Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The role of the N-acetylglucosamine phosphoenolpyruvate phosphotransferase system from *Lactobacillus plantarum* 8014 in the mechanism of action of glycocin F

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science
in
Biochemistry

at Massey University, Manawatū, New Zealand.

Marc Alex Bailie

2017
Abstract

The rise in antibiotic-resistant bacteria is becoming a severe public health problem because of the shortage of new antibiotics to combat existing resistant bacterial pathogens. Should this trend of increasing bacterial drug resistance continue, the previously treatable conditions may once again become fatal. Using broad-spectrum antibiotics causes collateral damage to the commensal microbiota of the host leading to complications and a greater susceptibility to opportunistic pathogenic infection. As a result, narrow spectrum antibacterials effective against specific pathogens, are becoming increasingly sought after. Among the many alternative classes of narrow-spectrum antibiotics, is a diverse group of ribosomally-synthesised antimicrobial peptides known as bacteriocins. Glycocin F (GccF), a rare and uniquely diglycosylated bacteriocin produced by Lactobacillus plantarum KW80, appears to target a specific N-acetylglucosamine (GlcNAc) phosphotransferase system (PTS) and causes almost instant bacteriostasis by an as yet unknown mechanism. This thesis demonstrates how the GlcNAc-PTS is involved in the GccF mechanism of action and that the gccH gene provides immunity to GccF. Using transgenic and gene editing techniques, regions of the GlcNAc-PTS were either removed or altered to prevent normal function before being tested \textit{in vivo}. The results demonstrated that only the EIIC domain of the GlcNAc-PTS is required in the GccF mechanism of action and that it acts like a "lure" that attracts the bacteriocin to the main target that is as yet unknown. Furthermore, the immunity gene was discovered, and using PTS knockout cell lines the immunity mechanism was shown to act independently of the GlcNAc-PTS. This work will form the foundation for the work needed to unravel the bacteriostatic mechanism of action of GccF, which may lead to the development a novel antimicrobial agent.
My loving wife
A guiding light in the darkness, and a place of solitude and shelter through the tempest of life. The go-to authority on me and my work.

Mom and Dad
A pair of rare, irreplaceable models of excellence and support, who made all this possible.
In memory of

Aunty Hester Wallace

You gave me an addiction to stationery that would lead to literacy and ultimately science. There is no greater gift than intelligence, and with every caressing pen stroke, you are missed.

1957 - 2015
"dubito, ergo cogito, ergo sum"

Antoine Léonard Thomas, praise of Descartes, 1765.
Acknowledgements

Associate Professor Gill Norris and Dr Mark Patchett.
For your patience, guidance and supervision.

Mr Trevor Loo
For your technical expertise, and advice.

To all my colleagues and friends at X-Labs
A dear thank-you for being a good distraction, a source of debate, and allowing me to bounce ideas off you.

