Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Understanding the largest-scale explosive volcanism at Mt. Taranaki, New Zealand

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Earth Science

Rafael Torres-Orozco

Massey University, Palmerston North
New Zealand
2017
“In solitude we find ourselves, defeat our ego, discover our worst, our best, love, real life and real friends.” Photo: Sharks Tooth from the summit of Mt. Taranaki, Jul/2016.

Dedicated to my mother - the strongest person I’ve ever met, and to my beloved adopted sisters and brothers
Abstract

Over the last 5000 years B.P., at least 53 explosive eruption episodes occurred at Mt. Taranaki, (western North Island, New Zealand) from either the summit-crater (2500 m), or a satellite vent on Fanthams Peak (1966 m). These eruptions are represented in well-preserved pyroclastic successions on the upper volcano flanks. At least 16 episodes produced deposits with lithostratigraphic characteristics comparable to those of the last sub-Plinian eruption at AD 1655, suggesting an average recurrence of one Plinian/sub-Plinian eruption episode every 300 years. Several large-scale mafic-intermediate (~48-60 wt.% SiO₂) eruption episodes sourced from the two vents were studied in detail to determine the “maximum” intensity, magnitude and eruptive styles from this volcano. These episodes comprised climactic phases with sustained and steady, 14-29 km-high eruption columns, often starting and ending with unsteady pulsating, oscillating and collapsing plumes. The columns erupted 0.1-0.5 km³ DRE at mass and volume discharge rates of 10⁷-10⁸ kg/s and 10³-10⁴ m³/s, respectively, indicating magnitudes of 4.1-5.1. The unsteady initial, pre- and post-climactic eruptive phases were dominated by dome-collapse, column-collapse and lateral-blast pyroclastic density currents (PDCs), with run-out distances of 3-19 km and volumes of up to 0.02 km³ DRE. The steadiest phases were associated with eruption of rheologically homogeneous magmas producing homogenous pumice textures. Unsteady phases produced density and porosity pumice gradients by magma stalling in upper conduit levels. Three eruption onset scenarios were developed from this work: a) initial closed-conduit decompression by vent unroofing and dome-collapse, b) transient open and clogged conduits produced by repeated plugging-and-bursting of chilled or gas-depleted magma, and c) rapid conduit opening with more mafic eruptives. In all scenarios, the climactic phases are comparable, with pyroclastic fallouts
covering 1500-2500 km2. The most violent phases of these events, however, are lateral-blast PDCs that could reach a broad arc between 14-19 km from source. This reappraisal of the hazardscape at Mt. Taranaki integrates many new details that enable a more realistic hazard management and provides a range of findings that can be applied to other similar andesitic volcanoes prior to reawakening.
Acknowledgements

The first time I heard about New Zealand was in 2009 during an outstanding poster presentation about Mt. Ruapehu at the Jorullo conference in Mexico, by PhD student Natalia Pardo. The next thing I discovered was an incredibly beautiful, almost perfect cone-shaped stratovolcano, confusingly named both Taranaki and Egmont. This I wished to climb if I ever had the chance to go for any reason to the other side of the world. A few years later I emailed Shane Cronin inquiring about PhD opportunities and he replied by asking if I would be interested in working on explosive volcanism at Mt. Taranaki - I felt that I had just won the lottery. Doing fieldwork in this volcano has been challenging, slow, and at times frustrating due to the multiple obstacles posed by topography and vegetation and the very intricate stratigraphy. Disentangling a little part of such complexity whilst walking on its slopes has been extremely rewarding, and I would never choose differently, even if I could.

For this once-in-a-life opportunity, and for his aid in my receiving a Massey University Doctoral scholarship, I am very thankful to my chief supervisor Dr. Shane J. Cronin. I was also greatly benefited from his extraordinary understanding of the “big and small picture” of volcanic processes, from his ability in quickly recognising the core relevance of data and in choosing the exact sentence and the right paper among limitless possibilities, from his enthusiasm and cheering during these years, and from his skills in writing, organizing, discussing and developing ideas.

I am also greatly thankful to my co-supervisor Dr. Natalia Pardo. Her advice was essential in coming to New Zealand. Her expertise and cheerful disposition in reviewing, discussing and providing work-related and personal support were vital in pursuing this
work. Natalia is a field and research geologist and volcanologist worth to be followed and emulated, but additionally her patience and friendship have been second to none.

