Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The molecular basis of RPS4/RRS1-mediated defense activation in Arabidopsis

TOBY EDWARD NEWMAN

Institute of Agriculture and Environment
Massey University

Thesis submitted to Massey University
for the degree of Doctor of Philosophy

July 2017

© This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognize that its copyright rests with the author and that no quotation from the thesis, nor any information derived therefrom, may be published without the author’s prior written consent.
TABLE OF CONTENTS

ABSTRACT ... 6
ACKNOWLEDGMENTS ... 8
LIST OF PUBLICATIONS ... 9
ABBREVIATIONS ... 10

CHAPTER 1: GENERAL INTRODUCTION ... 12
1.1 Introduction .. 12
1.2 PAMP-triggered immunity (PTI) ... 14
1.2.1 Suppression of PTI by effectors .. 15
1.3 Biochemical functions of effectors .. 16
1.4 Effector-triggered immunity .. 20
1.4.1 Plant R proteins ... 20
1.4.2 NLR R proteins .. 21
1.4.3 Mechanisms of pathogen recognition by R proteins 25
1.4.3.1 Direct recognition ... 25
1.4.3.2 Indirect recognition: Guard/decoy hypothesis 26
1.4.4 Paired R proteins .. 27
1.5 The RPS4/RRS1 NLR complex ... 28
1.5.1 The \textit{avrRps4}/RPS4 gene-for-gene model ... 28
1.5.2 The \textit{popP2}/RRS1 gene-for-gene model .. 30
1.5.3 Recognition of multiple effectors ... 32
1.5.4 RRS1- and RPS4-independent AvrRps4 recognition (RRIR) 36
1.6 Genes required for ETI Signaling ... 36
1.7 Transcriptional repression in immunity ... 38
1.7.1 The EAR motif ... 39
1.8 Aims of the study .. 39

CHAPTER 2: MATERIALS AND METHODS .. 41
2.1 Plant materials ... 41
2.2 Primers used .. 41
2.3 Bacterial strains .. 53
2.4 Growth conditions .. 59
2.5 Cross-fertilization of Arabidopsis .. 59
2.6 Media ... 59
2.6.1 L .. 59
2.6.2 King’s B ... 59
2.6.3 Murashige-Skoog (MS) ... 60
2.7 Antibiotics ... 60
2.8 Plant pathology .. 60
2.8.1 Arabidopsis infection ... 60
2.8.1.1 Hypersensitive response (HR) assay ... 60
2.8.1.2 Ion leakage assay .. 60
2.8.1.3 \textit{In planta} bacterial growth assay ... 61
2.9 Molecular biology ... 61
2.9.1 DNA... 61
2.9.1.1 Polymerase chain reaction (PCR). .. 61
2.9.1.2 Chelex plant genomic DNA extraction ... 61
2.9.1.3 Plasmid DNA preparation ... 62
2.9.1.3.1 Manual protocol ... 62
2.9.1.3.2 Axygen Plasmid Miniprep kit protocol ... 62
2.9.1.4 Electrophoresis of DNA .. 63
2.9.1.5 Purification of DNA from agarose gel ... 63
2.9.1.6 Ligation ... 63
2.9.1.7 Preparation of electrocompetent \textit{Escherichia coli} (DH5alpha) and \textit{Agrobacterium tumefaciens} (AGL1) cells ... 63
2.9.1.8 Transformation of competent \textit{E. coli} and \textit{A. tumefaciens} cells 64
2.9.1.9 Site-directed mutagenesis .. 64
2.9.1.10 Colony PCR ... 65
2.9.1.11 DNA sequencing .. 65
2.9.1.12 Golden Gate cloning .. 65
2.9.1.13 Triparental mating .. 65
2.9.2 RNA ... 66
2.9.2.1 Total RNA extraction .. 66
2.9.2.2 Reverse transcription PCR (RT-PCR) .. 67
2.9.2.3 qRT-PCR .. 67
2.9.3 Protein ... 67
2.9.3.1 Protein expression \textit{in planta} .. 67
2.9.3.1.1 \textit{Agrobacterium}-mediated transient transformation 67
2.9.3.1.2 Arabidopsis stable transformation .. 68
2.9.3.2 Total protein extraction from plant tissue and Western blot68
2.9.3.3 Co-immunoprecipitation (CoIP) assay ...69
2.10 Yeast-two-hybrid (Y2H) assays...69

