Commercial kiwifruit enzyme (CEE) extract preparation 43

3.2.1.3. Protein content estimation of CEE 43

3.2.1.4. Measurement of enzyme (actinidin) activity 45

3.2.1.5. High pressure treatment of KE ... 46

3.2.1.6. Thermal inactivation of actinidin in KE and CEE 46

3.2.1.7. Thermal inactivation of actinidin in KE or CEE combined with homogenised meat ... 47

3.2.1.8. Inactivation kinetics and thermodynamic analysis 48

3.2.2. Part II- Application of kiwifruit enzyme on beef steaks 50

3.2.2.1. Preliminary experimentation .. 50

3.2.2.1.1. Thermal inactivation of enzyme extract-treated beef brisket steaks ... 50

3.2.2.1.2 Texture measurements ... 50

3.2.2.2 Assessment of the final actinidin (CEE)-tenderised sous vide
cooked beef brisket steaks

3.2.2.2.1. Beef brisket

3.2.2.2.2. Treatment with CEE and sous vide cooking

3.2.2.2.3. Colour measurements

3.2.2.2.4. pH measurements

3.2.2.2.5. Cook loss measurements

3.2.2.2.6. Texture measurements

3.2.2.2.7. Microstructure analysis

3.2.2.2.8. Soluble collagen in cook loss

3.2.2.2.9. Sensory analysis of fresh and post-treatment stored brisket

3.2.2.2.10. In vitro gastric digestion

3.2.2.2.11. Soluble nitrogen measurements

3.2.2.2.12. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

3.2.2.2.13. Ninhydrin-reactive amino N release during digestion

3.2.3. Statistical analysis

Chapter 4. Results

4.1. Inactivation of kiwifruit enzyme with or without meat

4.1.1. pH, protein content and enzyme activity of KE and CEE

4.1.2. Effects of high pressure on actinidin (KE) inactivation

4.1.3. Thermal inactivation of actinidin
4.1.3.1. Studies on KE ... 71
4.1.3.2. Studies on CEE ... 75
4.1.3.3. Studies on KE-meat mixtures .. 77
4.1.3.4. Studies on CEE-meat mixture .. 80
4.1.4. Conclusions .. 82

4.2. Application of KE and CEE on brisket steaks and their effects on meat tenderisation ... 83

4.2.1. Injection of 12 % KE followed by a two-step cooking procedure under sous vide conditions (at 55 °C for 1 h and 65 °C for 5 h) 83
4.2.2. Injection of 5 % KE or CEE (50 mg/mL) followed by cooking under sous vide conditions at 70 °C for 1 h ... 85
4.2.3. Standardisation of CEE solution concentration for injection 89
4.2.4. Conclusions .. 90

4.3. Assessment of the final actinidin (CEE)-tenderised sous vide cooked brisket steaks .. 91

4.3.1. Treatment plan and appearance of the meat steaks after treatment 91
4.3.2. pH, colour and cook loss .. 93
4.3.3. Slice shear force .. 94
4.3.4. Sensory evaluation .. 94
4.3.5. Soluble collagen in cook loss .. 97
4.3.6. Microstructure-TEM ... 98
4.3.7. In vitro gastric digestibility .. 102
4.3.7.1. Protein solubility ... 102
4.3.7.2. SDS-PAGE .. 103
4.3.7.3. Ninhydrin reactive amino acid ... 106

Chapter 5. Discussion ... 109

5.1. Thermal inactivation of KE and CEE ... 109
5.2. Optimisation of method for actinidin application 111
5.3. Assessment of the final actinidin (CEE)-tenderised sous vide cooked brisket steaks ... 111
5.4. Recommendations for future work ... 113

References ... 115

Appendices .. 129
List of figures

Figure 1. Structure of muscle .. 8

Figure 2. The catalytic mechanism of papain (Grzonka et al., 2007) .. 17

Figure 3. The CIELAB colour space showing the L^*, a^* and b^* coordinates (Warriss, 2001) .. 33

Figure 4. Study design .. 42

Figure 5. Whole piece of beef brisket showing the allocation of control and treated samples ... 52

Figure 6. Standard curve for hydroxyproline content .. 58

Figure 7. Randomised allocation of 4 treatments (Control, ControlNI, KiwiFresh and KiwiFrozen) on different parts of brisket pieces .. 60

Figure 8. Glass digestion reactor .. 63

Figure 9. Standard curve for glycine N concentration ... 67

Figure 10. The effects of different high pressures and processing times on the actinidin in kiwifruit extract (KE) ... 70

Figure 11. Thermal inactivation kinetics for actinidin in kiwifruit extract (KE) 72

Figure 12. Relationship between inactivation constant (k_T) and temperature (T) for kiwifruit extract (KE) ... 75

Figure 13. Thermal inactivation of commercial kiwifruit enzyme extract (CEE) 76

Figure 14. Thermal inactivation kinetics of actinidin in KE-meat mixtures 78
Figure 15. Relationship between inactivation constant (k_T) and temperature (T) for KE-meat mixtures .. 80

Figure 16. Thermal inactivation for actinidin in CEE-meat mixture 81

Figure 17. Appearance of (a) untreated raw control and (b) KE-treated raw brisket steaks ... 84