Many thanks to my co-supervisor Dr. Alan S. Palmer for his great disposition, reviews and encouraging, especially valuable during fieldwork. And I also wish to thank my other co-supervisors Dr. Robert B. Stewart and Assoc. Prof. Ian E.M. Smith (The University of Auckland) for their support, advice, reviews, explanations and discussion at different moments during completion of this work. I also thank Drs. Vince Neall, Karoly Nemeth, Georg F. Zellmer, Gert Lube, John Procter, and Eric Breard for their collegial support, Dr. Kate Arentsen for her reviews and her assistance with logistics and procedures, and Dr. Anja Moebis, Bob Toes and Ian F. Furkert for their help during labwork. Drs. Darren Gravley, Ian Fuller, and Roberto Sulpizio are acknowledged for their deep and fruitful reviews of the final thesis.

My infinite thanks go to my friend and colleague Magret Damaschke. This work simply would not have been properly finished without her deep discussions and endless energy, care, support and encouraging, especially during the worst times. Working alongside such a determined, honest and clever person enriched every chapter of this thesis, and her work brought light into solving Mt. Taranaki’s stratigraphic puzzle which otherwise would have remained unclear.

Very especial thanks to my friend, colleague volcanologist, and mountain-climbing partner in Mexico Juan Ramón de la Fuente. His selfless care, humbleness, disposition and honesty despite distance are admirable. I benefited from his ongoing support and his taking charge of personal issues and financial and legal procedures back home, including the bureaucratic and tedious processing of my CONACyT Doctoral scholarship.

Additional thanks go to my first mentor in Volcanology, Dr. Jose Luis Arce, who has never stopped providing advice, discussion, reviews, appreciation and concern. Many
thanks to my friend Dr. Gabor Kereszturi who provided outstanding personal and academic advice, cheering and support, interesting discussions (and rum-based drinks at any opportunity!). His enthusiasm and determination during fieldwork were greatly appreciated. I am also very thankful to my colleague and half-Mexican friend Szabolcs Kósik, who demonstrated an exceptional personality and interest, and did not vacillate in supporting me, my work and my future outcomes, at times by fuelling up with Palinka. Endless thanks to friends and people I met at Palmerston North who provided their support in many different ways and at different moments during these years, including words of encouraging and comprehension, discussion, field-assistance, tramps and good memories: Angela Denes, István Hajdu, Eduardo A. Sandoval, Gaby Gómez, Kwan Maitrarat, Marcela Humphrey, Friederike von Schlippe, Soledad Navarrete, Javier Agustín Flores, Diana Cabrera, Manuela Tost, Omar Cristobal, Zsuzsa Szmolinka, Jimena Rodríguez and “Negrito” Adimar.

Last but not least, to my grandma and uncles, and to my non-blood family who have kept their unconditional support, encouraging and inspiration at any time during these years of PhD regardless of distance: David Alvarez, Juan Angel Torres-Rechy, Pasquinel de la Fraga, Heriberto Oliva, Francisca Vidal, Edgar Ocampo, Laura Scheffler, Mariela Díaz, and Emma Cesta.

This work was supported by a Massey University Doctoral scholarship, a CONACyT (Mexico) Doctoral scholarship, and the George Mason Trust of Taranaki.
Table of Contents

Abstract .. i
Acknowledgements ... iii
Table of Contents ... vii
List of Tables .. xi
List of Figures ... xi

Chapter 1 Introduction .. 17
 1.1 Introduction .. 18
 1.2 Research outline and objectives ... 24
 1.3 Literature review .. 25
 1.3.1 Explosive volcanism ... 25
 1.3.2 Eruption dynamics .. 31
 1.3.3 Previous research at Mt. Taranaki .. 34
 1.4 Background geology ... 41
 1.4.1 Regional framework ... 41
 1.4.2 The Taranaki Basin .. 45
 1.4.3 Mt. Taranaki / Egmont .. 48
 1.4.3.1 Volcanic history of Mt. Taranaki .. 50
 1.4.3.2 Petrology and geochemistry ... 54
 1.5 References .. 57

Chapter 2 Methodology ... 77
 2.1 Outline ... 78
 2.2 Field methodology ... 79
 2.2.1 Mapping criteria .. 81
 2.3 Radiocarbon dating ... 82
 2.4 Granulometry and componentry ... 83
 2.5 Geochemical analysis .. 84
 2.6 Density and porosity (gas pycnometry) .. 84
Chapter 3 New Holocene eruption episodes from proximal deposit sequences

