Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Use of decision science to aid selection of genetically superior animals

A Thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Animal Science

At Massey University, Palmerston North, New Zealand

Ryan Leith Sherriff
2010
Abstract

This thesis is concerned with a theoretical simulation model for pig breeding, as part of the ongoing search for the “perfect” genotype. The starting point is an additive model to investigate how accurately the classical, infinitesimal model predicts genetic gain for traits controlled by few loci and few alleles. This initial investigation demonstrates that the infinitesimal model is robust, providing that at least 15 loci are controlling a trait and there is symmetry in the allele distributions.

A Genotype-Pig (GE-Pig) model is then developed to apply the additive effects of alleles on sub-phenotypic traits like maximum protein deposition, minimum lipid to protein content in the whole body, *ad libitum* digestible energy intake, energy for maintenance requirement and water content in the whole body. These parameters are then used in a nutrient partitioning simulation model to grow a pig and calculate traditional breeding traits such as average daily gain, feed conversion ratio, and backfat thickness for any combination of alleles. Three algorithms, Genetic Algorithm, Tabu Search, and Simulated Annealing, are used to investigate the GE-Pig model and find optimal combination of alleles for different dietary and selection objective situations. The two diets investigated were either of a low or high quality, and the three selection objectives used were, maximising average daily gain, minimizing feed conversion ratio, and minimizing back fat. A graphical method is developed for easy comparison of the genotypes.

Of the algorithms, the Genetic Algorithm performed the best, followed by Tabu Search and finally Simulated Annealing. It is demonstrated that, in general, there is a different, single, optimum for any given selection objective and diet. However under the back fat selection objective, both diets produce the same optimal genotype. Also there are many similarities between the optima for the average daily gain and feed conversion ratio selection objectives. When the theoretical minimum number of generations of selection to the optima is considered, the feed conversion ratio selection objective is the quickest for a breeding program to achieve the optimal solutions, followed by back fat, then
average daily gain. It is demonstrated that diet also has an effect on the theoretical number of generations.

A Multiple selection objective, using relative economic values applied to the individual selection objectives, is also investigated. For both diets, the majority of the multiple selection objective solutions are in the vicinity of the feed conversion ratio optima, indicating that feed conversion ratio is the most prominent factor. It is also demonstrated that the optimal solution is most affected by the objective parameter weights under low diet conditions.
Publications

Studies completed during candidature, some of which are reported in this thesis have been presented in the following communications:

http://www.informs.org/Conf/Atlanta2003/ATLANTA%20Tuesday%20PDF.pdf
Acknowledgements

This work would not have been possible without the help and encouragement of a number of people. In particular I would like to thank:

- The Agricultural and Marketing Research and Development Trust (AGMARDT) for their financial support.

- My numerous supervisors, with particular thanks to Patrick Morel and Graham Wood, who have been involved and supported me throughout this work.

- My parents for their support and allowing me to complete this thesis during work hours.

- My wife, for believing in me.
Table of Contents

Abstract iii
Publications v
Acknowledgements vii
List of Figures xv
List of Tables xix

Chapter 1 – Introduction 1
1.1 Background ... 1
1.2 Aim of thesis ... 3
1.3 Infinitesimal model ... 4
1.4 Growth models .. 5
1.5 Linear programming .. 6
1.6 Genetic Algorithm .. 7
1.7 Tabu Search ... 8
1.8 Simulated Annealing ... 9
1.9 Thesis structure .. 10

Chapter 2 – Additive model description and theory 13
2.1 Introduction ... 13
2.2 Additive model description .. 13
 2.2.1 Genetic effect ... 14
 2.2.2 Environmental effect .. 14
 2.2.3 Model example ... 14
2.3 Additive model theory ... 16
 2.3.1 Distributions ... 16
 2.3.2 Genetic gain ... 19
 2.3.3 Expected genetic value .. 20
2.4 Infinitesimal theory overview .. 21
2.5 Variance components ... 23

