Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Learning Object Metadata Interchange Mechanism

A thesis presented in partial fulfillment of
the requirements for the degree of
Master of Information Science
at Massey University, Palmerston North, New Zealand.

Yuejun Zhang
2005
Acknowledgements

I would like to thank all my friends who provided various helps in completion of this thesis.

Special thanks are given to Associate Professor Kinshuk, my supervisor, for all his help throughout this project. Without his patient guidance and valuable advice, it would be impossible to complete this thesis.
Abstract

In spite of the current lack of conceptual clarity in the multiple definitions and uses, the term *learning objects* is still frequently used in content creation and aggregation in the online-learning field. In the mean time, considerable efforts have been initiated in the past few years for the standardization of metadata elements for consistent description of learning objects, so that learning objects can be identified, searched and retrieved effectively and efficiently across multiple contexts. However, there are currently a large number of standardization bodies and an even much larger number of ongoing standard initiatives in the learning field, and different learning objects repositories are likely to apply different metadata schemas to meet the specific needs of their intended communities. An interchange mechanism for the conversion between various metadata schemas, therefore, becomes necessary for intensive interoperability.

In this thesis, we first make a brief introduction to the concept *learning objects*, then the term *metadata*, followed by a description of the functional requirements of learning objects, the purposes of metadata, and the importance of metadata for learning objects. After that, this thesis investigates metadata schemas in various fields in general, focused on several mainstream metadata specifications developed for learning objects in particular. The differences among these metadata schemas for learning objects are analyzed and a mapping between their elements is identified. On the basis of literature review, a framework for interchange of metadata schemas is proposed and a prototype to demonstrate the functionalities of the framework is developed. For the high scalability and the high accuracy of the developed system, a so-called LOM-intermediated approach is suggested, and a so-called dynamic-database methodology is adopted. The LOM-intermediated approach significantly simplifies the metadata mapping issues by undertaking the schema-schema mapping in a way of schema-LOM-schema mapping, while the dynamic-database methodology effectively prevents any data-loss resulting as a by-product from the use of LOM-intermediated approach. The prototype currently generates and outputs XML metadata in IMS, EdNA, Dublin Core and LOM. It is a web-based three-tier architecture, using Java technologies for implementation, MySQL as the database server and JDBC for database access.
TABLE OF CONTENTS

CHAPTER 1 BACKGROUND AND PROJECT OUTLINE

1.1 Background

1.2 Project Outline
 1.2.1 Scalable, General-purpose System
 1.2.2 LOM-intermediated Approach
 1.2.3 Dynamic-database Methodology
 1.2.4 System Functionalities
 1.2.5 System Architecture and Technologies

1.3 Outline of This Thesis

CHAPTER 2 LEARNING OBJECTS AND METADATA

2.1 Learning Objects
 2.1.1 Definition of Learning Objects
 2.1.2 Capabilities of Learning Objects
 2.1.3 Pros and Cons of Learning Object Approach
 2.1.4 Types of Learning Objects
 2.1.5 Other Issues about Learning Objects

2.2 Learning Object Metadata
 2.2.1 What Is Metadata?
 2.2.2 Problems of Normal Search Technologies
 2.2.3 Advantages and Disadvantages of Metadata
 2.2.4 Categorization of Metadata
 2.2.5 Who Creates Metadata?

2.3 Learning Objects Repositories
 2.3.1 Introduction to Learning Objects Repository
 2.3.2 Examples of Learning Object Repositories

2.4 Summary

CHAPTER 3 METADATA SCHEMAS

3.1 Metadata Standardization

3.2 Metadata Schemas Overview
 3.2.1 Web Community and Dublin Core
 3.2.2 Metadata Standardization in Government Sector
 3.2.3 Libraries and MARC
 3.2.4 Archives and ISAD
 3.2.5 Publishing Industry and ONIX
 3.2.6 Multimedia Metadata Standards
LIST OF FIGURES

CHAPTER 2 LEARNING OBJECTS AND METADATA

Figure 2.1 Terminology for learning objects 9
Figure 2.2 Anatomy of a learning object 17
Figure 2.3 The relationship between learning objects, metadata and LCMS 17
Figure 2.4 Metadata in learning object repositories 18
Figure 2.5 An example of document metadata 20
Figure 2.6 The example metadata in Dublin Core 20

