Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
AN INVESTIGATION INTO WEAR CHARACTERISTICS
OF A DIRECT DRILLING COULTER (OPENER).

A thesis presented in partial
fulfilment of the requirements for the degree
of Master of Agricultural Science
in Agricultural Mechanisation at
Massey University.

STEVEN WAYNE BROWN
1982
Table of Contents

ABSTRACT ... (i)
LIST OF TABLES .. (iii)
LIST OF FIGURES .. (vii)
LIST OF APPENDICES ... (xvii)
ACKNOWLEDGEMENTS ... (xix)

1 INTRODUCTION ... 1

2 LITERATURE REVIEW.
 2.1 INTRODUCTION .. 3
 2.2 FACTORS DETERMINING COULTER DESIGN (GROOVE SHAPE).
 2.2.1 BIOLOGICAL FACTORS 4
 2.2.2 MECHANICAL FACTORS 11
 2.3 INTERACTIONS BETWEEN COULTER DESIGN AND WEAR.
 2.3.1 NON-ROLLING COULTER COMPONENTS 15
 2.3.2 ROLLING COULTER COMPONENTS 16
 2.4 FACTORS INFLUENCING WEAR OF SOIL ENGAGING TOOLS.
 2.4.1 GENERAL .. 17
 2.4.1.1 WEAR CLASSIFICATION 17
 2.4.2 DYNAMICS OF SOIL FLOW OVER SOIL ENGAGING
 IMPLEMENTS.
 2.4.2.1 GENERAL ... 19
 2.4.2.2 SOIL EFFECTS ON SOIL FLOW 20
 2.4.2.2.1 GENERAL 20
 2.4.2.2.2 USEFUL SOIL EFFECTS 20
 2.4.2.2.3 PARASITIC SOIL EFFECTS 23
 2.4.2.3 IMPLEMENT EFFECTS ON SOIL FLOW 23
 2.4.2.3.1 GENERAL 23
 2.4.2.3.2 USEFUL IMPLEMENT EFFECTS 23
 2.4.2.3.3 PARASITIC IMPLEMENT EFFECTS 26
 2.4.3 SOIL PROPERTIES ... 26
 2.4.4 TOOL SHAPE ... 27
 2.4.5 TOOL SPEED ... 28
 2.4.6 METALLURGICAL PROPERTIES.
 2.4.6.1 GENERAL ... 30
 2.4.6.2 SURFACE TREATMENTS 31
 2.4.6.2.1 CARBONITRIDING 31
 2.4.6.2.2 METALLIC DEPOSITS 32
 2.4.6.2.2.1 HARDFACING OVERLAYS 32
 2.4.6.2.2.2 CHROMIUM PLATING 33

3 EXPERIMENTAL MATERIALS AND METHODS.
 3.1 INTRODUCTION ... 34
 3.2 CONSTRAINTS .. 36
 3.3 INVESTIGATIVE APPROACHES 38
 3.4 PILOT TEST.
 3.4.1 OBJECTIVE ... 40
 3.4.2 METHODOLOGY .. 40
 3.4.3 EXPERIMENTAL DESIGN 44
 3.4.4 RESULTS AND DISCUSSION 44
3.5 EXPERIMENT 1 (SOIL LUBRICATION TEST).
3.5.1 OBJECTIVE...46
3.5.2 METHODOLOGY..46
3.5.3 EXPERIMENTAL DESIGN.............................51

3.6 EXPERIMENT 2 (WEAR PATTERN TESTS).
3.6.1 OBJECTIVE...53
3.6.2 METHODOLOGY..53
3.6.3 EXPERIMENTAL DESIGN.............................57

3.7 EXPERIMENT 3 (WEAR RATE TESTS).
3.7.1 OBJECTIVE...60
3.7.2 METHODOLOGY..60
3.7.3 TEST RUN A..66
3.7.4 TEST RUN B..66
3.7.5 HARDNESS TESTING AND PHOTOMICROGRAPHS....73
3.7.6 EXPERIMENTAL DESIGN.............................75