Figure 18. Appearance of (a) untreated raw meat, (b) untreated cooked control (no water injection) and (c) KE-treated brisket steaks after heat processing of 55 °C for 1 h followed by 65 °C for 5 h .. 85

Figure 19. Appearance of (a) control meat injected with 5 % water, (b) meat injected with 5 % kiwifruit extract (KE) and (c) meat injected with 5 % commercial kiwifruit enzyme (CEE) .. 87

Figure 20. Shear force (N) of control, water and enzyme-injected (5% water, KE or CEE) meat steaks after heat processing at 70 °C for 1 h... 88

Figure 21. Appearance of brisket steaks treated by 5 % (weight increase) water (a) and 5 % CEE at a concentration of 0.5 mg/mL (b), 1 mg/mL (c), 2.5 mg/mL (d), 5 mg/ml (e) and 10 mg/mL (f) followed by heat processing at 70 °C for 30 min 90

Figure 22. Schematic diagram showing the treatment plan for brisket steaks 92

Figure 23. Appearance of (a) control brisket steak injected with 5 % water (w/w) and (b) brisket steaks injected with 5 % CEE amount (w/w) at 3 mg/mL, followed by heat processing at 70 °C for 30 min ... 92

Figure 24. Comparison of collagen solubility (% soluble collagen in cook loss/ total collagen) for cooked control (water injected) and CEE-treated brisket steaks ($p = 0.394$)
Figure 25. Transmission Electron Microscope (TEM) micrographs of control (a-b) and CEE-treated brisket (c-d) myofibrils before (a-c) and after (b-d) sous vide cooking.... 99

Figure 26. Transmission Electron Microscope (TEM) micrographs of water injected control (a-b) and CEE-treated brisket (c-d) myofibrils before (a-c) and after (b-d) sous vide cooking, at higher magnification, showing sarcomere structural detail............. 100

Figure 27. Soluble nitrogen (%) of cooked control (water injected) and CEE-treated (actinidin) meat digests after 2, 30 and 60 min of in vitro gastric digestion, both with (CP, KP) or without (C, K) the addition of pepsin... 103

Figure 28. Tricine SDS-PAGE of meat digested under simulated gastric conditions . 104

Figure 29. Ninhydrin reactive amino nitrogen (%) of cooked control (water injected) and CEE-treated meat digests after 2, 30 and 60 min of in vitro gastric digestion, both with (CP, KP) or without (C, K) the addition of pepsin ... 107
List of tables

Table 1. Ranking of shear force values of 14 bovine muscles and their relationship with total collagen, insoluble collagen and sarcomere length ... 6

Table 2. Activity and target proteins of calpain and cathepsin (Varnam & Sutherland, 1996) .. 10

Table 3. Different plant-derived enzymes and their properties ... 18

Table 4. Actinidin inhibitors .. 31

Table 5. Temperatures and times used to study thermal inactivation of actinidin in kiwifruit extract (KE) ... 47

Table 6. Temperatures and times used to study thermal inactivation of actinidin in KE-meat mixtures .. 48

Table 7. Inactivation rate constant (k_T) and half-life time ($t_{1/2}$) for the thermal inactivation of actinidin in fresh kiwifruit extract (KE) at different temperatures 75

Table 8. Inactivation rate constant (k_T) and half-life time ($t_{1/2}$) for the thermal inactivation of actinidin in KE-meat mixtures at different temperatures .. 80

Table 9. pH, colour and cook loss (%) of control (injected with water) and CEE-treated, fresh and stored brisket steaks after cooking ... 93

Table 10. Slice shear force (N) of control and CEE-treated brisket steaks following frozen (-18 °C) storage for 2 days .. 94

Table 11. Sensory scores of tenderness, juiciness and flavour of control (no injection),
control (water injection) and CEE-treated brisket steaks following frozen (-18 °C) storage for 3 weeks
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANZFSC</td>
<td>Australia New Zealand Food Standards Code</td>
</tr>
<tr>
<td>CA</td>
<td>Commercial availability</td>
</tr>
<tr>
<td>CBZ</td>
<td>N-α-carbobenzyx-L-lysine P-nitrophenyl ester hydrochloride</td>
</tr>
<tr>
<td>CEE</td>
<td>Commercial enzyme extract</td>
</tr>
<tr>
<td>DTT</td>
<td>DL-Dithiothreitol</td>
</tr>
<tr>
<td>EA</td>
<td>Enzyme activity</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration of United States</td>
</tr>
<tr>
<td>GRAS</td>
<td>Generally Recognised as Safe</td>
</tr>
<tr>
<td>KE</td>
<td>Kiwifruit extract</td>
</tr>
<tr>
<td>MPI</td>
<td>Ministry for Primary Industries</td>
</tr>
<tr>
<td>SGF</td>
<td>Simulated gastric fluid</td>
</tr>
<tr>
<td>SF</td>
<td>Simulated salivary fluid</td>
</tr>
<tr>
<td>SSSF</td>
<td>Slice shear force</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscope</td>
</tr>
<tr>
<td>WBSF</td>
<td>Warner-Bratzler shear force</td>
</tr>
</tbody>
</table>