Institute of Fundamental Sciences
For housing and funding my research.
Contents

Abstract ... ii

Dedications.. ii

Acknowledgements... vi

List of Figures .. xiv

List of Tables ... xv

List of Abbreviations... xvi

Introduction .. 1

1.1 A world defined by antibiotics ... 1

1.2 Bacteriocins .. 2

1.2.1 Classifications and mechanisms of action 3

1.2.1.1 Class I Bacteriocins .. 4

1.2.1.2 Class II and III Bacteriocins 9

1.2.2 Bacteriocin gene clusters ... 10

1.3 Phosphoenolpyruvate Phosphotransferase Systems 13

1.3.1 PEP-PTS order and phosphorelay 14

1.3.2 EIIC and substrate import .. 15

1.3.3 Transduction and quorum sensing 20

1.4 Hypothetical PTSGlcNAc::GccF interaction models 21

1.5 Research goals .. 22

Material and Methods .. 25
2.1 Materials

2.1.1 Water

2.1.2 Luria-Bertani Broth (Miller’s)

2.1.3 Luria-Bertani (LB) agar plates

2.1.4 de Man, Rogosa, & Sharpe broth

2.1.5 de Man, Rogosa, & Sharpe agar plates

2.1.6 de Man, Rogosa, & Sharpe recovery media

2.1.7 RF₁ buffer

2.1.8 RF₂ buffer

2.1.9 SOB media

2.1.10 SOC media

2.1.11 2YT media

2.1.12 Polyethylene glycol 1500

2.1.13 Antibiotics

2.1.14 Bacterial strains

2.1.15 Alkaline lysis buffer

2.1.16 Lysozyme-sucrose solution

2.1.17 DNA loading dyes

2.1.17.1 6X Orange G DNA Loading Dye

2.1.17.2 6X bromophenol blue DNA Loading Dye

2.1.18 Protein staining

2.1.18.1 Coomassie stain

2.1.18.2 Colloidal Coomassie stain

2.1.19 SDS-PAGE Electrode (Running) Buffer

2.2 Methods

2.2.1 Sterilisation

2.2.2 Restriction digests

2.2.3 Gel electrophoresis

2.2.3.1 Agarose

2.2.3.2 SDS-PAGE
2.2.4 Gel staining and image capturing 31
 2.2.4.1 Imaging ... 31
 2.2.4.2 Agarose .. 31
 2.2.4.3 SDS-PAGE ... 32

2.2.5 DNA extraction ... 32
 2.2.5.1 Plasmid DNA extraction from \textit{E. coli} 32
 2.2.5.2 Plasmid DNA extraction from \textit{L. plantarum} 32
 2.2.5.3 Genomic DNA extraction from \textit{L. plantarum} 32

2.2.6 Bacterial indicator plates ... 32

2.3 Bacterial manipulation techniques .. 33
 2.3.1 Chemically competent \textit{E. coli} 33
 2.3.2 \textit{E. coli} heat shock .. 33
 2.3.3 Electrocompetent \textit{L. plantarum} .. 34
 2.3.4 \textit{L. plantarum} electroporation 35
 2.3.5 Bacterial storage and revival 36
 2.3.6 Growth conditions .. 36
 2.3.6.1 General bacterial growth conditions 36
 2.3.7 Bacterial screening .. 37

2.4 DNA manipulation techniques ... 37
 2.4.1 DNA quantification ... 37
 2.4.2 DNA desalting ... 37
 2.4.3 Polymerase chain reaction .. 38
 2.4.4 Site directed mutagenesis .. 39
 2.4.5 DNA truncation method .. 39
 2.4.6 DNA cloning \textit{gccH} ... 39

2.5 Data collection and handling ... 40
 2.5.1 Cell growth measurements .. 40
 2.5.1.1 General optical density measurements 40
 2.5.1.2 Titre plate optical density measurements 40
 2.5.2 R scripts and statistics .. 41
2.5.2.1 Dealing with data sheets 41
2.5.2.2 R packages and environment 41
2.5.2.3 Data conversion ... 41
2.5.2.4 Statistical functions ... 42
2.5.2.5 Plotting growth curves 43
2.5.2.6 Bar charts .. 44
2.5.2.7 Code sources.. 45

Results and discussion ... 46

3.1 PTS18CBA protein properties and structure 46
 3.1.1 Primary structure and predicted protein parameters 46
 3.1.2 Secondary structure of PTS18CBA by in silico analysis 47
 3.1.3 Tertiary structure of PTS18CBA 49
 3.1.4 EIICMalt homodimer and membrane interaction 53

3.2 Construct development ... 55
 3.2.1 PCR troubleshooting ... 56
 3.2.2 Truncation construct development 60
 3.2.2.1 Domain removal strategy 60
 3.2.2.2 Removal of EIIA or EIIAB via the linker regions 61
 3.2.3 Site directed mutagenesis .. 63
 3.2.4 GccH .. 64

