Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
An application of Malmquist productivity index to compare technological and growth differences between traditional and non-traditional dairy regions in New Zealand

A thesis presented in partial fulfilment of the requirements for the degree of

PhD
in
Agribusiness

at Massey University, Palmerston North, New Zealand.

Héctor Ramiro Laca-Viña

2010
Abstract

The NZ dairy industry has adopted an encompassing measure of performance, total factor productivity (TFP), as a target measure to guide on-farm improvements.

Dairy farmers pay a levy in order to fund agricultural research and extension. Extension services and R&D will continue to be of critical importance to maintain and improve productivity at the farm level. Consequently, it is in the best interest of the dairy industry to adequately target R&D and extension funds and make the best use of resources.

To date, the methodology employed to estimate productivity growth has some shortcomings that seriously hamper the ability of potential users to extract useful information from it. First, productivity growth has been reported as an aggregate for the entire dairy industry. Second, it makes no assumption about the efficiency with which resources are being used. Third, it implicitly assumes that all farms face the same technology.

Productivity growth can be achieved either through better (more efficient) use of the technology applied, through the adoption of a new technology (technical progress) or a combination of both. Given that the sources of productivity change—technical progress and technical efficiency change—are fundamentally different phenomena, they are, in turn, influenced by different factors. This distinction is important for policy orientation because different instruments/tools may be required to address them. Furthermore, empirical evidence suggests that a variety of farming systems have emerged as a result of dairy farming geographical expansion.

Farm-level panel data were used to estimate the Malmquist productivity change index. This index can provide additional insights since it can be decomposed into two additional components, one that measures changes in technical efficiency (i.e., whether firms are getting closer to the production frontier over time), and one that measures changes in technology (i.e., whether the production frontier is moving outwards over time). Hence, it provides individual (farm) estimates of TFP. Moreover, the methodology applied allows to test whether farms in the two regions considered in this study are operating under the same
technology. These two regions were the long-established dairy areas of Waikato-Taranaki and the newly developed dairy areas of Canterbury-Southland.

Results for farms in Waikato-Taranaki indicate that annual TFP change is modest, ranging from 0.29% per annum to 0.59% per annum. Most importantly, technical progress is the only source of TFP change in all four models. Therefore, it is necessary to encourage investments in new R&D targeted to remove the technological constraints that impede the realisation of further productivity gains in the regions. However, important differences in the estimates of TFP, technical progress and change in technical efficiency between models were found for farms in Canterbury-Southland. Estimates of TFP change ranged from 0.7% per annum to 2.8% per annum. Even though technical progress and change in technical efficiency contributed to total factor productivity growth (TFPG), the latter component was the most important contributor in three of the four models. Moreover, in two models the rate of technical progress was negative (i.e., technical regress).

The analyses indicate that dairy farms in Canterbury-Southland were on average 10% more productive than farms in Waikato-Taranaki when farms in both regions faced the frontier. These results were consistent for all the input/output set chosen. Furthermore, the null hypothesis that the two regions do not face the same production technology (i.e., each region has it own production frontier) was accepted irrespective of the input/output set chosen. The rejection of the null hypothesis, that farms in traditional and non-traditional dairy regions were operating under the same underlying technology (and hence face the same production frontier), called for a review of the traditional approach to R&D in one central experimental station, strengthening the need for a local approach through the promotion of networks and synergies with universities and other research institutions.
Acknowledgements

I would like to thank NZAID for funding my studies in Aoteroa.

I am truly indebted to Sylvia Hooker and Susan Flynn from the International Student Office for their support and understanding.

My appreciation to Phil Journeaux from MAF Policy (Hamilton) who kindly provided me with the farm-level data and who was also handy to answer any doubt.

My deepest recognition to my supervisors Bill Bailey and Colin Holmes, as their guidance as supervisors and their advice and support to the person behind the thesis was greatly appreciated.

I would also like to express my gratitude to Prof. Ruben Tansini from the Department of Economics at the Faculty of Social Sciences of the University de la República in Uruguay for his support and encouragement.

To my fellows of the “Latin-American Society for the Development of the New Zealand Dairy Industry,” René and Matías: many thanks for the arguments, discussions and insights that improved my work. To all other members of the PDHutt, sorry about our noisy debates.