3.1 Abstract .. 95
3.2 Introduction ... 96
3.3 Geological setting and previous work ... 98
3.4 Methodology .. 102
 3.4.1 Field methodology ... 102
 3.4.2 Mapping criteria ... 109
 3.4.3 Radiocarbon dating .. 111
3.5 The late-Holocene eruption records of Mt. Taranaki 111
 3.5.1 The Mt. Taranaki Lithosome ... 114
 3.5.1.1 Bed-sets Tw-I to Tw-VII .. 114
 3.5.1.2 Bed-sets Tw-VIII and Tw-IX ... 118
 3.5.1.3 Bed-sets Tw-X and Tw-XI ... 118
 3.5.1.4 The Kokowai bed-set ... 118
 3.5.1.5 Bed-sets KkF-I and KkF-II ... 119
 3.5.1.6 The Kapuni-A bed-set .. 120
 3.5.1.7 The Kapuni-B bed-set .. 120
 3.5.1.8 The Korito bed-set .. 121
 3.5.1.9 The Lower Inglewood bed-set .. 122
 3.5.1.10 The Upper Inglewood bed-set ... 123
 3.5.1.11 The Maketawa I bed-set .. 125
 3.5.1.12 The Maketawa II bed-set ... 125
 3.5.1.13 The Maero Formation .. 127
 3.5.2 The Fanthams Peak Lithosome .. 128
 3.5.2.1 The Manganui Formation ... 128
3.6 Interpretation of deposits and associated volcanic hazard 132
 3.6.1 Pyroclastic fall deposits ... 132
 3.6.2 Pyroclastic density currents (PDCs) ... 134
Chapter 4 Diverse dynamics of mafic-intermediate Plinian eruptions ... 151

4.1 Abstract .. 153
4.2 Introduction .. 154
4.3 Geological setting .. 156
4.4 Methods .. 159
4.5 Late-Holocene large explosive eruptions at Mt. Taranaki .. 165
 4.5.1 The 4700 - 4600 cal BP Kokowai eruptive episode 165
 4.5.2 The 3300 cal BP Upper Inglewood eruptive episode 168
 4.5.3 The ~2600 cal BP Manganui-D eruptive episode 174
 4.5.4 The ~1200 cal BP Kaupokonui eruptive episode 177
 4.5.5 The AD 1655 Burrell eruptive episode .. 179
4.6 Whole-rock chemistry ... 180
4.7 Eruptive metrics .. 183
 4.7.1 Dispersal .. 183
 4.7.2 Eruptive volumes ... 187
 4.7.3 Column heights, wind speed and classification ... 188
 4.7.4 Eruption rates, magnitudes and durations .. 191
4.8 Discussion ... 192
 4.8.1 Constraints on the eruptive volume estimates .. 192
 4.8.2 Mt. Taranaki summit-vent: eruptive successions and processes 193
 4.8.3 Fanthams Peak vent: parasitic cone/flank vent eruptions 195
 4.8.4 Implications for Plinian and sub-Plinian eruptions 198
4.9 Conclusions .. 200
4.10 References .. 202
Chapter 5 Volcanic hazard scenarios for Plinian eruptions: insights into PDC diversity ... 209

5.1 Abstract .. 211
5.2 Introduction .. 212
5.3 Geological background ... 215
5.4 Methods and terms ... 218
5.5 Summary lithostratigraphy of proximal Plinian and sub-Plinian eruption deposits at Mt. Taranaki ... 224
5.6 Discussion .. 231
 5.6.1 Interpretation of eruptive processes .. 231
 5.6.1.1 Plinian, sub-Plinian, and small-scale eruption columns .. 234
 5.6.1.2 Concentrated – flow type – PDCs .. 235
 5.6.1.3 Dilute – surge type - PDCs .. 236
 5.6.1.4 Transitional – flow-and-surge type – PDCs ... 236
 5.6.2 Constraints of depositional environment to hazard distribution ... 238
 5.6.3 Volcanic hazard scenarios .. 242
 5.6.3.1 Scenario I: dome collapse and conduit decompression ... 245
 5.6.3.2 Scenario II: transient conduit clogging by magma plug-and-burst ... 248
 5.6.3.3 Scenario III (Fanthams Peak): rapid conduit clearing at satellite vents 250
 5.6.4 Event-tree scenario sequence ... 251
5.7 Conclusions ... 252
5.8 References ... 254