3.3 Extrachromosomal transformations of L. plantarum NC8 64
 3.3.1 pRV613 transformation of pts18 deficient L. plantarum NC8 ... 65
 3.3.1.1 Generating competent cell stocks......................... 65
 3.3.1.2 Electroporation ... 66
 3.3.1.3 Methods of confirming transformations in L. plantarum . 67
 3.3.2 Other factors influencing transformation efficiency 69
 3.3.2.1 Vector size and cell type considerations............... 71
 3.3.2.2 Antibiotic and temperature toxicity 71
 3.3.2.3 Copper toxicity .. 75
 3.3.2.4 Expected results for successful transformations 76
3.4 The effect of plasmids on bacterial growth .. 81
3.4.1 Complementation of pts18cba into L. plantarum NC8 cells 81
3.4.2 The gradual loss of GccF induced bacteriostasis 88
3.4.3 Removal of domain EIIA from pts18cba 90
3.4.4 Removal of EIIAB from pts18cba 94
3.4.5 Site directed mutagenesis: His584Ala 98
3.4.6 Direct construct comparison ... 104
3.5 GccH as the immunity gene for the GccF cluster 107
3.5.1 GccH in silico analysis ... 107
3.5.2 GccH in vivo phenotyping ... 109

Conclusion .. 114

Future directions .. 119

Appendix .. 138

5.1 Statistical data .. 139
5.2 Gene sequences .. 141
5.2.1 Lactobacillus plantarum 8014 141
5.2.2 Lactobacillus plantarum NC8 142
5.2.3 Lactobacillus plantarum subsp. plantarum (ATCC 14917) 144
5.2.4 pts18cba sequence alignments 145
5.3 PTS18CBA protein properties and structure 154
5.3.1 Pts18cba Sequence translation 154
5.3.2 ExPASy ProtParam .. 155
5.3.3 Secondary structure of PTS18CBA by in silico analysis 156
5.3.3.1 TMPred helices identification 156
5.3.3.2 Topcons analysis & NCBI CDD cross referenced with
Pfam ... 157
5.3.3.3 Full MINNOU analysis with lipid accessibility 158
5.3.3.4 Full Jpred secondary structure & residue burial prediction 159
5.3.3.5 Phyre2 Secondary structure and disorder predictions 160
5.4 Full Construct sequences .. 161
 5.4.1 pRV613-LacZ .. 161
 5.4.2 pRV613:pts18cba-FLAG ... 165
 5.4.3 pRV613:pts18c (AB deletion) 168
 5.4.4 Full pRV613:pts18cb-FLAG 171
 5.4.5 pRV613-pts18cba H584A ... 174
 5.4.6 Unpublished data .. 178
List of Figures

