Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Random discrete groups of Möbius transformations: Probabilities and limit set dimensions.

A Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Albany, New Zealand

November 2017
This thesis represents original work of the author unless otherwise attributed.
Determination of dimension vs isometric circle radius
analytic (blue) and computed (red, green)
Acknowledgements

Distinguished Professor Gaven Martin

It was my good fortune to have a great mathematician for my supervisor, but he made me work for the privilege. With his professional scepticism he made me fight for every claim, standard challenges were "I don’t believe it", or maybe "It’s either well known or it’s wrong, I don’t know which". Thanks Gaven.

Associate Professor Shaun Cooper

Thanks Shaun for your encouragement and tenacious insistence that the proof of a particular theorem be unassailable.

Lynette O’Brien, BBS (Hons), MSc (Mathematics)

Well, who could have a more loving, patient and supportive mathematical wife?
This thesis addresses two areas related to the quantification of discrete groups. We study "random" groups of Möbius transformations and in particular random two-generator groups; that is, groups where the generators are selected randomly. Our intention is to estimate the likelihood that such groups are discrete and to calculate the expectation of their associated geometric and topological parameters. Computational results of the author [55] that indicate a low probability of a random group being discrete are extended and we also assess the expected Hausdorff dimension of the limit set of a discrete group. In both areas of research analytic determinations are correlated with computational results. Our results depend on the precise notion of randomness and we introduce geometrically natural probability measures on the groups of all Möbius transformations of the circle and the Riemann sphere.
Contents

Acknowledgments ... iii

Abstract ... iv

1 Introduction .. 1
 1.1 Möbius transformations and hyperbolic geometry .. 1
 1.2 Random groups .. 1
 1.3 Discrete groups ... 2
 1.4 Limit sets .. 4
 1.5 Dimension .. 5
 1.6 Computation .. 6
 1.7 Chapter order .. 7

2 Foundations .. 8
 2.1 Möbius transformations .. 8
 2.1.1 The cross ratio ... 8
 2.1.2 Conjugation .. 9
 2.1.3 Classification and fixed points .. 9
 2.1.4 Isometric circles .. 10
 2.1.5 The axis of a transformation ... 13
 2.1.6 Discrete groups .. 13
 2.2 Random variables and probability distributions .. 13
 2.2.1 Random variables ... 14
 2.2.2 Kolmogorov’s σ-fields ... 14
 2.2.3 Experimental definition ... 15
 2.2.4 Random events .. 16

3 Random Möbius groups and the Fuchsian space .. 17
 3.1 Distributions on the space of matrices \mathcal{F} ... 20
 3.2 Isometric circles .. 23
 3.3 Distributions on \mathbb{S} and the group \mathcal{C} .. 24
 3.3.1 Circular uniform distribution .. 24
 3.3.2 The group \mathcal{C} ... 25
 3.3.3 Arcs and points .. 26
 3.3.4 Matrix entry vectors ... 27
 3.4 Traces, disjointedness and discreteness .. 32
3.4.1 The parameter $\beta(f)$.. 35
3.4.2 The parameter $\gamma([f,g])$ 37
3.4.3 Jørgensen’s inequality .. 39
3.4.4 Fixed points .. 40
3.4.5 Translation lengths ... 43
3.5 Random arcs on a circle .. 44
3.6 Random arcs to Möbius groups 45
3.7 The topology of the quotient space 47
3.7.1 Commutators and cross ratios 47
3.7.2 Cross ratio of fixed points 49
3.8 Discreteness ... 51
3.8.1 The Klein combination theorem and isometric circles 52
3.8.2 Intersections of two isometric circles of elements of F ... 52
3.8.3 Intersections of the four isometric circles of two elements of F ... 54
3.8.4 F is discrete with $P \geq \frac{1}{20}$ 56
4 Probability and random variables 58
4.1 Isometric circle intersections 58
4.2 Domains of support for random variables 59
4.2.1 Modular domains .. 60
4.3 Functional transformations of random variables 61
4.3.1 Multi-variable transformations 61
4.3.2 Change of variables .. 62
4.3.3 Mellin convolutions .. 62
4.3.4 Unary functions .. 63
4.4 Elements of a random variable algebra 63
4.4.1 Products and quotients of independent random variables .. 63
4.4.2 Linear combinations of independent random variables ... 64
4.5 Linear combinations via characteristic functions 65
4.5.1 A closed form for the p.d.f. of a sum of independent random variables .. 65
4.5.2 Probabilities for linear combinations 68
4.6 Some distributions of trigonometric functions via the change of variables formula 68
4.7 Some distributions via characteristic functions 70
5 Computational determinations .. 73
5.1 Algorithmic considerations 73
5.2 $\mathfrak{F}_4 \sigma$-field probabilities 74
5.2.1 Detailed analysis ... 74
6 Limit sets of Möbius transformations 80
6.1 Random Fuchsian groups .. 80
6.2 Iterated function systems ... 83
6.2.1 Isometric circles ... 84
6.2.2 Similarity dimension ... 84
6.3 A calibration group .. 85
6.4 Covering set computational determinations 87
 6.4.1 Algorithms ... 87
 6.4.2 Some results ... 88

Bibliography .. 88