Thanks to the Latin American community at Massey, to all of you.

To my wife María, who resigned to many things following my dream…thanks and sorry. Talking about productivity and efficiency during the four-plus years that took me to write one thesis, she gave birth to our three children. There is not much to add.

To my mother, brothers, sister, in-laws and all those that in one way or another allowed this acknowledgement to be written.

Finally, against all odds.
To my wife María and our children

Inés, Joaquín, Íñaki and Valentina…

and the others who might want to come.
Table of contents

Abstract.. i
Acknowledgements.. iii
Table of contents... v
List of tables.. ix
List of figures .. xiii
1 Introduction to the dairy industry and dairy farming in New Zealand............................ 1
 1.1 Background... 1
 1.2 Institutional changes .. 3
 1.3 Dairy farming expansion .. 5
 1.4 Productivity growth as a policy objective .. 11
 1.5 Productivity estimates for New Zealand dairy farms ... 14
 1.6 Geography and technology .. 16
 1.7 Research objectives ... 18
2 The evolution of dairy farming in New Zealand with emphasis on key regions 21
 2.1 Introduction ... 21
 2.2 The spatial distribution of dairy farming in New Zealand .. 21
 2.3 Main differences between traditional and non-traditional dairy regions 27
 2.4 Technological trajectories for selected regions in New Zealand 32
 2.5 Conclusion .. 34
3 A review of previous studies on dairy farm efficiency and productivity 36
 3.1 Introduction ... 36
 3.2 Previous studies in dairy farm efficiency .. 37
 3.2.1 The underlying assumption about technology ... 40
 3.2.2 The input/output variables used .. 44
 3.2.3 Determinants of inefficiency .. 47
 3.3 Previous studies in dairy farm total factor productivity ... 51
 3.3.1 The underlying assumption about technology ... 56
 3.3.2 The input/output variables used .. 56
 3.3.3 Determinants of inefficiency .. 57
 3.4 Concluding comments .. 58
4 A review of methods and materials used in the present study .. 79
 4.1 Introduction ... 79
Appendix 2 ... 225
Appendix 3 ... 233
Bibliography ... 241
List of tables

Table 1.1 - Structural change in New Zealand dairy farming.................................11
Table 2.1 - The number of herds in five subregions and the two Islands of NZ in 1990/91 and 2004/05...22
Table 2.2 - Total dairy area in five subregions and the two Islands of NZ in 1990/91 and 2004/05...23
Table 2.3 - Total number of cows in five subregions and the two Islands of NZ in 1990/91 and 2004/05...24
Table 2.4 - Milk production, annual growth rate and regional share in five subregions and the two Islands of NZ in 1990/91 and 2004/05.................................25
Table 2.5 - Average herd size and annual growth rate in five subregions and the two Islands of NZ in 1990/91 and 2004/05...26
Table 2.6 - Average farm area and annual growth rate in five subregions and the two Islands of NZ in 1990/91 and 2004/05...26
Table 2.7 - Milk production per hectare and fertiliser application in four subregions of NZ...27
Table 3.1 - Summary of dairy efficiency studies...38
Table 3.2 - Summary of productivity studies in dairy farming52
Table 3.3 - Studies that applied econometric methods...60
Table 3.4 - Studies that applied mathematical programming techniques..............67
Table 3.5 - Studies that applied mathematical programming and econometric methods...71
Table 3.6 - Stochastic non-parametric a rara avis..72
Table 3.7 - Studies that aim to explain inefficiency..73
Table 3.8 - Total factor productivity studies in dairy farming..............................75
Table 4.1 - Characteristics of the whole sample (average values per farm).............100
Table 4.2 - Characteristics of the sample by region; average values per farm in Region I (Waikato-Taranaki)..100
Table 4.3 - Characteristics of the sample by region; average values per farm in Region II (Canterbury-Southland)..100
Table 4.4 - Overview of empirical parametric studies on productivity and efficiency in dairy farms with panel data..101
Table 4.9 - Models estimated and variables used; X shows the variables that were included in each of the models..109
Table 5.1 – Model J7, data for both regions: generalised likelihood-ratio tests of null hypotheses for parameters in the stochastic frontier production function