Chapter 6 Conclusions ... 261

6.1 Avenues for future research .. 268

Appendices .. 273
List of Tables

Table 3.1 Radiocarbon dating of material from proximal sections of Mt. Taranaki. ...112

Table 4.1 Eruptive volumes obtained by different methods using bulk-isopach data of fall deposits, and area and bulk-average thickness of pyroclastic density current deposits. ...164

Table 4.2 Bulk and solid densities, bulk porosities, dense-rock-equivalent volumes, and eruptive parameters calculated from fall and pyroclastic density current deposits produced by different eruptions at Mt. Taranaki. ...169

Table 5.1 Summary of key lithostratigraphic characteristics and componentry of deposits produced by late-Holocene eruptions at Mt. Taranaki. ..213

Table 5.2 Late-Holocene Plinian / sub-Plinian eruptions at Mt. Taranaki. ...215

Table 5.3 Lithofacies classification scheme to describe proximal pyroclastic deposits at Mt. Taranaki. ...219

Table 5.4 Summary descriptions of the lithofacies associations identified from pyroclastic deposits at Mt. Taranaki. ...221

Table 5.5 Summary interpretations of the lithofacies associations identified from pyroclastic deposits at Mt. Taranaki. ...232

List of Figures

Figure 1.1 a Tectonic setting of the North Island of New Zealand (modified from King and Thrasher 1996; Henrys et al. 2003; Price et al. 2005; Platz et al. 2007). b Zoomed area of the Taranaki Volcanic Lineament (Neall 1979), which comprises four Pleistocene-Holocene, southwards-younging andesitic volcanoes or their eroded volcanic edifice-remnants: Paritutu, Kaitake, Pouakai and Mt. Taranaki (along with the parasitic cone of Fanthams Peak). Coordinate system: NZGD 2000 New Zealand Transverse Mercator. ...42

Figure 3.1 a Tectonic setting of the North Island (NI) of New Zealand (modified from King and Thrasher 1996; Henrys et al. 2003; Price et al. 2005; Platz et al. 2007). CEFZ Cape Egmont Fault Zone, R Mount Ruapehu, SI South Island, TVL Taranaki Volcanic Lineament (yellow line), TVZ Taupo Volcanic Zone. b Zoomed area of the Taranaki Volcanic Lineament (Neall 1979); which comprises four Pleistocene-Holocene, southwards-younging andesitic volcanoes or their eroded volcanic edifice-remnants: Paritutu, Kaitake, Pouakai and Mt. Taranaki (along with the parasitic cone of Fanthams Peak). AS Ahukawakawa swamp, DOC Department of Conservation visitor centre, SH principal state highways and other roads connecting ...99
residential areas. c Zoomed area of the proximal eastern flanks of Mt. Taranaki and the studied key sections. Coordinate system: NZGD 2000 New Zealand Transverse Mercator.

Figure 3.2. Stratigraphic correlation of the late-Holocene pyroclastic sequence studied in proximal sections on the eastern flanks of Mt. Taranaki.

Figure 3.3. Composite stratigraphic log of the late-Holocene proximal pyroclastic sequence of Mt. Taranaki. Members of the Manganui Formation (i.e. Manganui-A to G) are abbreviated: MA to MG, CR Curtis Ridge Lapilli bed-set (Turner et al. 2008b). Main juvenile pyroclasts are indicated (dense-vesicular). Solid lines indicate sharp contacts; bold solid lines indicate sharp-erosive (often angular) contacts; dashed lines indicate transitional contacts. Grain-size simplified from White and Houghton (2006): FA Fine-ash, CA Coarse-ash, FL Fine-lapilli, CL Coarse-lapilli, B Blocks/Bombs. Sorting: poor (psr), moderate (ms), well (ws) and very well sorting (vs) from Cas et al. (2008). Clast (cs) and matrix-support (ms) framework, and angular (a), sub-angular (sa), sub-rounded (sr), rounded (rd) and well-rounded (wr) clast-shape are indicated. DF Debris-Flow, C-PDC Column-collapse Pyroclastic Density Current, BAF Block-and-Ash Flow, PDC Undefined Pyroclastic Density Current. a Comparison of a segment from the previous ring-plain and distal tephrastrography with the equivalent proximal lithostratigraphy of this work and a few earlier studies. See text and Table 1 for 14C age references.

