Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The effects of milk matrices on the transit and digestion of secretory immunoglobulin A in the gut

A thesis presented in partial fulfilment of requirements for the degree of

Masters of Science
In
Animal Science

At Massey University, Palmerston North, New Zealand and
AgResearch, Ruakura, Hamilton, New Zealand.

Chrystal Te Ohorere O’Connor

2017
Abstract:

Bovine secretory immunoglobulin A (BSIgA) has the potential to provide protective effects to the gastrointestinal tract (GIT) when consumed orally. Oral administration of immunoglobulin (Ig) preparations has been explored and proven satisfactory in defence of a variety of enteric microbial infections in humans. Currently Ig preparations focus on bovine colostrum or whole milk. The effects of different milk matrices and how the overall composition may impact BSIgA transit and digestion have not been explored. In this study, an in vivo experiment was used to demonstrate the transit and digestion of BSIgA in two different milk matrices through the GIT of mice. The milk matrices of interest were whey protein concentrate (WPC) and skim milk powder (SMP). Mice were gavaged with 200 μL of each treatment and groups were culled at four time points; 7 minutes, 20 minutes, 1 hour, and 4 hours. The GIT was dissected into four pieces; stomach, small intestine, large intestine, and caecum. These were flushed with phosphate buffered saline (PBS) and the amount of BSIgA in the washouts was measured on an ELISA. Bovine SIgA survived digestive processes in the GIT of mice in SMP and WPC, as it was detected at all time points. Intestinal washouts from mice that were fed SMP measured at 7 minutes, 20 minutes, 1 hour, and 4 hours detected 66.3%, 22.4%, 0.45%, and 0.97%, of BSIgA respectively. The corresponding values for mice that were fed WPC were 43.8%, 10.2%, 0.12%, and 0.14%, respectively. Overall, the results supported the hypothesis that the milk matrix affected transit and digestion of BSIgA through the GIT of mice. BSIgA was digested 10 fold faster in a WPC matrix than SMP matrix. The BSIgA in SMP appeared more protected from digestion than that in WPC. This is the first study to highlight different milk matrices affect the transit and digestion of BSIgA. It gives an insight into manufacturing BSIgA into a commercial product and the potential benefits it may provide to the consumer.
Acknowledgements:

I am very grateful to everyone whom has assisted me whilst I completed my Masters. My research project would not have been possible without the support of many people. I am especially grateful for the financial support I have received throughout my thesis. I would like to thank all the scholarship committees that deemed me worthy of the following scholarships; Helen E Akers Postgraduate Scholarship, Taranaki Dairy Farmers Conference Scholarship, Post graduate Tainui grant, Post graduate Hauraki grant, Te Putea Whakatupu Whanui Scholarship, Harwood Farm Trust Scholarship, Margaret Bashford Scholarship, Royce Nichollos Trust Scholarship, Manawatu Graduate Women Scholarship, and Catherine Baxter Postgraduate Scholarship.

I would like to thank my supervisors at AgResearch; Julie Cakebread and Ali Hodgkinson, for giving me the opportunity to study IgA as a functional food product. Secondly, I would like to thank my Massey University supervisor Penny Back, for also making it possible for me to complete my thesis extramurally and giving me the internal support I needed. I am very thankful to my supervisors for the useful comments and engagement through the learning process of my Master’s thesis.

I would also like to express my gratitude to the many people who shared their scientific skills with me. Thank you to Daralyn Hurford, Olivia Wallace, Simon Shirley, Bobby Smith, and Ric Broadhurst. Furthermore, thank you to Catherine Cameron and Harold Henderson for your assistance in statistical analysis.

Finally, thank you to my family and friends for your understanding, endless love, and support throughout the duration of my studies. A special thanks to my partner Harlee Overton for your continuous support and patience throughout my thesis.
Table of Contents

Abstract: .. i
Acknowledgements: ... ii
Table of Contents .. i
Lists of Figures ... iv
Lists of Tables ... v
Abbreviations used .. vi

Chapter 1 Introduction and literature review .. 1
1.1 General introduction .. 2
1.2 Milk .. 3
1.3 Immunoglobulins .. 3
 1.3.1 Immunoglobulin development ... 3
 1.3.2 Basic immunoglobulin structure and function ... 4
 1.3.3 Immunoglobulin in serum and milk .. 5
1.4 Structure and function of Secretory Immunoglobulin A .. 6
 1.4.1 Glycosylation of SIgA .. 7
 1.4.2 Function of SIgA .. 8
1.5 Importance of SIgA in milk .. 9
1.6 Relevance of bovine SIgA to humans .. 10
1.7 Endogenous SIgA ... 10
1.8 The Digestive System ... 11
1.9 Physical digestion of proteins in the stomach ... 12
 1.9.1 Enzymatic digestion in the stomach ... 13
 1.9.2 Gastric digestion of IgA and milk proteins ... 13
1.10 Protein Digestion in the small intestine .. 15
 1.10.1 Physical digestion of proteins in the intestines ... 15
 1.10.2 Pancreatic enzymatic digestion .. 17
1.10.3 Bile... 18
1.10.4 Brush border enzymes ... 18
1.10.5 Intestinal IgA and milk protein digestion.. 19
1.11 Large Intestine... 20
1.11.1 Physical digestion... 20
1.11.2 Microorganisms in the colon ... 21
1.11.3 SIgA in the large intestine.. 21
1.12 Summary of Immunoglobulin A survival through the gastrointestinal tract 22
1.12.1 The need for an \textit{in vivo} experiment .. 25
1.13 Bovine Milk... 25
1.13.1 The significance of Bovine milk for human consumption............................... 26
1.14 Milk Processing... 27
1.14.1 Skim milk powder composition and processing ... 28
1.14.2 Whey Composition and Processing... 29
1.15 Conclusions.. 30
1.16 The objectives of this research .. 31