4 RESULTS AND DISCUSSION.
4.1 EXPERIMENT 1 (LABORATORY TEST).......................79
4.2 EXPERIMENT 2 (WEAR PATTERN TESTS).
4.2.1 VARIATION IN METAL WEIGHTLOSS.....................89
 4.2.1.1 INFLUENCE OF COATINGS...........................91
 4.2.1.2 INFLUENCE OF SIDE POSITIONING..................94
4.2.2 LOCATION OF PRINCIPLE REGIONS OF ABRASION........96
4.2.3 VARIATION IN LINEAR DIMENSIONS.....................97
 4.2.3.1 INFLUENCE OF COATINGS...........................101
 4.2.3.2 INFLUENCE OF SIDE POSITIONING..................106
4.2.4 WEAR PATTERNS..111
4.2.5 SUMMARY OF EXPERIMENT 2..........................118
4.3 EXPERIMENT 3 (WEAR RATE TESTS).
4.3.1 VARIATION IN METAL WEIGHTLOSS.....................122
 4.3.1.1 INFLUENCE OF COATINGS...........................122
4.3.2 VARIATION IN LINEAR DIMENSIONS.....................149
 4.3.2.1 INFLUENCE OF COATINGS...........................149
 4.3.2.2 INFLUENCE OF SIDE POSITIONING..................158
4.3.3 INFLUENCE OF HARDNESS AND MICROSTRUCTURE....167
4.3.4 WEAR PATTERNS..186
4.3.5 WEAR MODELS...202
4.3.6 SUMMARY OF EXPERIMENT 3..........................207

5 SUMMARY AND CONCLUSIONS................................210
6 LIST OF REFERENCES.......................................216
7 LIST OF PERSONAL COMMUNICATIONS.......................228

APPENDICES.
ABSTRACT.

Wear on a promising chisel coulter, developed at Massey University, was considered to be marginally unacceptable. A functional lifespan of approximately 20 hectares for non-rolling blade components necessitated relatively frequent coulter replacement, and thereby incurred increased costs for components and machine downtime.

Three experiments were carried out with an improved version of the Massey University chisel coulter concept. The respective objectives were as follows:

1. To determine whether soil particles were passing between the rotating disc and stationary coulter blade components during normal field machine operation.

2. To determine the patterns of coulter blade wear.

3. To compare several selected blade treatments in their abilities to prolong functional coulter blade life.

In the first (laboratory) experiment, a stationary test rig was constructed. This closely simulated coulter assembly operation in the field. Measurements of changes in soil particle size with time for "soil" and "no soil" introduction to the disc/blade interface did not detect any soil breakdown which might have indicated a soil "lubrication" effect at that interface. However, observations of the patterns of abrasion and of photographs did indicate that some form of soil "lubrication" had occurred.
In the second experiment, a hard-facing welded (Hardcraft 700 over mild steel) and a control treatment (mild steel) were evaluated to establish patterns of wear on a three row field-operating test rig. The former treatment displayed potential for resisting dimensional changes at various stages throughout blade life. The rotating action of the disc against the inner shank of the blade was responsible, in the prevailing conditions, for wear at the inside lower leading edge/wing intersection of the blade. This action eventually accelerated wing wear.

The weld bead pattern was modified for use in Run A of Experiment 3 (top pattern); and another pattern (bottom pattern) was designed to prevent possible increased penetration forces associated with the original weld pattern.

The third experiment involved evaluation of selected treatments during routine field drilling operations, using a pre-production prototype direct drill. Carbonitrided mild steel blades offered an almost three-fold increase in relative wear resistance (in terms of metal weightloss per hectare) compared to the standard mild steel blades. The carbonitrided treatment also resisted dimensional changes more effectively, and was more cost effective than all other treatments.

The influence on wing and shank dimensions exerted by left and right side blade positioning on each coulter assembly, appeared to reflect continual anti-clockwise machine cornering during operation and seed/fertiliser dispersal differences. Coulter wings on the outside of field turns were subjected to
greatest wear, as were the shank regions of blades dispersing fertiliser. Lateral and fore/aft positioning of coulter assemblies appeared to have no effects on blade life.
LIST OF TABLES.