Figure 3.4. Photographs showing the deposit features of representative late-Holocene bed-sets/Members exposed at different eastern-flank sections of Mt. Taranaki. Bed-sets/Members are Tw-I to Tw-XI, Kw Kokowai, KI and KB Kapuni-A and B, Ko Korito, Lig Lower Inglewood, Uig Upper Inglewood, MA to MF Manganui-A to F, MkI and MkII Maketawa I and II, CR Curtis Ridge, Kp Kaupokonui, GI to GIII Grey PDC-I to III, Tp Te Popo, Bu Burrell. a Deposits of the ~5 ka bed-sets and stratigraphic relationships with younger 4.7-3.3 cal ka B.P. deposits. b Complete Kw bed-set. Radiocarbon (14C) dating of charcoal from layers 3 and 5-6 is indicated. c Northern stratigraphic relationships between different 4.7-3.3 cal ka B.P. and younger ~2.6-0.7 cal ka B.P. bed-sets. 14C dated stratigraphic layers from bed-sets Ko and Uig are indicated. d Zoom of the Ko. e Impact sags produced by pumice bombs of different 4.7-3.3 cal ka B.P. bed-sets. f Fall deposits of the Kw layer 4. Bombs and blocks are signalled. g Fall deposits of bed-sets KA and KB separated by weathered ash. h Block-and-ash flow and fall deposits of the Kw constitute the base of the exposed section. Lava flows (MD 2b) from Fantans Peaks erode fall deposits of the MD. i Stratigraphic relationships and 14C dated deposits of 3.4-0.3 cal ka B.P. bed-sets. Block-and-ash flow deposits underlying layer 2 of the Lig bed-set make the base of the exposed section. Notice Block-and-ash flow deposits of the Uig (layer 1). j-l Deposit features of the Uig in southeastern-northeastern locations. Notice lithofacies transitions of layer 6 and 14C dating of charcoal from bracketing bed-sets. m Deposits of the <3.0-2.2 cal ka B.P. MA to MD Members and other bracketing and/or younger deposits. n Zoom of the MC-MD Members and bracketing debris-flow deposits. o Zoom of the MA-MC Members. Notice the cauliflower bomb of the MB Member deforming deposits of the MA. Notice grey-lithic ash deposits of bed-sets MkP-I and MkP-II (not labelled), which pass laterally into 14C dated 2.6 cal ka B.P. lithic breccias. p-t Deposit features and facies transitions of the Mk II. s Notice the commonly overlying deposits of the MF and their distinctive scarlet-red lithics. t Notice deposits of the GI bed-set. u-w Deposit features of the Tp. Notice ash deposits of layer 1 (Tp1), which correlate with western 0.7 cal ka B.P. lithic breccias. x cross-, p parallel- or fp/fx faint parallel/cross-stratified and m massive deposits. Spade is 70.5 cm-long, large scraper is 32.5 cm-long, small scraper is 20 cm-long. See text and Table 1 for 14C age references.

Figure 3.5. Total accumulated thickness of fall and pyroclastic density current (PDC) deposits per bed-set (Bdst) in centimetres, and total thickness per pyroclastic deposit-type in metres (see inset). Numbers accompanying bars (e.g. 71-29) indicate volume percentages of fall-PDC deposits. The line-diagram indicates number of
layers of Fall and PDC deposits (units) per bed-set. Unconf Unconformity, pl/wa Intervening paleosol and/or weathered ash deposits in centimetres-thick. Refer to text and figure 3 for bed-set abbreviations. b Calibrated 14C ages from this work and previous works. The size of each circle is proportional with the corresponding dating error (see Table 1 for complete data and references).

Figure 4.1. Tectonic setting of the North Island (NI) of New Zealand (modified from King and Thrasher 1996; Henrys et al. 2003; Sherburn and White 2006; Stagpoole and Nicol 2008). CEFZ Cape Egmont Fault Zone, R Mount Ruapehu, SI South Island, TVL Taranaki Volcanic Lineament (yellow line), TVZ Taupo Volcanic Zone. b Zoomed area of the Taranaki Peninsula and the TVL. The latter comprises four <1.75 Ma and NNW-SSE migrating andesitic volcanoes or their eroded volcanic edifice-remnants (Neall 1979): Paritutu, Kaitake, Pouakai and Mt. Taranaki (and the satellite cone of Fanthams Peak). IGF Inglewood Fault, MF Manaia Fault, NFF Norfolk Fault. c Zoomed area of the proximal eastern flanks of Mt. Taranaki and type sections of this study. Coordinate system: NZGD 2000 New Zealand Transverse Mercator.