Chapter 3 – Simulation method and results 25
3.1 Introduction ... 25
3.2 Search space ... 25
3.3 Simulated population and mating strategy ... 25
3.4 Method .. 26
3.5 Simulation software and procedure ... 26
3.6 Evaluation parameters ... 26
3.7 Results ... 28
3.8 Discussion ... 33
Chapter 7 – Average daily gain objective

7.1 Introduction ... 103
7.2 Objective description ... 103
7.3 Description of graph structures 103
7.4 Results ... 107
 7.4.1 High diet ... 107
 7.4.1.1 Genetic Algorithm ... 107
 7.4.1.2 Tabu Search ... 109
 7.4.1.3 Simulated Annealing .. 112
 7.4.1.4 Algorithm comparison ... 114
 7.4.2 Low diet ... 119
 7.4.2.1 Genetic Algorithm ... 119
 7.4.2.2 Tabu Search ... 121
 7.4.2.3 Simulated Annealing .. 123
 7.4.2.4 Algorithm comparison ... 125
 7.4.3 Diet comparison .. 130
 7.4.4 Theoretical generations to optimal solution 132
7.5 Summary .. 134

Chapter 8 – Feed conversion ratio objective

8.1 Introduction ... 137
8.2 Objective description ... 137
8.3 Results ... 137
 8.3.1 High Diet ... 137
 8.3.1.1 Genetic Algorithm ... 137
 8.3.1.2 Tabu Search ... 139
 8.3.1.3 Simulated Annealing .. 141
 8.3.1.4 Algorithm comparison ... 144
 8.3.2 Low Diet ... 148
 8.3.2.1 Genetic Algorithm ... 148
 8.3.2.2 Tabu Search ... 150
 8.3.2.3 Simulated Annealing .. 152
 8.3.2.4 Algorithm comparison ... 154
 8.3.3 Diet comparison .. 159
 8.3.4 Theoretical generations to optimal solution 161
8.4 Summary .. 163

Chapter 9 – Back fat objective

9.1 Introduction ... 165
9.2 Objective description ... 165
9.3 Results ... 165
 9.3.1 High Diet ... 165
 9.3.1.1 Genetic Algorithm ... 165
List of Figures