1. Biological factors determining seed groove shape....Page 5
2. Mechanical factors determining seed groove shape....Page 12
3. Interactions between soil properties and soil movement..................Page 21
4. Interactions between implements and soil movement...Page 24
5. Lateral soil force measurements on a direct drilling coulter - Pilot Test..................Page 45
6. Identifications of test soils for Experiment 1........Page 52
7. Identification of the field soil for Experiment 2...Page 61
8. Alternative technologies for abrasion resistance...Page 62
9. Treatment conditions for Run A..........................Page 70
10. Treatment conditions for Run B.........................Page 74
11. Effects of disc/blade "grinding" on soil particle size. Experiment 1: Soil 1..Page 80
12. Effects of disc/blade "grinding" on soil particle size. Experiment 1: Soil 2..............Page 81
13. Factors influencing metal weightloss per hectare from a wearing direct drilling coulter. Experiment 2.......................................Page 90
14. The effect of distance on mean metal weightloss per hectare (grams) from a direct drilling coulter. Experiment 2: Coating differences........Page 92
15. The effect of distance on mean metal weightloss per hectare (grams) from a direct drilling coulter. Experiment 2: Side differences........Page 95
16. Factors influencing linear dimensions of a wearing direct drilling coulter. Experiment 2 Page 98

17. Effect of wear on linear wing dimensional changes of a direct drilling coulter (mm.). Experiment 2: Coating differences Page 102

18. Effect of wear on linear shank dimensional changes of a direct drilling coulter (mm.). Experiment 2: Coating differences Page 104

19. Effect of wear on linear wing dimensional changes of a direct drilling coulter (mm.). Experiment 2: Side differences Page 107

20. Effect of wear on linear shank dimensional changes of a direct drilling coulter (mm.). Experiment 2: Side differences Page 109

21. Factors influencing metal weightloss per hectare from a wearing direct drilling coulter. Experiment 3: Run A Page 123

22. Factors influencing metal weightloss per hectare from a wearing direct drilling coulter. Experiment 3: Run B Page 123

23. The effect of distance on mean metal weightloss per hectare (grams) from a wearing direct drilling coulter. Experiment 3: Run A Page 124
24. The effect of distance on mean metal weightloss per hectare (grams) from a wearing direct drilling coulter. Experiment 3: Run B..............Page 125

25. Relative wear resistances of alternative direct drilling coulter blade treatments.
Experiment 3: Run A..Page 130

26. Relative wear resistances of alternative direct drilling coulter blade treatments.
Experiment 3: Run B..Page 130

27. Factors influencing linear dimensions of a wearing direct drilling coulter. Experiment 3: Run A........Page 150

28. Factors influencing linear dimensions of a wearing direct drilling coulter. Experiment 3: Run B........Page 151

29. Effect of wear on linear wing dimensional changes (mm.) of a direct drilling coulter.
Experiment 3: Run A: Coating differences........Page 152

30. Effect of wear on linear shank dimensional changes (mm.) of a direct drilling coulter.
Experiment 3: Run A: Coating differences........Page 154

31. Effect of wear on linear wing dimensional changes (mm.) of a direct drilling coulter.
Experiment 3: Run B: Coating differences........Page 156

32. Effect of wear on linear shank dimensional changes (mm.) of a direct drilling coulter.
Experiment 3: Run B: Coating differences........Page 157
33. Effect of wear on linear wing dimensional changes (mm.) of a direct drilling coulter.
 Experiment 3: Run A: Side differences Page 159

34. Effect of wear on linear shank dimensional changes (mm.) of a direct drilling coulter.
 Experiment 3: Run A: Side differences Page 160

35. Effect of wear on linear wing dimensional changes (mm.) of a direct drilling coulter.
 Experiment 3: Run B: Side differences Page 161

36. Effect of wear on linear shank dimensional changes (mm.) of a direct drilling coulter.
 Experiment 3: Run B: Side differences Page 162

37. The interrelationship between hardness, side positioning, and coating differences as a function of distance drilled by a direct drilling coulter. Experiment 3: Run A Page 205

38. Percentage variance accounted for by hardness, side positioning, and coating differences.
 Experiment 3: Run A ------------------------------- Page 205

39. The interrelationship between hardness, side positioning, and coating differences as a function of distance drilled by a direct drilling coulter. Experiment 3: Run B Page 206

40. Percentage variance accounted for by hardness, side positioning, and coating differences.
 Experiment 3: Run B ------------------------------- Page 206
LIST OF FIGURES.