Figure 4.2. Diagram of median diameter (Mdφ) vs. Inman sorting coefficient (σ1φ), modified from Walker (1971), and corresponding to grain-size of samples from different <5000 to 300 cal BP fall (Fallouts) and pyroclastic density current (PDCs) deposits of Mt. Taranaki. b Bulk-deposit isopach data plotted on square root (Area) vs. log (Thickness) of each fall deposit studied.

Figure 4.3. Lithostratigraphic characteristics, modified from Torres-Orozco et al. (2017), componentry, granulometry, and pumice density and porosity data, of the 4700-4600 cal BP Kokowai bed-set (layers Kw1 to Kw8). Grain-size modified from White and Houghton (2006). Notice the slight bimodality in some fall deposit histograms (e.g., basal and middle deposit levels of layer Kw7) produced at ~3φ mode by ash deposits from associated pyroclastic density currents. Connected and bulk porosities (p), and bulk densities (d) were calculated from texturally different pumice clasts, hand-picked from different vertical fall deposits levels (30 clasts per texture per level).

Figure 4.4. Lithostratigraphic characteristics, modified from Torres-Orozco et al. (2017), componentry, granulometry, and pumice density and porosity data, of the 3300 cal BP Upper Inglewood (layers Uig1 to Uig7). Notice the slight bimodality in some fall deposit histograms (e.g., basal level of layer Uig7) produced at ~3φ mode by ash deposits from associated pyroclastic density currents. Connected and bulk porosities (p), and bulk densities (d) calculated from texturally different pumice clasts (30 clasts per texture per layer). See Fig. 4.3 for complete symbology and definitions.

Figure 4.5. Lithostratigraphic characteristics, modified from Torres-Orozco et al. (2017), componentry, granulometry, and density and porosity data of vesicular juvenile clasts, of deposits of the 2600 cal BP Manganui-D bed-set (layers MD1 to MD3). Deposits of lower and upper debris flows (L-DF and U-DF) are also represented. Connected and bulk porosities (p), and bulk densities (d) were calculated from similar vesicular juvenile clasts, hand-picked from different vertical levels within each pyroclastic layer (30 clasts per level per layer). See Fig. 4.3 for complete symbology and details.

Figure 4.6. Lithostratigraphic characteristics, modified from Torres-Orozco et al. (2017), componentry, granulometry, and pumice density and porosity data, of the 1200 cal BP Kaupokonui bed-set (Kp), and the AD 1655 Burrell fall deposit (Bu). Connected and bulk porosities (p), and bulk densities (d) were calculated from texturally different pumice clasts, hand-picked from different vertical fall deposit levels (30 clasts per texture per level). See Fig. 4.3 for complete symbology and definitions.
Figure 4.7. Whole-rock analyses of volcanic rocks from Mt. Taranaki, normalized to anhydrous basis, plotted on the total alkalis vs. silica diagram modified from Le Bas et al. (1986), and on binary diagrams of some major elements. Dotted line discriminates between alkaline (above the line) and sub-alkaline (below the line) series (Irvine and Baragar 1971). Data taken from previous work (*) correspond to Franks (1984), May (2003), Turner (2008), Turner et al. (2011b) and Platz et al. (2007, 2012).

Figure 4.8. Isopach maps of fall deposits corresponding to bed-sets: a Manganui-D, layers MD1 to MD3, sourced at the satellite vent of Fanthams Peak, b Burrell, modified from Platz et al. (2007), c Upper Inglewood, layer Uig7, d Kaupokonui, modified and corrected from Whitehead (1976), e Kokowai, layer Kw4, and f Kokowai, layer Kw7. Grey numbers represent thickness data measured in centimeters. Some contours are labeled with black numbers inside white squares (in centimeters). Black contours were interpolated from field data (Appendix 4.1) using methods described in the text. Red contours were partially or fully extrapolated using parameters described in the methodology. Coordinate system: NZGD 2000 New Zealand Transverse Mercator.