Figure 1.1: Traditional breeding method ... 1
Figure 1.2: Breeding method that includes QTL information 2
Figure 1.3: Breeding method that includes SNP information 2
Figure 1.4: Breeding method that includes mechanical growth model inversion 3
Figure 1.5: Breeding method with machine learning trained tree of simple functions. 3
Figure 1.6: Breeding method with genetically enhanced mechanical growth model 4
Figure 2.1: Diagram showing the passing on of alleles during breeding 15
Figure 2.2: Relationship between individual genotypic and phenotypic values 21
Figure 3.1: Simulation results showing 95% confidence intervals for δ 28
Figure 3.2: Simulation results showing 95% confidence intervals for Λ 29
Figure 3.3: Simulation 95% confidence interval for Λ .. 30
Figure 3.4: Simulation results showing the 95% confidence intervals for Λ 32
Figure 3.5: Simulation results showing the 95% confidence intervals for Λ 33
Figure 3.6: Graph of expected genetic value given the phenotypic value 34
Figure 4.1: Allele value distribution ... 37
Figure 4.2: Effects of varying allele frequencies .. 40
Figure 4.3: Skewed allele distribution .. 41
Figure 4.4: Skewed allele distribution .. 42
Figure 4.5: Linkage effects .. 43
Figure 4.6: Linkage effects .. 43
Figure 4.7: Linkage effects .. 44
Figure 5.1: GE-Pig model .. 52
Figure 5.2: Pig Growth model .. 53
Figure 5.3: Pig growth model .. 54
Figure 5.4: Growth parameter structure .. 56
Figure 5.5: Opposing correlations .. 61
Figure 5.6: Example assignments of weights ... 62
Figure 5.7: Equations and process for separating correlation table 68
Figure 5.8: Matrix scatter plot – high diet .. 83
Figure 5.9: Matrix scatter plot – low diet .. 83
Figure 6.1: Illustration of breeding procedure .. 88
Figure 6.2: Illustration of crossover when $C = 0$.. 90
Figure 6.3: Illustration of crossover when $C = 1$.. 90
Figure 6.4: Pictorial view of line search procedure .. 94
Figure 6.5: Pictorial view of the path search procedure 94
Figure 6.6: Pictorial view of the local search procedure 95
Figure 7.1: Same solution for every run, repeatability 1.000 105
Figure 7.2: Same solution with random variation added, repeatability 0.948 105
Figure 7.3: Randomly generated alleles, repeatability 0.014 106
Figure 7.4: Two solutions, repeatability 0.355 .. 106
Figure 7.5: Two solutions with random variation, repeatability 0.335 107
Figure 7.6: Genetic Algorithm results when feeding the high diet 108
Figure 7.7: Genetic Algorithm high diet, repeatability 0.782 109
Figure 7.8: Genetic Algorithm high diet, repeatability 0.989 109
Figure 7.9: Tabu Search results when feeding the high diet 110
Figure 7.10: Tabu Search high diet, repeatability 0.849 .. 111
Figure 7.11: Tabu Search high diet, repeatability 0.934.................................111
Figure 7.12: Simulated Annealing results when feeding the high diet...........112
Figure 7.13: Simulated Annealing high diet, repeatability 0.510....................114
Figure 7.14: Simulated Annealing high diet, repeatability 0.895....................114
Figure 7.15: Comparison of the three algorithm results on high diet............115
Figure 7.16: Genetic Algorithm high diet, repeatability 0.989.......................116
Figure 7.17: Tabu Search high diet, repeatability 0.934...............................116
Figure 7.18: Simulated Annealing high diet, repeatability 0.895....................117
Figure 7.19: Genetic Algorithm results when feeding the low diet..............119
Figure 7.20: Genetic Algorithm low diet, repeatability 0.860........................120
Figure 7.21: Genetic Algorithm low diet, repeatability 0.987........................121
Figure 7.22: Tabu Search algorithm results when feeding the low diet..........121
Figure 7.23: Tabu Search low diet, repeatability 0.738...............................122
Figure 7.24: Tabu Search low diet, repeatability 0.956...............................123
Figure 7.25: Simulated Annealing algorithm results when feeding the low diet.124
Figure 7.26: Simulated Annealing low diet, repeatability 0.593....................125
Figure 7.27: Simulated Annealing low diet, repeatability 0.921....................125
Figure 7.28: Comparison of the three algorithm results on low diet.............126
Figure 7.29: Genetic Algorithm low diet, repeatability 0.987.......................127
Figure 7.30: Tabu Search low diet, repeatability 0.956...............................127
Figure 7.31: Simulated Annealing low diet, repeatability 0.921....................128
Figure 7.32: Comparison of the three algorithm results on low diet and high diet.130
Figure 7.33: Genetic Algorithm diet comparison......................................131
Figure 7.34: Optimal genome average plotted with population normal curve.....133
Figure 8.1: Genetic Algorithm results when feeding the high diet...............138