1. The Massey University experimental chisel coulter
 in its operating position..........................Page 35
2. Schematic representation of the spring balance and
 pulley system used to measure the lateral soil
 force on the coulter blades in field operation.....Page 41
3. The electrode mounting showing the proximity to
 the coulter blade..Page 42
4. A single coulter assembly on the three row
 test rig...Page 43
5. The inclined coulter assembly with the soil return
 pipe...Page 47
6. The calibrated spring tensioner used to simulate
 the lateral soil pressure measured against
 the coulter blade in the Pilot Test..................Page 48
7. The soil recycling pipe, hopper, and variable speed
 motor..Page 50
8. The three row test rig in field operation............Page 54
9. An existing mild steel coulter blade used as a
 control in all experiments..............................Page 55
10. Typical hardfacing deposit over a mild steel
 coulter blade..Page 55
11. Diagram showing the linear dimensions taken to
 describe the wear patterns of coulter blades......Page 58
12. The measuring jig used for standardising coulter
 blade linear measurements............................Page 59
13. The use of vernier calipers to measure a blade dimension..Page 59

14a to 14f. Treated blades for Run A
14a. Mild steel control blade.................................Page 67
14b. Carbonitrided mild steel blade.........................Page 67
14c. Arc welded Toolcraft - top pattern......................Page 68
14d. Arc welded Toolcraft - bottom pattern...............Page 68
14e. Gas welded EutecBor - top pattern......................Page 69
14f. Gas welded EutecBor - bottom pattern...............Page 69

15a to 15d. Treated blades for Run B
15a. Gas welded Eutalloy Tungtec............................Page 71
15b. Arc welded Cobalarc...................................Page 71
15c. Arc welded Ultimium....................................Page 72
15d. Chromium plated..Page 72

16. Experimental layout of individual drill coulters
 for Run A..Page 77

17. Experimental layout of individual drill coulters
 for Run B..Page 78

18. Soil introduction to that portion of the coulter
 blade/disc interface corresponding to the soil
 engaging portion in the field situation...............Page 83

19. In the absence of soil, the metal surface was barely
 disturbed after 10 hours continuous operation......Page 83
20. Within the contact width, wear appeared to be predominantly low stress scratching abrasion where soil was present...............................Page 85
21. In the absence of soil, wear appeared to be adhesive within the contact width...............Page 85
22. Soil 1: On the soil side, both wear mechanisms were evident throughout the leading edge of the coulter blade...Page 86
23. Soil 1: In the absence of soil, the coulter blade sustained a markedly reduced wear rate..........Page 86
24. Soil 2: Where soil was present, the two regions of different wear were evident on the disc........Page 87
25. Soil 2: In the absence of soil, the disc surface was barely disturbed after 10 hours continuous operation..Page 87
26. Soil 2: Where soil was present, the two regions of different wear were evident throughout the leading edge of the coulter blade..Page 88
27. Soil 2: In the absence of soil, coulter wear was markedly reduced compared to both the "soil" situation for Soil 2 and the "non-soil" situation for Soil 1..Page 88
28a to 28f. Sequential field wear of coulter blades.
28a. Standard blade after 20 km. (4.8 ha.) drilling....Page 112
28b. Standard blade after 90 km. (21.6 ha.) drilling....Page 112
28c. Standard blade after 190 km. (45.6 ha.) drilling...Page 113
28d. Treated blade after 20 km. (4.8 ha.) drilling.....Page 113
28e. Treated blade after 90 km. (21.6 ha.) drilling....Page 114
28f. Treated blade after 190 km. (45.6 ha.) drilling...Page 114
29. The action of the disc on the inner leading edge
 of a coulter blade..Page 93
30. After drilling 800 meters (0.19 ha.), regions
 that were subjected to greater soil stresses
 were visible as polished areas......................Page 97
31. After drilling 190 km. (45.6 ha.), Experiment 2
 was terminated when one treated blade blocked
 with trash. Blockage was due to a chip out of
 the hardened material on the lower leading
 edge..Page 116
32. The rearside of the blade in Figure 31 showing
 the chip out of the leading edge.................Page 117
33. Revised weld bead pattern design for the top of
 coulter blades used in Run A of Experiment 3.....Page 120
34. Bottom weld bead pattern design for coulter
 blades used in Run A of Experiment 3.............Page 121
35. Graph of metal weightloss per hectare and soil
 water deficit against hectares drilled for
 Run A of Experiment 3..................................Page 127
36. Graph of metal weight loss per hectare and soil water deficit against hectares drilled for Run B of Experiment 3. Page 128

37a to 37h. Graphs illustrating ordered treatment means.