CHAPTER 3: A conserved EAR motif is required for avirulence and stability of the Ralstonia solanacearum effector PopP2 in planta70
3.1 Introduction ..70
3.2 Results ...74
3.2.1 PopP2 is highly conserved among Korean R. solanacearum isolates and harbors a putative transcriptional repressor motif74
3.2.2 Only one of the newly identified PopP2 variants loses avirulence function in planta ..77
3.2.3 The conserved EAR motif is required for PopP2 avirulence activity in Arabidopsis ...79
3.2.4 The conserved EAR motif is required for PopP2-mediated PTI suppression. ...85
3.2.5 PopP2 does not interact with known Arabidopsis transcriptional co-repressors in yeast ...86
3.2.6 The EAR motif is required for PopP2 stability in N. benthamiana87
3.3 Discussion ..90
3.3.1 PopP2 natural variation in virulent R. solanacearum strains90
3.3.2 EAR motif-dependent protein stability control91
3.3.3 Possible mechanisms of PopP2 EAR motif function93

CHAPTER 4: Characterization of SUSHI mutations in the RRS1 disease resistance gene ..95
4.1 Introduction ..95
4.2 Results ...97
4.2.1 Characterization of intragenic suppressors of slh1-mediated immunity 97
4.2.2 RRS1 SUSHI mutations differentially affect RPS4-dependent RRS1^{slh1} auto-activity and effector recognition in tobacco103
4.2.3 RRS1^{C1243Y} auto-activity in tobacco displays distinct features from other auto-active RRS1 variants ...107
4.2.4 The NB-ARC and LRR domains are required for RRS1-R in trans interference with auto-activity in tobacco109
4.2.5 RRS1 TIR domain SUSHI residues are required for TIR domain function and heterodimer formation with RPS4111
4.2.6 The NB-ARC and LRR domain SUSHI residues that are conserved in RRS1B are required for function in tobacco......................116
4.2.7 *RRS1 SUSHI* mutations do not affect TIR domain-C-terminus intramolecular interaction ... 121

4.3 Discussion ... 125

4.3.1 Identification of RRS1 *sushi* mutants and tobacco HR characterization. 125

4.3.2 Characterization of the auto-active RRS1C1243Y variant 126

4.3.3 The effect of *SUSHI* mutations on *in trans* interference and inter/intramolecular RRS1/RPS4 interactions ... 128

4.3.4 *RRS1B* corresponding *SUSHI* mutations ... 128

4.3.5 Models of the effect of *RRS1 SUSHI* mutations 129

4.3.6 Is RRS1 a functional transcription factor? .. 132

CHAPTER 5: Investigating the RPS4 TIR domain interfaces required for defense signaling ... 135

5.1 Introduction ... 135

5.2 Results .. 136

5.2.1 R116A and M150R mutations disable RPS4 TIR domain auto-activity 136

5.2.2 R116A and M150R mutations do not affect RPS4 homodimerization or RPS4/RRS1 heterodimerization in a CoIP assay .. 139

5.2.3 R116A and M150R mutations impair RPS4 full-length signaling 139

5.3 Discussion ... 144

CHAPTER 6: GENERAL DISCUSSION AND OUTLOOK 146

6.1 Summary of findings ... 146

6.2 Comparison to other systems ... 147

6.3 Outlook ... 149

REFERENCES ... 152
ABSTRACT

Upon pathogen invasion, each plant cell has the ability to mount an innate immune response. Plants have evolved R genes, which typically encode nucleotide-binding domain and leucine-rich repeat-containing immune receptors (NLRs). The model plant species, Arabidopsis, harbors the paired NLRs, RPS4 and RRS1, the products of which function cooperatively to confer recognition of the Pseudomonas syringae effector, AvrRps4, and the Ralstonia solanacearum effector, PopP2. The exact mechanism underlying RPS4/RRS1-mediated effector recognition remains unclear; therefore, the function of RPS4 and RRS1 was further elucidated.