Figure 8.2: Genetic Algorithm high diet, repeatability 0.906.......................139
Figure 8.3: Genetic Algorithm high diet, repeatability 0.987.......................139
Figure 8.4: Tabu Search results when feeding the high diet........................140
Figure 8.5: Tabu Search high diet, repeatability 0.931...............................141
Figure 8.6: Tabu Search high diet, repeatability 0.965...............................141
Figure 8.7: Simulated Annealing results when feeding the high diet............142
Figure 8.8: Simulated Annealing high diet, repeatability 0.796....................143
Figure 8.9: Simulated Annealing high diet, repeatability 0.961....................143
Figure 8.10: Comparison of the three algorithm results on high diet............145
Figure 8.11: Genetic Algorithm high diet, repeatability 0.987....................146
Figure 8.12: Tabu Search high diet, repeatability 0.965...............................146
Figure 8.13: Simulated Annealing high diet, repeatability 0.961....................146
Figure 8.14: Genetic Algorithm results when feeding the low diet...............149
Figure 8.15: Genetic Algorithm low diet, repeatability 0.931.......................150
Figure 8.16: Genetic Algorithm low diet, repeatability 0.992.......................150
Figure 8.17: Tabu Search algorithm results when feeding the low diet...........151
Figure 8.18: Tabu Search low diet, repeatability 0.917...............................152
Figure 8.19: Tabu Search low diet, repeatability 0.986...............................152
Figure 8.20: Simulated Annealing algorithm results when feeding the low diet.153
Figure 8.21: Simulated Annealing low diet, repeatability 0.773....................154
Figure 8.22: Simulated Annealing low diet, repeatability 0.961....................154
Figure 8.23: Comparison of the three algorithm results on low diet.............155
Figure 8.24: Genetic Algorithm low diet, repeatability 0.992.......................156
Figure 8.25: Tabu Search low diet, repeatability 0.986...............................156
Figure 8.26: Simulated Annealing low diet, repeatability 0.961....................157
Figure 8.27: Comparison of the three algorithm results on low diet and high diet. 159
Figure 8.28: Genetic Algorithm diet comparison. 160
Figure 8.29: Optimal genome average plotted with population normal curve. 162
Figure 9.1: Genetic Algorithm results when feeding the high diet. 166
Figure 9.2: Genetic Algorithm high diet, repeatability 0.786. 167
Figure 9.3: Genetic Algorithm high diet, repeatability 0.984. 167
Figure 9.4: Tabu Search results when feeding the high diet. 168
Figure 9.5: Tabu Search high diet, repeatability 0.731. 169
Figure 9.6: Tabu Search high diet, repeatability 0.771. 169
Figure 9.7: Simulated Annealing results when feeding the high diet. 170
Figure 9.8: Simulated Annealing low diet, repeatability 0.735. 172
Figure 9.9: Simulated Annealing low diet, repeatability 0.844. 172
Figure 9.10: Comparison of the three algorithm results on high diet. 173
Figure 9.11: Genetic Algorithm high diet, repeatability 0.984. 174
Figure 9.12: Tabu Search high diet, repeatability 0.771. 174
Figure 9.13: Simulated Annealing high diet, repeatability 0.844. 174
Figure 9.14: Genetic Algorithm results when feeding the low diet. 177
Figure 9.15: Genetic Algorithm low diet, repeatability 0.936. 178
Figure 9.16: Genetic Algorithm low diet, repeatability 0.991. 178
Figure 9.17: Tabu Search algorithm results when feeding the low diet. 179
Figure 9.18: Tabu Search low diet, repeatability 0.937. 180
Figure 9.19: Tabu Search low diet, repeatability 0.954. 180
Figure 9.20: Simulated Annealing algorithm results when feeding the low diet. 181
Figure 9.21: Simulated Annealing low diet, repeatability 0.873. 182
Figure 9.22: Simulated Annealing low diet, repeatability 0.953. 182
Figure 9.23: Comparison of the three algorithm results on low diet. 183
Figure 9.24: Genetic Algorithm low diet, repeatability 0.991. 184
Figure 9.25: Tabu Search low diet, repeatability 0.954. 184
Figure 9.26: Simulated Annealing low diet, repeatability 0.953. 184
Figure 9.27: Comparison of the three algorithm results on low diet and high diet. 187
Figure 9.28: Genetic Algorithm diet compression. 187
Figure 9.29: Optimal genome average plotted with population normal curve. 189
Figure 10.1: Layout of multiple objective graphs. 193
Figure 10.2: Solutions for multiple selection objectives, high diet. 196
Figure 10.3: Solutions for multiple selection objectives, low diet. 199
Figure 10.4: Sub-phenotypic changes as ADG selection response increases. 202
Figure 10.5: Sub-phenotypic changes as FCR selection response increases. 203
Figure 10.6: Sub-phenotypic changes as BF selection response increases. 203
Figure 11.1: Possible GE-Pig model extension. 208