1 Alvarez-Sieiro et al. classification of LAB bacteriocins 3
2 Mechanisms of action of Class I and Class II bacteriocins 5
3 Glycocin F structure .. 8
4 Bacteriocin gene clusters separated by class 11
5 PTS-mediated sugar transport and phosphorylation 13
6 EIIC topology diagrams .. 15
7 EIIC dimerisation and substrate binding ... 18
8 PEP-PTS elevator car substrate import mechanism 19
9 Hypothetical PTS\(^{\text{GlcNAc}}\):GccF interaction models 22
10 Transformation flow chart: generating competent cells 34
11 Transformation flow chart: Electroporation procedure 35
12 Phyre\(^2\) and I-TASSER tertiary predictions of the pts18cba structure .. 51
13 PTS18CBA domain order displayed as I-TASSER and Phyre\(^2\) models .. 52
14 EIIC\(^{\text{Malt}}\) homodimer and membrane interaction 53
15 pRV613-pts18cba-FLAG restriction digest map and long PCR diagram 55
16 PCR troubleshooting .. 59
17 Methods of transformation confirmation and optimisation 69
18 Apparent effect of plasmid size on transformation efficiency 71
19 Antibiotic effects on selected \(L. \text{ plantarum}\) NC8 cell types 73
20 Antibiotic and temperature effects on \(L. \text{ plantarum}\) NC8 74
21 \(L. \text{ plantarum}\) NC8 cell types: \(\text{Cu}^{2+}\) toxicity 75
22 Successful transformations from overnight or 2 hour recovery times ... 77
23 Complete plate results from a 2 hour liquid recovery before plating 78
24 Complete plate results from an overnight liquid recovery before plating 79
<table>
<thead>
<tr>
<th>Page</th>
<th>Section Description</th>
<th>Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Complementation: pRV613-pts18cba-FLAG vector map</td>
<td>81</td>
</tr>
<tr>
<td>26</td>
<td>Complementation growth data grouped by strain</td>
<td>84</td>
</tr>
<tr>
<td>27</td>
<td>Complementation: Strain analysis grouped by environmental condition</td>
<td>87</td>
</tr>
<tr>
<td>28</td>
<td>Complementation: Effect of selection on vectors</td>
<td>89</td>
</tr>
<tr>
<td>29</td>
<td>EIIA deletion: pts18cb-FLAG vector map</td>
<td>90</td>
</tr>
<tr>
<td>30</td>
<td>EIIA deletion data grouped by strain</td>
<td>92</td>
</tr>
<tr>
<td>31</td>
<td>EIIA deletion data grouped by environment</td>
<td>93</td>
</tr>
<tr>
<td>32</td>
<td>EIIAB deletion: pts18c vector map</td>
<td>94</td>
</tr>
<tr>
<td>33</td>
<td>EIIAB deletion data grouped by strain</td>
<td>96</td>
</tr>
<tr>
<td>34</td>
<td>EIIAB deletion data grouped by environment</td>
<td>97</td>
</tr>
<tr>
<td>35</td>
<td>His584Ala plasmid map</td>
<td>98</td>
</tr>
<tr>
<td>36</td>
<td>His584Ala transformation confirmation and Phospho-inhibition model</td>
<td>99</td>
</tr>
<tr>
<td>37</td>
<td>His584Ala sequencing results and alignment</td>
<td>100</td>
</tr>
<tr>
<td>38</td>
<td>H584A: growth curves grouped by environment</td>
<td>102</td>
</tr>
<tr>
<td>39</td>
<td>His584Ala quantitative phenotype analysis at eight hours</td>
<td>103</td>
</tr>
<tr>
<td>40</td>
<td>Direct construct comparison by strain</td>
<td>104</td>
</tr>
<tr>
<td>41</td>
<td>The effect of the gene inserts grouped by Environment</td>
<td>106</td>
</tr>
<tr>
<td>42</td>
<td>GccH: Transmembrane prediction and hydrophobicity plot</td>
<td>107</td>
</tr>
<tr>
<td>43</td>
<td>GccH: various secondary structural predictions</td>
<td>108</td>
</tr>
<tr>
<td>44</td>
<td>GccH plasmid map and confirmation of transformation</td>
<td>110</td>
</tr>
<tr>
<td>45</td>
<td>GccH: Growth curve data</td>
<td>111</td>
</tr>
<tr>
<td>46</td>
<td>GccH: quantitative phenotype analysis at ∼8 hours</td>
<td>112</td>
</tr>
<tr>
<td>47</td>
<td>Summary: Proposed interaction models in light of the evidence</td>
<td>117</td>
</tr>
<tr>
<td>48</td>
<td>Summary: Proposed behaviour of PTS18CBA, GccF and GccH</td>
<td>118</td>
</tr>
<tr>
<td>49</td>
<td>TMpred: helices identifications</td>
<td>156</td>
</tr>
<tr>
<td>50</td>
<td>TopCons and NCBI CDD predictions and domain identification</td>
<td>157</td>
</tr>
<tr>
<td>51</td>
<td>MINNOU: Full primary & predicted secondary structure</td>
<td>158</td>
</tr>
<tr>
<td>52</td>
<td>Jpred: Full batch results separated into C, B and A domain</td>
<td>159</td>
</tr>
<tr>
<td>53</td>
<td>Phyre² graphical representation of secondary structure</td>
<td>160</td>
</tr>
<tr>
<td>54</td>
<td>GccF localises to the bacterial membrane</td>
<td>178</td>
</tr>
</tbody>
</table>
List of Tables

Table 1: Antibiotic stocks ... 28
Table 2: Base bacterial isolates .. 28
Table 3: Restriction digests .. 30
Table 4: Standard PCR volumes for amplification of long and short products 38
Table 5: Thermocycling profile .. 38
Table 6: gccH amplification primers ... 39
Table 7: Domain boundary summarised by predictive web server 49
Table 8: Primers used for construct development 56
Table 9: Lactobacillus plantarum NC8 strains 80
Table 10: Complementation strain modification key 84
Table 11: Domain EIIA deletion strain modification key 92
Table 12: EIIAB domain deletion strain modification key 96
Table 13: GccH TMpred: all possible inside to outside helices 107
Table 14: GccH strain modification key .. 110
Table 15: Statistical data for GccH growth at ~8 hours 139
Table 16: Statistical data for construct phenotyping at ~8 hours 140
Table 17: Amino acid composition of PTS18CBA 155
List of Abbreviations