37a. Run A: After 33.5 km. (8.0 ha.) Page 132
37b. Run A: After 53.5 km. (12.8 ha.) Page 133
37c. Run A: After 71.0 km. (17.0 ha.) Page 134
37d. Run A: After 123.0 km. (29.5 ha.) Page 135
37e. Run B: After 59.5 km. (14.3 ha.) Page 136
37f. Run B: After 111.0 km. (26.6 ha.) Page 137
37g. Run B: After 143.5 km. (34.4 ha.) Page 138
37h. Run B: After 176.5 km. (42.4 ha.) Page 139

38a to 38h. Graphs illustrating residual sums of squares.

38a. Run A: After 33.5 km. (8.0 ha.) Page 141
38b. Run A: After 53.5 km. (12.8 ha.) Page 142
38c. Run A: After 71.0 km. (17.0 ha.) Page 143
38d. Run A: After 123.0 km. (29.5 ha.) Page 144
38e. Run B: After 59.5 km. (14.3 ha.) Page 145
38f. Run B: After 111.0 km. (26.6 ha.) Page 146
38g. Run B: After 143.0 km. (34.4 ha.) Page 147
38h. Run B: After 176.5 km. (42.4 ha.) Page 148
39a. Diagram illustrating the probable soil reaction forces to coulter assembly travel in a straight line..........................Page 164

39b. Diagram illustrating the probable soil reaction forces to coulter assembly travel during cornering..Page 165

40a to 40i. Hardness profiles from the weld or blade surface to the middle of the blade cross-section.

40a. Hardness profile for the disc component.............Page 168
40b. Hardness profile for mild steel.........................Page 168
40c. Hardness profile for carbonitrided mild steel......Page 168
40d. Hardness profile for Toolcraft.........................Page 169
40e. Hardness profile for EutecBor.........................Page 169
40f. Hardness profile for Eutalloy Tungtec..............Page 169
40g. Hardness profile for Cobalarc.........................Page 170
40h. Hardness profile for Ultimium.........................Page 170
40i. Hardness profile for chromium plated mild steel...Page 170

41a to 41i. Microstructures of the disc and treatments from the weld or plate surface to the middle of the plate cross-section.

41a. Microstructure of the disc (Nitral, 88x)............Page 172
41b. Microstructure of mild steel (Nitral, 88x)........Page 173
41c. Microstructure of carbonitrided mild steel (Nitral, 88x).................................Page 175
41d. Microstructure of EutecBor (Nitral, 88x)Page 177
41e. Microstructure of Cobalarc (Nitral, 88x)Page 179
41f. Microstructure of Eutalloy Tungtec (Nitral, 88x) Page 180
41g. Microstructure of Ultimium (Nitral, 88x)Page 182
41h. Microstructure of chromium plated mild steel
 (Nitral, 88x)Page 184
41i. Microstructure of Toolcraft (Nitral, 88x)Page 185
42 to 47. Sequential wear of coulter blades in the
 field for Run A of Experiment 3.
42a. Run A: Mild steel after drilling 33.5 km.
 (8.0 ha.) ..Page 187
42b. Run A: Mild steel after drilling 53.5 km.
 (12.8 ha.)Page 187
42c. Run A: Mild steel after drilling 71.0 km.
 (17.0 ha.)Page 187
43a. Run A: Carbonitried mild steel after 53.5 km.
 (12.8 ha.)Page 188
43b. Run A: Carbonitried mild steel after 71.0 km.
 (17.0 ha.)Page 188
43c. Run A: Carbonitried mild steel after 123 km.
 (29.5 ha.)Page 188
44a. Run A: Toolcraft -top after 53.5 km. (12.8 ha.)..Page 189
44b. Run A: Toolcraft -top after 71.0 km. (17.0 ha.)..Page 189
44c. Run A: Toolcraft -top after 123.0 km. (29.5 ha.)..Page 189
45a. Run A: Toolcraft - bottom after 53.5 km.
 (12.8 ha.) Page 190

45b. Run A: Toolcraft - bottom after 71.0 km.
 (17.0 ha.) Page 190

45c. Run A: Toolcraft - bottom after 123.0 km.
 (29.5 ha.) Page 190

46a. Run A: EutecBor - top after 53.5 km.
 (12.8 ha.) Page 191

46b. Run A: EutecBor - top after 71.0 km.
 (17.0 ha.) Page 191

46c. Run A: EutecBor - top after 123.0 km.
 (29.5 ha.) Page 191

47a. Run A: EutecBor - bottom pattern after 53.5 km.
 (12.8 ha.) Page 192

47b. Run A: EutecBor - bottom pattern after 71.0 km.
 (17.0 ha.) Page 192

47c. Run A: EutecBor - bottom pattern after 123 km.
 (29.5 ha.) Page 192

48 to 53. Sequential wear of coulter blades in the field for Run B of Experiment 3.