Figure A-1: Pig growth model. 223
Figure B-1: DTS statistics – high diet. 229
Figure B-2: BF statistics – high diet. 229
Figure B-3: CW statistics – high diet. 230
Figure B-4: FCR statistics – high diet. 230
Figure B-5: ADG statistics – high diet. 231
Figure B-6: ADf statistics – high diet. 231
Figure C-1: DTS statistics – low diet. 233
Figure C-2: BF statistics – low diet. 233
Figure C-3: CW statistics – low diet. 234
Figure C-4: FCR statistics – low diet ...234
Figure C-5: ADG statistics – low diet ...235
Figure C-6: ADFi statistics – low diet ...235
Figure H-1: Genetic Algorithm 10 Genomes ..249
Figure H-2: Genetic Algorithm 30 Genomes ..249
Figure H-3: Genetic Algorithm 50 Genomes ..250
Figure H-4: Tabu Search 10 Neighbours 3 Elite ..250
Figure H-5: Tabu Search 10 Neighbours 5 Elite ..250
Figure H-6: Tabu Search 30 neighbours 3 elite ...251
Figure H-7: Tabu Search 30 Neighbours 5 elite ...251
Figure H-8: Simulated Annealing 10 Neighbours 10 Stop temp252
Figure H-9: Simulated Annealing 10 neighbours 50 stop temp252
Figure H-10: Simulated Annealing 30 neighbours 10 stop temp253
Figure H-11: Simulated Annealing 30 neighbours 50 stop253
Figure H-12: Simulated Annealing 50 neighbours 10 stop253
Figure H-13: Genetic Algorithm 10 Genomes ...254
Figure H-14: Genetic Algorithm 30 Genomes ...254
Figure H-15: Genetic Algorithm 50 Genomes ...254
Figure H-16: Tabu Search 10 neighbours 3 elite ...255
Figure H-17: Tabu Search 10 neighbour 5 elite ..255
Figure H-18: Tabu Search 30 neighbours 3 elite ...255
Figure H-19: Tabu Search 30 Neighbours 5 elite ..256
Figure H-20: Simulated Annealing 10 Neighbours 10 stop temp256
Figure H-21: Simulated Annealing 10 neighbours 50 stop temp257
Figure H-22: Simulated Annealing 30 neighbours 10 stop temp257
Figure H-23: Simulated Annealing 30 neighbours 50 stop258
Figure H-24: Simulated Annealing 50 neighbours 10 stop temp258
Figure H-25: Genetic Algorithm 10 Genomes ...258
Figure H-26: Genetic Algorithm 30 Genomes ...259
Figure H-27: Genetic Algorithm 50 Genomes ...259
Figure H-28: Tabu Search 10 Neighbours 3 Elite ..260
Figure H-29: Tabu Search 10 Neighbours 5 Elite ..260
Figure H-30: Tabu Search 30 Neighbours 3 Elite ..260
Figure H-31: Tabu Search 30 Neighbours 5 Elite ..261
Figure H-32: Simulated Annealing 10 Neighbours 10 Stop temp261
Figure H-33: Simulated Annealing 10 Neighbours 50 Stop temp262
Figure H-34: Simulated Annealing 30 Neighbours 10 Stop Temp262
Figure H-35: Simulated Annealing 30 Neighbours 50 Stop Temp263
Figure H-36: Simulated Annealing 50 Neighbours 10 Stop Temp263
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1:</td>
<td>Calculation of phenotypic values (PV)</td>
<td>16</td>
</tr>
<tr>
<td>Table 3.1:</td>
<td>Summary table of a subset of simulation results</td>
<td>31</td>
</tr>
<tr>
<td>Table 5.1:</td>
<td>Initial genotype data – equal allele frequencies</td>
<td>49</td>
</tr>
<tr>
<td>Table 5.2:</td>
<td>Calculated average and interactive effects</td>
<td>49</td>
</tr>
<tr>
<td>Table 5.3:</td>
<td>Initial genotype data – equal allele frequencies</td>
<td>50</td>
</tr>
<tr>
<td>Table 5.4:</td>
<td>Calculated additive and dominance effects</td>
<td>51</td>
</tr>
<tr>
<td>Table 5.5:</td>
<td>Ideal amino acid balance</td>