Figure 4.9. Isopleth maps of the diameters of pumice clasts, vesicular juvenile clasts (scoriaceous) of the Manganui-D bed-set, and dense andesitic clasts in centimeters, corresponding to fall deposits of bed-sets: a Burrell, modified from Platz et al. (2007), b-c Kaupokonui, d-f Manganui-D, layers MD1 to MD3, sourced at the satellite vent of Fanthams Peak, g-h Upper Inglewood, layer Uig7, i-j Kokowai, layer Kw4, and k-l Kokowai, layer Kw7. Grey numbers indicate average diameters measured in the field. Black contours were interpolated from field data (Appendix 4.1) using methods described in the text. Red contours were partially extrapolated using parameters described in the methodology. Coordinate system: NZGD 2000 New Zealand Transverse Mercator.

Figure 4.10. Maps of area of distribution of pyroclastic density current deposits from bed-sets Upper Inglewood (layers Uig1 to Uig6) and Kokowai (layers Kw1 to Kw3, Kw6 and Kw8). Coordinate system: NZGD 2000 New Zealand Transverse Mercator.

Figure 4.11. Eruptive parameters and classification of the studied deposits. a Normal distribution of total column heights (HT) in kilometers, calculated by using different methods (Table 4.1, Appendix 4.9). Numbers indicate minimum, maximum and average HT corresponding to individual fall deposits. b-c Isopleth data plotted in the diagram of Carey and Sparks (1986) to determine HT and wind speeds, based on diameters of dense andesitic clasts and pumice clasts (or vesicular juvenile clasts of the Manganui-D bed-set), ranging from 0.8 to 2 cm and 1.6 to 4 cm, respectively, and on the corresponding clast’s bulk-densities (kg/m^3). d Diagram of Pyle (1989) of classification of the eruptions based on parameters (bc, bt) calculated from isopach and average isopleth (pumice and dense andesitic clast) data, and on the dispersal index of Walker (1973, Appendix 4.9). e Diagram of Bonadonna and Costa (2013) of classification of eruptions based on HT, and on parameters (λth, λML) calculated from isopach and isopleth data (Appendix 4.9). f Diagram modified from Sparks (1986) and Carey and Bursik (2000) to determine volume and mass eruption rates (Q and MER, respectively), considering the average HT calculated from each individual fall deposit. The curve of HT calculated by using the model of Sparks (1986) is indicated. Neutral buoyancy column heights (HB) were estimated by using the average HT of each fall deposit and “bc” of Pyle (1989, Appendix 4.9). Fields corresponding to Plinian and sub-Plinian eruptions were modified from Bonadonna and Costa (2013). g Plot of average HT vs. Minimum dense-rock-equivalent (DRE) eruptive volumes. The latter were calculated from average total volumes, and bulk and solid densities (Table 4.2). h Plot of average HT vs. Magnitude (M = Log10(mT)-7) calculated using the method of Pyle (2000). Total mass in kilograms (mT = (solid-density) (DRE volume)) calculated using the method of Wilson (1976). i Plot of average HT vs.
minimum duration of the eruption, in hours (T=mT/MER, Table 4.2), estimated using the method of Wilson (1976).

Figure 5.1……..216
A Tectonic setting of the North Island (NI) of New Zealand (modified from King and Thrasher 1996; Henrys et al. 2003; Sherburn and White 2006). CEFZ Cape Egmont Fault Zone, R Mount Ruapehu, SI South Island, TVL Taranaki Volcanic Lineament (yellow line), TVZ Taupo Volcanic Zone. B Zoomed area of the TVL. The latter comprises four <1.75 Ma and NNW-SSE migrating andesitic volcanoes (Neall 1979) or their eroded volcanic edifice-remnants: Kaitake, Pouakai and Mt. Taranaki (and the satellite cone of Fanthams Peak – topped by Syne Hut). C Zoomed transect of the proximal eastern flanks of Mt. Taranaki and the type sections of this study (points A to Y, Appendix 5.1). Digital profile modified from Google Images (2017). D 10 cm-thick isopachs of fall deposits produced during <5 ka Plinian (white ellipses) and sub-Plinian (grey ellipses) eruptive episodes at Mt. Taranaki (modified from Torres-Orozco et al. 2017b, Table 5.2). Red circles indicate the position of the summit crater and the Fanthams Peak vent. Coordinate system of all insets: NZGD 2000 New Zealand Transverse Mercator.