48a. Run B: Mild steel after 59.5 km. (14.3 ha.) Page 193

48b. Run B: Mild steel after 110.0 km. (26.6 ha.) Page 193

48c. Run B: Mild steel after 143.5 km. (34.4 ha.) Page 193

49a. Run B: Carbonitrided mild steel after 59.5 km.
 (14.3 ha.) Page 194
49b. Run B: Carbonitrided mild steel after 110.0 km.
 (26.6 ha.) Page 194

49c. Run B: Carbonitrided mild steel after 143.5 km.
 (34.4 ha.) Page 194

50a. Run B: Eutalloy Tungtec after 59.5 km.
 (14.3 ha.) Page 195

50b. Run B: Eutalloy Tungtec after 110.0 km.
 (26.6 ha.) Page 195

50c. Run B: Eutalloy Tungtec after 143.5 km.
 (34.4 ha.) Page 195

51a. Run B: Cobalarc after 59.5 km. (14.3 ha.) Page 196

51b. Run B: Cobalarc after 110.0 km. (26.6 ha.) Page 196

51c. Run B: Cobalarc after 143.5 km. (34.4 ha.) Page 196

52a. Run B: Ultimium after 59.5 km. (14.3 ha.) Page 197

52b. Run B: Ultimium after 110.0 km. (26.6 ha.) Page 197

52c. Run B: Ultimium after 143.5 km. (34.4 ha.) Page 197

53a. Run B: Chromium plated mild steel after 59.5 km.
 (14.3 ha.) Page 198

53b. Run B: Chromium plated mild steel after 110.0 km.
 (26.6 ha.) Page 198

53c. Run B: Chromium plated mild steel after 143.5 km.
 (34.4 ha.) Page 198
54. Trash collecting hook of hardened material
 (EutecBor)..Page 199

55. EutecBor material worn in by disc rotation.........Page 201

56. Typical chromium plated treatment that displayed
 reduced shank wear at the leading edge compared
 with mild steel control blades.......................Page 203
LIST OF APPENDICES.

1. Metal weightloss from a direct drilling coulter:
 Raw data - Pilot Test.
2. Linear dimensional changes of a direct drilling coulter:
 Raw data - Pilot Test.
3. Metal weightloss from a direct drilling coulter:
 Raw data - Run A.
4. Linear dimensional changes of a direct drilling coulter:
 Raw data - Run A.
5. Metal weightloss from a direct drilling coulter:
 Raw data - Run B.
6. Linear dimensional changes of a direct drilling coulter:
 Raw data - Run B.
7. The effect of distance on absolute metal weightloss from a
direct drilling coulter - Run A.
8. The effect of distance on absolute metal weightloss from a
direct drilling coulter - Run B.
9. A Genstat computer programme for analysing a randomised block
design in Experiment 2.
10. A Genstat computer programme for analysing a randomised block
design in Experiment 3.
11. A Genstat computer programme for graphing ordered treatment
 means and residual sums of squares in Experiment 3.
12. A Genstat computer programme for constructing a regression
 model for metal hardness, side and coating effects.
13. Soil moisture deficit (mm.) and drilling sites for Runs A and B of Experiment 3.
14. Correlation between hardness and metal weight loss from a direct drilling coulter in Experiment 3.
15. Model to test differences in metal weight loss between top and bottom weld bead patterns in Run A of Experiment 3.
16. Vickers microhardness results for treatments in Experiment 3.
17. Cost analyses for coulter blades: Mild steel, carbonitrided mild steel, and Cobal arc hardfacing material welded over mild steel.
I am grateful to the following individuals and organisations for their cooperation and interest during this study:

My wife, Rae: For her encouragement and understanding.

Dr C.J. Baker, Reader in Agricultural Mechanisation, Agronomy Department, Massey University: My supervisor and mentor throughout this study. For constructive criticism and invaluable guidance.

Ministry of Agriculture and Fisheries: For financial support, without which the project might never have been started.