CHAPTER 3 METADATA SCHEMAS

Figure 3.1 Specifications, application profiles and standards 31
Figure 3.2 LOM development process 41
Figure 3.3 LOM element set 44
Figure 3.4 Element by element comparison for metadata schemas 46
Figure 3.5 ADL SCORM 48

CHAPTER 4 METADATA INTERCHANGE AND PROTOTYPE DESIGN

Figure 4.1 Architecture of a metadata mapping system 57
Figure 4.2 A metadata schema translation service 58
Figure 4.3 The proposed framework for metadata interchange 61
Figure 4.4 The LOM-intermediated approach vs. the direct mapping 62
Figure 4.5 Functional compositions of the prototype 66
Figure 4.6 Architecture of the prototype 68
Figure 4.7 The overall flowchart of the processing procedures 70
Figure 4.8 Correlations between the data tables 75
Figure 4.9 The XML Schema file imsmd_rootv1p2p2.xsd 78
Figure 4.10 The XML Schema file lom.xsd 79
Figure 4.11 The XML Schema file dc.xsd 81
Figure 4.12 An example of EdNA record in XML 82
Figure 4.13 The XML Schema file edna.xsd 83

CHAPTER 5 PROTOTYPE IMPLEMENTATION AND EVALUATION

Figure 5.1 J2EE Multi-tier architecture 87
Figure 5.2 DOM Implementation via JAXP 93
Figure 5.3 Example Java code for parsing XML using DOM via JAXP API 93
Figure 5.4 Example Java code for creating XML using DOM via JAXP API 93
Figure 5.5 The JDBC library structure 94
Figure 5.6 Example Java code for implementing JDBC to access the database 96
Figure 5.7 Example Java code from the servlet class IMSCreator 99
Figure 5.8 Example code from the JSP page EditRecord.jsp 100
Figure 5.9 A JavaBean example - RecordIndexBean 102
Figure 5.10 Collaborations between the main Java components 106
Figure 5.11 Class diagram for the Java bean classes in the beans package 107
Figure 5.12 The UML view of the RecordBean class 108
Figure 5.13 The UML view of the OpRecordBean class 110
Figure 5.14 The UML view of the IMSCreator class 111
Figure 5.15 The UML view of the FileUploadBean class 112
Figure 5.16 The UML view of the FileRecordBean class 113
Figure 5.17 The UML view of the WebRecordBean class 115
Figure 5.18 Information flow between the client, the Web server, and the Tomcat server 116
Figure 5.19 Structure of the Web application for our project 116
Figure 5.20 User login, registration and the main menu 117
Figure 5.21 Record input form for various metadata schemas 118
Figure 5.22 The Main menu and the edit form when uploading XML 119
Figure 5.23 Create metadata from Web source 120
Figure 5.24 Edit an existing record 121
Figure 5.25 XML format of the metadata record in various schemas 124
Figure 5.26 Transform a record from one schema to another schema 126

CHAPTER 6 CONCLUSION AND FUTURE WORK

Figure 6.1 Response with different schemas automatically for different clients 129
Figure 6.2 Demo of a flexible DC editor 131
LIST OF TABLES

CHAPTER 2 LEARNING OBJECTS AND METADATA

Table 2.1 Learning objects functional requirements 11
Table 2.2 Pros and cons of learning object approach 12
Table 2.3 Types of learning objects 13
Table 2.4 Types of learning objects 14
Table 2.5 Examples of learning objects repositories with features and characteristics 28

CHAPTER 3 METADATA SCHEMAS

Table 3.1 The Dublin Core Metadata Element Set 33
Table 3.2 ONIX product groups 38
Table 3.3 EdNA Metadata Standard element set 50

CHAPTER 4 METADATA INTERCHANGE AND PROTOTYPE DESIGN

Table 4.1 EdNA-LOM Mapping 55
Table 4.2 Tables and data fields in the basic database 72
Table 4.3 Dynamic table and the data fields for EdNA 74
Table 4.4 Mapping between the database and the EdNA Metadata Standard 76

CHAPTER 5 PROTOTYPE IMPLEMENTATION AND EVALUATION

Table 5.1 Core J2EE packages 88
Table 5.2 Java packages for XML processing 92
Table 5.3 Core JDBC classes 95
Table 5.4 The main Java components implemented in the system 103
Table 5.5 Extracted HTML data and the corresponding database fields 114
Table 5.6 An example metadata record 122