Figure 5.2……..225
Proximal lithofacies transitions of the 4700-4600 cal BP Kokowai (Kw1-Kw8). KA Kapuni-A, KB Kapuni-B, Ko Korito. Sections indicated on top of each profile (A-Y, Fig. 5.1). Yellow lines on photographs indicate lower and uppermost bed-set contacts. Lithofacies codes (Table 5.3) indicated to the right of each profile and inside white boxes on pictures. FA fine-ash, CA coarse-ash, FL fine-lapilli, CL coarse-lapilli, B block/bombs. Scale on pictures represented by a black bar or a scraper (32.5 cm-long).

Figure 5.3……..226
Proximal lithofacies transitions of the 3800 to 3500 cal BP Kapuni-A (KA: KA1-KA2), Kapuni-B (KB: KB1-KB4) and Korito (Ko: Ko1-Ko8). Kw Kokowai, Uig Upper Inglewood. Sections indicated on top of each profile (A-Y, Fig. 5.1). Yellow lines on photographs indicate lower and uppermost bed-set contacts. See Fig. 5.2 for more details. The scale on pictures is represented by a black bar or a scraper (32.5 cm-long).

Figure 5.4……..227
Proximal lithofacies transitions of the 3300 cal BP Upper Inglewood (Uig1-Uig7). Sections indicated on top of each profile (A-Y, Fig. 5.1). Yellow lines on photographs indicate lower and uppermost bed-set contacts. See Fig. 5.2 for more details. The scale on pictures is represented by a black bar, a long (32.5 cm-long) or a small scraper (20 cm-long), or a 10 cm-long scale.

Figure 5.5……..228
Proximal lithofacies transitions of 3000-2600 cal BP members Manganui-A (MA: MA1-MA3), Manganui-B (MB), Manganui-C (MC), Manganui-D (MD: MD1-MD3) and Manganui-E (ME) of the Manganui Formation (Torres-Orozco et al. 2017a; b). Uig Upper Inglewood, DF debris flow. Sections are indicated on top of each profile (A-X, Fig. 5.1). Yellow lines on photographs indicate lower and uppermost bed-set contacts. See Fig. 5.2 for more details. The scale on pictures is represented by a black bar, and a long (32.5 cm-long) or a small scraper (20 cm-long).

Figure 5.6……..237
A Example of landscape elements that integrate the present-day micro-topography of the upper eastern flanks of Mt. Taranaki. The gradient of deposit confinement is indicated (modified from Schwarzkopf et al. 2005). B Profile of the general lateral transitions, relative to landscape, of deposits corresponding to each lithofacies association. Dotted white line indicates section not represented (not rep.) in the profile. Proximal (P-lateral) and proximal-medial (M-lateral) lateral lithofacies transitions relative to a reference incision-channel (i) are sketched. Digital image modified from Google Images (2017).
Hazard maps indicating the possible distribution of different types of eruptive activity, throughout distinct eruptive phases, during a future Plinian eruption at Mt. Taranaki. Insets A to D correspond to opening, pre- or post-climactic eruptive phases. A dome-collapse block-and-ash flows, B blast type PDCs and lithic-rich surges, C column-collapse PDCs, D fallout, ballistics, and lava flow distributions. Insets E to G correspond to climactic eruptive phases. E blast type PDCs, F fallout, ballistics and lava flow distributions, G column-collapse PDCs. Inset H represents possible distributions of channel-confined lahars and small-scale landslides during any eruptive phase. Coordinate system of all insets: NZGD 2000 New Zealand Transverse Mercator.

Volcanic hazard scenarios for Plinian eruptions at Mt Taranaki’s summit-crater and Fanthams Peak vent. A-F Scenario I: initial eruptive phases of close-conduits and conduit-decompression by vent unroofing and dome collapse. G-K Scenario II: transient open and clogged conduits by repeated plugging-and-bursting of gas-depleted or chilled magma. L-O Scenario III: rapid progression into steady phases by open-conduits. The possible upper conduit dynamics for each scenario were sketched based on data and interpretations of Torres-Orozco et al. (2017a; b).

Event-tree sequence of the volcanic scenarios expected at Mt. Taranaki during a possible Plinian eruptive episode (magnitudes 4 to 5), produced at either the summit crater, or a satellite vent. For any vent, the eruptive sequence progresses from an opening and pre-climactic phase (1), throughout a climactic phase (2), to a post-climactic phase (3). Vent and/or conduit conditions (A to H) may direct into different processes and events (i.e., Scenarios I to III). Dotted lines indicate subsequent, alternative directions. Run-out distances simplified from Fig. 5.7.