<td>55</td>
</tr>
<tr>
<td>Table 5.6:</td>
<td>Mean, standard deviation, and heritability of growth parameters</td>
<td>56</td>
</tr>
<tr>
<td>Table 5.7:</td>
<td>Correlations of growth parameters</td>
<td>56</td>
</tr>
<tr>
<td>Table 5.8:</td>
<td>Signs of the example correlations for traits 1, 3 and 4</td>
<td>62</td>
</tr>
<tr>
<td>Table 5.9:</td>
<td>Example correlation matrix</td>
<td>62</td>
</tr>
<tr>
<td>Table 5.10:</td>
<td>Example linear program variables</td>
<td>63</td>
</tr>
<tr>
<td>Table 5.11:</td>
<td>Example linear program solution</td>
<td>64</td>
</tr>
<tr>
<td>Table 5.12:</td>
<td>Example assignment of weights - 1</td>
<td>64</td>
</tr>
<tr>
<td>Table 5.13:</td>
<td>Example assignment of weights - 2</td>
<td>65</td>
</tr>
<tr>
<td>Table 5.14:</td>
<td>Mean, standard deviation, and heritability of growth parameters</td>
<td>65</td>
</tr>
<tr>
<td>Table 5.15:</td>
<td>Genetic and environmental standard deviations of growth parameters</td>
<td>66</td>
</tr>
<tr>
<td>Table 5.16:</td>
<td>Standard deviations of growth parameters</td>
<td>67</td>
</tr>
<tr>
<td>Table 5.17:</td>
<td>Correlations of growth parameters</td>
<td>67</td>
</tr>
<tr>
<td>Table 5.18:</td>
<td>Environmental correlations of growth parameters</td>
<td>68</td>
</tr>
<tr>
<td>Table 5.19:</td>
<td>Additive and non-additive genetic correlations of growth parameters</td>
<td>69</td>
</tr>
<tr>
<td>Table 5.20:</td>
<td>Environmental structure weights and standard deviations</td>
<td>70</td>
</tr>
<tr>
<td>Table 5.21:</td>
<td>Non-Additive structure weights and standard deviations</td>
<td>71</td>
</tr>
<tr>
<td>Table 5.22:</td>
<td>Expected number of loci (left) and number of loci (right)</td>
<td>72</td>
</tr>
<tr>
<td>Table 5.23:</td>
<td>Additive structure weights and standard deviations</td>
<td>73</td>
</tr>
<tr>
<td>Table 5.24:</td>
<td>Number of loci from additional optimization</td>
<td>74</td>
</tr>
<tr>
<td>Table 5.25:</td>
<td>Environmental correlations of growth parameters</td>
<td>75</td>
</tr>
<tr>
<td>Table 5.26:</td>
<td>Additive genetic correlations of growth parameters</td>
<td>76</td>
</tr>
<tr>
<td>Table 5.27:</td>
<td>Non-additive genetic correlations of growth parameters</td>
<td>77</td>
</tr>
<tr>
<td>Table 5.28:</td>
<td>Correlations of growth parameters</td>
<td>78</td>
</tr>
<tr>
<td>Table 5.29:</td>
<td>Simulation Diets (AA, DP in g/kg; DE in MJ/kg)</td>
<td>79</td>
</tr>
<tr>
<td>Table 5.30:</td>
<td>Model Means and Standard Deviations for high and low diet</td>
<td>80</td>
</tr>
<tr>
<td>Table 5.31:</td>
<td>Means and standard deviation for Swiss National Pig Breeding Centre</td>
<td>81</td>
</tr>
<tr>
<td>Table 5.32:</td>
<td>Model Correlations for high and low diet</td>
<td>82</td>
</tr>
<tr>
<td>Table 6.1:</td>
<td>Loci groups and number of observable values</td>
<td>86</td>
</tr>
<tr>
<td>Table 6.2:</td>
<td>Stopping time and base population size combinations</td>
<td>91</td>
</tr>
<tr>
<td>Table 6.3:</td>
<td>Examples of neighbours</td>
<td>93</td>
</tr>
<tr>
<td>Table 6.4:</td>
<td>Example of direction calculation and a direction neighbour</td>
<td>93</td>
</tr>
<tr>
<td>Table 6.5:</td>
<td>Example of tabu moves</td>
<td>94</td>