Mr. G. Arnold, Mathematics and Statistics Department, Massey University, Palmerston North: For patient assistance with all statistical aspects of the study.

Dr. C.J. Studman, Senior Lecturer in Agricultural Engineering, Agricultural Engineering Department, Massey University: For constructive assessment and attention to detail in the final stages of this project.

Mr. J.H. MacDonald, Workshop Technician, Agronomy Department, Massey University: For workshop and practical experience that greatly simplified many problems that arose.

Mr. W. Jones and Mr. M. McCluskey, New Zealand Industrial Gases Ltd., Palmerston North: For technical assistance, and for acquiring and supplying many treatment materials.
Mr. D. Whitehurst, Head of the Metallurgy Section, Industrial Processing Division, Department of Scientific and Industrial Research, Woburn: For technical assistance, and for placing at my disposal willing staff and laboratory equipment that allowed me to carry out microhardness tests and obtain photomicrographs. Mrs. A. Marshall (Laboratory Technician), Mr. C. Thomas (Scientist), and Mr. J. Bellamy (Photographer).

Mr. J.D. McGregor, Heat Treatments Ltd., Auckland: For carbonitriding coulter blades.

All those organisations involved in supplying and/or producing wear resistant materials with whom I have corresponded: For quick responses and informative replies to my enquiries.
1 INTRODUCTION.

Research into direct drilling (zero tillage) of seeds into undisturbed seedbeds has demonstrated considerable potential for this technique of plant establishment, compared with conventional methods. Documented advantages include conservation of fuel (Hughes and Baker 35), time (Cannell and Ellis 18, Bakerman 13, Phillips and Young 55, Phillips et al. 54), soil structure (Baeumer 5, Unger et al. 73, Phillips et al. loc cit.), soil moisture (Moschler et al. 49, Barnes et al. 14, Phillips and Young loc cit., Phillips et al. loc cit.) and earthworm populations (Mai 44, Moschler et al. 50, Cannell and Ellis loc cit.) as well as probable reductions in soil temperature fluctuations (Mathews 45, Moody et al. 46), operational costs (Baker 12, Allen 4, Frengley 29) and risk to the farmer (Cannell and Ellis loc cit., Bakerman loc cit., Phillips and Young loc cit., Phillips loc cit.).

Several disadvantages of direct drilling have precluded the universal acceptance of the techniques involved by the farming community. Such disadvantages have included uncertainty of yields (Cannell and Ellis 17), the need for new machinery (Baker 7), insect infestations (Pottinger 56, Carpenter et al. 19), the necessity for new skills to be mastered (Kahnt 39, Baker 12) and the restricted availability of technical advice (Baker loc cit., Kahnt loc cit.).

Wear on existing coulter designs in direct drilling is a major mechanical problem. This wear is primarily due to the fact that soil bulk densities are considerably higher than those for
cultivated seedbeds, requiring larger penetration and draught forces from the drill.

It is generally accepted that disc coulters have offered reduced wear rates in both tilled and untilled soils, but there is doubt about their biological function in direct drilling (Baker 7, Choudhary and Baker 20, 21). Non-rolling coulters, or even components of coulters, sometimes may offer biological advantages but they apparently do so at the expense of wear. The cost benefits of non-rolling and rolling components in relation to wear may be argued for years to come, but there appears to be sufficient evidence to justify examining ways and means of reducing wear of at least one promising non-rolling coulter.

Wear on the redeveloped Massey University experimental chisel coulter was thought to be marginally unacceptable, with the functional life of the non-rolling blades being approximately 20 hectares. This necessitated relatively frequent coulter replacement with inherently increased costs for components and downtime.

The research reported below, therefore, had the following aims:

1. To determine the patterns of wear on the soil engaging components of the Massey University redeveloped chisel coulter.

2. To determine relative wear between individual components of the coulter.

3. To compare various methods of prolonging the working life of the coulter.
2 LITERATURE REVIEW.

2.1 INTRODUCTION.

This review attempts to present both biological and mechanical factors that influence direct drilling machine design. These factors impose constraints on the extent to which any existing coulter may be altered when considering treatments that may prolong functional life of that component.

Interactions between coulter design and wear are also reviewed, together with factors influencing wear of soil engaging tools. The latter section includes soil flow dynamics and effects of tool shape, speed and metallurgical properties.