Å Angstrom
ADP Adenosine diphosphate
Amp Ampicillin
ATP Adenosine triphosphate
bp Base pair
cm Centimeter
Chl Chloramphenicol
Da Dalton
DNA Deoxyribonucleic acid
dNTP Deoxyribonucleotide triphosphate
EAT Empirical antibiotic therapy
EDTA Ethylenediaminetetraacetic acid
 EI Enzyme I
 EII Enzyme II
 EIIA Enzyme IIA
 EIIB Enzyme IIB
 EIIC Enzyme IIC
 EIID Enzyme IID
EIICBA_{GlcNAc} The GlcNAc specific PTS with all domains also known as the PTS18CBA
Ert Erythromycin
FDA Food and Drug Administration
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>Gram</td>
<td></td>
</tr>
<tr>
<td>GAS</td>
<td>Group A Streptococcal</td>
<td></td>
</tr>
<tr>
<td>gDNA</td>
<td>Genomic DNA</td>
<td></td>
</tr>
<tr>
<td>GccF</td>
<td>Glycocin F</td>
<td></td>
</tr>
<tr>
<td>GlcNAc</td>
<td>N-Acetylglucosamine</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>Hairpins</td>
<td></td>
</tr>
<tr>
<td>HPr</td>
<td>Histidine-Phosphorylation protein</td>
<td></td>
</tr>
<tr>
<td>HPrK/P</td>
<td>HPr kinase/Phosphatase</td>
<td></td>
</tr>
<tr>
<td>kbp</td>
<td>Kilobase pair</td>
<td></td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
<td></td>
</tr>
<tr>
<td>kPa</td>
<td>Kilopascal</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
<td></td>
</tr>
<tr>
<td>LAB</td>
<td>Lactic acid bacteria</td>
<td></td>
</tr>
<tr>
<td>Lac</td>
<td>Lactose</td>
<td></td>
</tr>
<tr>
<td>MDR</td>
<td>multi-drug resistant</td>
<td></td>
</tr>
<tr>
<td>MDRO</td>
<td>multi-drug resistant organisms</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
<td></td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum inhibitory concentration</td>
<td></td>
</tr>
<tr>
<td>MCS</td>
<td>Multiple cloning site</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
<td></td>
</tr>
<tr>
<td>ms</td>
<td>Millisecond</td>
<td></td>
</tr>
<tr>
<td>μL</td>
<td>Microlitre</td>
<td></td>
</tr>
<tr>
<td>μM</td>
<td>Micromolar</td>
<td></td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
<td></td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
<td></td>
</tr>
<tr>
<td>MRS</td>
<td>De Man, Rogosa and Sharpe medium</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
<td></td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
<td></td>
</tr>
<tr>
<td>NGS</td>
<td>Next generation sequencing</td>
<td></td>
</tr>
</tbody>
</table>
nL Nanolitre
OD_{600} Optical density at 600 nm
OF Outward facing
PCR Polymerase chain reaction
PDB Protein data bank
PEG Polyethylene glycol
PEP Phosphoenopyruvate
PH periplasmic helices
PMF Proton motive force
PRD PTS regulatory domain
PTM Post translational modification
PTS Phosphoenopyruvate phosphotransferase system
RBS Ribosome binding site
SDS Sodium dodecyl sulfate
SDS-PAGE SDS-polyacrylamide gel electrophoresis
SLS Streptolysin S
TBE Tris-Boric Acid-EDTA
TEMED N,N,N’,N’-Tetramethylethane-1,2-diamine
Tm Melting temperature
TH Transmembrane helix
V Volts
v/v Volume/Volume
w/v Weight/Volume
WT Wild-type
\times g Multiple of earth’s gravitational force
°C Degree Celsius