Table 5.2 - Data for Waikato-Taranaki: generalised likelihood-ratio tests of null hypotheses for parameters in the stochastic frontier production function

Table 5.3 – Model J7, data for Canterbury-Southland: generalised likelihood-ratio tests of null hypotheses for parameters in the stochastic frontier production function

Table 5.4 – Model J7, generalized likelihood-ratio tests of null hypothesis that regions share a common stochastic frontier production function

Table 5.5 – Model J7, data for Waikato-Taranaki: maximum likelihood estimates for parameters of the stochastic frontier under VRS (variable returns to scale)

Table 5.6 – Model J7, data for Canterbury-Southland: maximum likelihood estimates for parameters of the stochastic frontier under VRS (variable returns to scale)

Table 5.7 - Model J7: elasticity estimates, rate of technical progress and return to scale for Canterbury-Southland

Table 5.8 - Model J7: estimates of technical efficiency by year for Canterbury-Southland

Table 5.9 - Model J7: comparison of factor input elasticity estimates at sample mean

Table 6.1 - Model L8, data for both regions: generalised likelihood-ratio tests of null hypotheses for parameters in the stochastic frontier production function

Table 6.2 - Model L8: data for Waikato-Taranaki: generalised likelihood-ratio tests of null hypotheses for parameters in the stochastic frontier production function

Table 6.3 - Model L8, data for Canterbury-Southland: generalised likelihood-ratio tests of null hypotheses for parameters in the stochastic frontier production function

Table 6.4 - Model L8: generalised likelihood-ratio tests of null hypotheses that regions share a common stochastic frontier production function

Table 6.5 - Model L8, data for Waikato-Taranaki: maximum likelihood estimates for parameters of the stochastic frontier under VRS (variable returns to scale)

Table 6.6 - Model L8, data for Canterbury-Southland: maximum likelihood estimates for parameters of the stochastic frontier under VRS (variable returns to scale)

Table 6.7 - Model L8: elasticity estimates, rate of technical progress and return to scale for Canterbury-Southland

Table 6.8 - Model L8: comparison of factor input elasticity estimates at sample mean

Table 6.9 - Model L8: average efficiency scores and farm efficiency distribution between regions
Table 7.1 - Model Y5, data for both regions: generalised likelihood-ratio tests of null hypotheses for parameters in the stochastic frontier production function

Table 7.2 - Model Y5, data for Waikato-Taranaki: generalized likelihood-ratio tests of null hypotheses for parameters in the stochastic frontier production function

Table 7.3 - Model Y5, data for Canterbury-Southland: generalised likelihood-ratio tests of null hypotheses for parameters in the stochastic frontier production function

Table 7.4 - Model Y5, generalised likelihood-ratio tests of null hypotheses that regions share a common stochastic frontier production function

Table 7.5 - Model Y5, data for Waikato-Taranaki: maximum likelihood estimates for parameters of the stochastic frontier under VRS (variable returns to scale)

Table 7.6 - Model Y5, data for Canterbury-Southland: maximum likelihood estimates for parameters of the stochastic frontier under VRS (variable returns to scale)

Table 7.7 - Model Y5: elasticity estimates, rate of technical progress and return to scale for Canterbury-Southland

Table 7.8 - Model Y5: estimates of technical efficiency by year for Canterbury-Southland

Table 7.9 - Model Y5: comparison of factor input elasticity estimates at sample mean

Table 8.1 - Model K9, data for both regions: generalised likelihood-ratio tests of null hypotheses for parameters in the stochastic frontier production function

Table 8.2 - Model K9, data for Waikato-Taranaki: generalised likelihood-ratio tests of null hypotheses for parameters in the stochastic frontier production function

Table 8.3 - Model K9, data for Canterbury-Southland: generalised likelihood-ratio tests of null hypotheses for parameters in the stochastic frontier production function

Table 8.4 - Model K9: generalised likelihood-ratio tests of null hypothesis that regions share a common stochastic frontier production function

Table 8.5 - Model K9, data for Waikato-Taranaki: maximum likelihood estimates for parameters of the stochastic frontier under VRS (variable returns to scale)

Table 8.8 - Model K9: maximum likelihood estimates for parameters of the stochastic frontier production function for Canterbury-Southland