</tr>
<tr>
<td>Table 6.6:</td>
<td>Tabu moves for diversify search</td>
<td>95</td>
</tr>
<tr>
<td>Table 6.7:</td>
<td>Parameter setups investigated for Tabu Search</td>
<td>96</td>
</tr>
<tr>
<td>Table 6.8:</td>
<td>Parameter setups investigated for Simulated Annealing</td>
<td>98</td>
</tr>
<tr>
<td>Table 7.1:</td>
<td>Genetic Algorithm results when feeding the high diet</td>
<td>108</td>
</tr>
<tr>
<td>Table 7.2:</td>
<td>Tabu Search results when feeding the high diet</td>
<td>110</td>
</tr>
<tr>
<td>Table 7.3:</td>
<td>Simulated Annealing results when feeding the high diet</td>
<td>113</td>
</tr>
<tr>
<td>Table 7.4:</td>
<td>Optimal genome for average daily gain with high diet being fed</td>
<td>118</td>
</tr>
</tbody>
</table>
Table 7.5: Performance of optimal genome for ADG with high diet being fed. 119
Table 7.6: Genetic Algorithm results when feeding the low diet. 120
Table 7.7: Tabu Search results when feeding the low diet. 122
Table 7.8: Simulated Annealing results when feeding the high diet 124
Table 7.9: Optimal genome for average daily gain with low diet being fed 129
Table 7.10: Performance of optimal genome for ADG with low diet being fed. ... 130
Table 7.11: Optimal genome performances .. 132
Table 7.12: Summary data ... 134
Table 8.1: Genetic Algorithm results when feeding the high diet 138
Table 8.2: Tabu Search results when feeding the high diet 140
Table 8.3: Simulated Annealing results when feeding the high diet 142
Table 8.4: Optimal genome for feed conversion ratio with high diet being fed. ... 147
Table 8.5: Performance of optimal genome for FCR with high diet being fed. ... 148
Table 8.6: Genetic Algorithm results when feeding the low diet 149
Table 8.7: Tabu Search results when feeding the low diet 151
Table 8.8: Simulated Annealing results when feeding the low diet 153
Table 8.9: Optimal genome for feed conversion ratio with low diet being fed. ... 158
Table 8.10: Performance of optimal genome for FCR with low diet being fed. ... 158
Table 8.11: Optimal genome performances .. 161
Table 8.12: Summary data ... 162
Table 9.1: Genetic Algorithm results when feeding the high diet 166
Table 9.2: Tabu Search results when feeding the high diet 168
Table 9.3: Simulated Annealing results when feeding the high diet 171
Table 9.4: Optimal genome for back fat with high diet being fed. 175
Table 9.5: Performance of optimal genome for BF with high diet being fed. 175
Table 9.6: Genetic Algorithm results when feeding the low diet 177
Table 9.7: Tabu Search results when feeding the low diet 179
Table 9.8: Simulated Annealing results when feeding the low diet 181
Table 9.9: Optimal genome for back fat with low diet being fed. 185
Table 9.10: Performance of optimal genome for BF with low diet being fed. 185
Table 9.11: Summary data ... 189
Table 10.1: Relative Economic Values .. 192
Table 10.2: Relative Economic Values converted to ratios 192
Table 10.3: Multiple selection objective ratios .. 192
Table 10.4: Mean performances for multiple selection objective solutions, high diet 195
Table 10.5: Mean performances for multiple selection objective solutions, low diet 198
Table 11.1: Comparison of Simple Search results with Genetic Algorithm results. 210