Firstly, by investigating the avirulence activity of natural variants of PopP2 isolated from R. solanacearum strains from across the Republic of Korea, popP2 was demonstrated to be well-conserved and RPS4/RRS1-mediated recognition of PopP2 could tolerate multiple natural polymorphisms in the popP2 sequence. Moreover, a conserved PopP2 EAR motif was identified and characterized; the EAR motif was shown to be required for in planta PopP2 stability and recognition.

Secondly, utilizing suppressor of slh1 immunity (sushi) mutants generated in a forward genetic screen on slh1 mutant seeds, insight was gained into the differential requirements for RRS1 auto-activity and effector perception. A leucine-rich repeat (LRR) mutation, L816F, was identified, which affected auto-activity but not effector recognition. Furthermore, a WRKY domain mutation, C1243Y, was identified, which conferred auto-activity with distinct features compared to other known auto-active RRS1 variants. Notably, a TIR mutant harboring a C15Y mutation was identified that impaired RPS4/RRS1 TIR/TIR heterodimer formation and full-length RRS1 function.

Finally, an analagous self-association interface (DE) identified in the crystal structure of the TNL, SNC1, was investigated for its role in RPS4 function. It was demonstrated that the DE interface mutations, R116A and M150R,
disabled RPS4 TIR domain effector-independent cell death induction and impaired full-length RPS4 signaling.
ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my supervisor, Kee Hoon Sohn, for his support and guidance throughout my PhD. His advice and enthusiasm significantly helped my progress and our frequent scientific discussions were always inspiring. I would also like to thank Cecile Segonzac who was an excellent lab mentor and project partner. Her guidance in the lab was invaluable and working alongside her was thoroughly enjoyable.

I would also like to extend my thanks to my co-supervisors, Rosie Bradshaw and Janet Reid, whose support was greatly appreciated. This PhD would not have been the same without the friendships from all lab members in NZ and Korea, especially other PhD students Jay, Maxim and Sera. We have experienced the challenges that a PhD brings together while also enjoying many entertaining conversations and fun times.

I would like to thank my family for their unconditional love, support and encouragement from overseas. Finally, I thank my partner, Janell, for her unwavering support, love and belief in me.

All research conducted by myself unless otherwise stated in figure legends.
LIST OF PUBLICATIONS

Work in this thesis contributed to the publications below.

† These authors contributed equally
ABBREVIATIONS

aa: amino acids
Avr: avirulence
bp: base pair
CC: coiled-coil
cDNA: complementary deoxyribonucleic acid
cfu: colony forming unit
DNA: deoxyribonucleic acid
dpi: day post-inoculation
EDS1: enhanced disease susceptibility 1
ETI: effector-triggered immunity
HR: hypersensitive response
kb: kilobase
kDa: kilodaltons
LRR: leucine-rich repeat
ml: milliliter
mg: milligram
mM: millimolar
NLR: nucleotide-binding domain and leucine-rich repeat-containing protein
NLR-ID: NLR-integrated domain
OD: optical density
PAMP: pathogen-associated molecular pattern
Pf: Pseudomonas fluorescens
PCR: polymerase chain reaction
PR: pathogenesis-related
PRR: pattern recognition receptor
PTI: PAMP-triggered immunity
Pto: Pseudomonas syringae pv. tomato
R: resistance
RNA: ribonucleic acid
ROS: reactive oxygen species
RPS4: resistance to Pseudomonas syringae 4
RRS1: resistance to Ralstonia solanacearum 1
RT-PCR: reverse transcription polymerase chain reaction
SA: salicylic acid
slh1 mutant: sensitive to low humidity 1 mutant (single leucine insertion in RRS1 WRKY domain)
sushi mutant: suppressor of slh1 immunity mutant
TAE: tris acetate EDTA
Tris: tris(hydroxymethyl)aminomethane
TTSS: type-three secretion system
μl: microliter
μM: micromolar
WT: wild type