Table 8.9 - Model K9: elasticity estimates, rate of technical progress and return to scale for Canterbury-Southland

Table 8.10 - Model K9: estimates of technical efficiency by year for Canterbury-Southland

Table 8.13 - Comparison of factor input elasticity estimates at sample mean
List of figures

Figure 1.1 - Evolution of total number of herds, total number of dairy cows and national
dairy area (1981-2005) ... 8
Figure 1.2 - Average farm size and average herd size by island (1991-2005) 9
Figure 1.3 - Annual growth rate in milk production per cow and cow numbers for the
period 1990/91 and 2004/05 (selected regions) ... 10
Figure 2.1 - Average monthly rain at four climate stations in New Zealand (mm) 29
Figure 2.2 - Average soil temperature at four climate stations in New Zealand (ºC, at 10 cm
height) .. 30
Figure 2.3 - Evolution of the productivity per cow in five subregions of NZ over the
period 1996/97 and 2004/05 ... 31
Figure 2.4 - Evolution of the productivity per area in five subregions of NZ over the
period 1996/97 and 2004/05 ... 32
Figure 2.5 - Regional technological trajectories for selected regions in NZ among 1991,
1996 and 2001 ... 34
Figure 4.1 – To illustrate productivity, technical efficiency and scale economies 82
Figure 4.2 - To illustrate productivity gains through technical progress 84
Figure 4.3 - Malmquist productivity indices ... 89
Figure 4.5 - Average farm area for the sample farms and the region for Waikato-
Taranaki .. 103
Figure 4.6 - Average herd size for the sample farms and the region for Waikato-
Taranaki .. 104
Figure 4.7 - Average farm area for the sample farms and the region for Canterbury-
Southland ... 104
Figure 4.8 - Average herd size for the sample farms and the region for Canterbury-
Southland ... 105
Figure 5.1 - Model J7: efficiency scores for the individual farms in Waikato-Taranaki 122
Figure 5.2 - Model J7: Efficiency scores for the individual farms in Canterbury-
Southland(I) ... 127
Figure 5.3 - Model J7: comparison of average efficiency score between Waikato-Taranaki
and Canterbury-Southland ... 129
Figure 6.1 - Model L8: efficiency scores for the individual farms in Waikato-Taranaki 139
Figure 6.2 - Model L8: annual rate of technical progress for Canterbury-Southland 144
Figure 6.3 - Model L8: efficiency scores for individual farms in Canterbury-Southland ...
Figure 7.1 - Model Y5: efficiency scores for the individual farms in Waikato-Taranaki...
Figure 7.2 - Model Y5: annual rates of technical progress at the frontier for Canterbury-
Southland..162
Figure 7.3 - Model Y5: comparison of the annual rates of technical progress at the frontier
for Model L8 and Y5 for Canterbury-Southland..163
Figure 7.4 - Model Y5: efficiency scores for the individual farms in Canterbury-
Southland(1)..164
Figure 7.4 - Model Y5: comparison of farm efficiency score between Waikato-Taranaki and
Canterbury-Southland...167
Figure 8.1 - Model K9: efficiency scores for the individual farms in Waikato-Taranaki...
Figure 8.3 - Model K9: annual rate of technical progress at the frontier for Canterbury-
Southland..181
Figure 8.4 - Model K9: efficiency scores for individual farms in Canterbury-
Southland(1)..183
Figure 8.7 - Model K9: annual rate of technical progress at the frontier for Waikato-
Taranaki and Canterbury-Southland..185
Figure 8.8 - Model K9: comparison of farm efficiency score between Waikato-Taranaki and
Canterbury-Southland...186
Figure 9.1 - Waikato-Taranaki: average efficiency scores and its range of the four
models...190
Figure 9.2 - Cumulative indices of TFP change for Waikato-Taranaki region, estimated by
the four models...194
Figure 9.3 - Canterbury-Southland: changes in the structural efficiency for the four models,
over the 10 years...199
Figure 9.4 - Cumulative indices of technical progress for Canterbury-Southland region,
estimated by the four models...202
Figure 9.5 - Cumulative indices of TFP change for Canterbury-Southland region, estimated
by the four models...205