\textbf{Chapter 2 Materials and Methods}.. 32
2.1 Subjects.. 33
2.2 Experimental design and treatments ... 33
2.3 Preparation of SMP and WPC .. 35
2.3.1 Treatment preparation and composition .. 35
2.3.2 Buffer capacity of SMP and WPC matrix... 36
2.3.3 Animal Management ... 36
2.4 Experimental procedure ... 37
2.4.1 Oral gavage .. 37
2.4.2 Dissection... 37
2.5 Sample processing and Assays .. 38
3.5.1 Preparation of stomach, small intestine, large intestine, and caecum: 38
2.5.2 Preparation of faecal extract: ... 39
2.5.3 Preparation of test samples for Bovine SIgA analysis .. 39
2.5.4 Preparation of test samples for Murine SIgA analysis .. 39
2.6 Enzyme-linked immunoassay ... 39
2.6.1 ELISA for total bovine SIgA .. 39
2.6.2 ELISA for total murine SIgA .. 40

2.7.1 Statistical design ... 41
2.7.2 Statistical analysis ... 41

Chapter 3 Results .. 42
3.1 Non-specific bovine SIgA detection in the water samples .. 43
3.2 Digestion of BSIgA in SMP .. 43
3.3 Digestion of BSIgA in WPC .. 46
3.4 Comparison of bovine SIgA digestion in SMP and WPC 48
3.5 Buffer capacity of SMP and WPC matrix ... 51
3.6 Effects of bovine SIgA to endogenous murine SIgA .. 52

Chapter 4 Discussion .. 55
4.1 Digestion of SIgA in SMP .. 56
4.2 Digestion of SIgA in WPC .. 56
4.3 Comparison of BSIgA digestion in SMP and WPC .. 57
4.4 Impact of bovine SIgA on endogenous murine SIgA .. 62
4.5 Limitations .. 62
4.6 Future research .. 64
4.7 Conclusions .. 65

Chapter 5 Bibliography ... 66

Chapter 6 Appendix .. 73
A Methods .. 74
A.1 Gavage procedure ... 74
A.2 SIgA Wash out recovery ... 74
Lists of Figures

Figure 1 Structure of an immunoglobulin (Ig) molecule .. 5
Figure 2 The structure of SlgA showing the heavy and light chains, the antigen binding sites (Fab), effector (Fc) regions, the hinge region, and glycosylation sites (glycans). 7
Figure 3 Stomach geometry .. 12
Figure 4 Paths of tracer particles in the stomach .. 13
Figure 5 Segmentation contractions moving distal of the small intestine 16
Figure 6 Pendular contraction from longitudinal muscles of the small intestine 16
Figure 7 Peristalsis movement in the small intestine moving the chyme distally 16
Figure 8 Preferential specificities of pepsin, trypsin, and chymotrypsin for peptide linkages ... 17
Figure 9 Gastrointestinal tract of mice showing the sample collection sites 34
Figure 10 Mouse gavage ... 37
Figure 11 Images showing the dissection and collection of GIT components 37
Figure 12 Detection of Bovine SlgA in the intestinal washouts from mice gavaged with SMP at 7 minutes, 20 minutes, 1 hour, and 4 hours post gavage ... 45
Figure 13 Detection of Bovine SlgA in the intestinal washouts from mice gavaged with WPC at 7 minutes, 20 minutes, 1 hour, and 4 hours post gavage ... 47
Figure 14 Detection of Bovine SlgA in the intestinal washouts from mice gavaged with SMP or WPC at A) 7 minutes B) 20 minutes, C) 1 hour, and D) 4 hours post gavage 49
Figure 15 Buffering capacity of SMP and WPC ... 52
Figure 16 Concentration of Murine Secretory IgA through the GIT of mice 20 minutes, 1 hour, and 4 hours post gavage ... 54
Figure 17 Wash out recovery for total Murine SlgA with 500uL PBS + protease inhibitor either once, twice, or three times ... 75
Lists of Tables

Table 1 Concentration (mg/mL) and percentage (%) of immunoglobulin G and SIgA in bovine and human colostrum and milk. Adapted from Butler (1973) and Haneberg, (1974). 6
Table 2 Summary of immunoglobulin A preparations through the digestive tract *in vitro* and *in vivo* ... 23
Table 3 Main differences in the composition of cow’s and human milk casein and whey fractions. .. 27
Table 4 Composition of reconstituted WPC to 3.7% w/v total solids and SMP to 10% w/v total solids used in this study. .. 30
Table 5 Experimental procedure showing sex, treatment, gavage time, and cull time. 34
Table 6 Composition of reconstituted WPC and SMP. ... 36
Table 7 Concentration of murine SIgA through the GIT of mice gavaged with either water, SMP, or WPC at 20 minutes, 1 hour, and 4 hours post gavage... .. 52
Table 8 Maximum log values of BSIGA detected in each GIT for 20 minutes, 1 hour and 4 hours for each GIT compartment in water mice... 75
Table 9 Transit and digestion of bovine SIgA through the GIT of male and female mice 76
Table 10. Mean values ± standard error of the difference (SED) (g) for end weights of recovered sample of SMP and WPC at 20 minutes, 1 hour, and 4 hours. .. 76
Abbreviations used

AA: Amino acids
ANOVA: Analysis of variation
BSA: Bovine serum albumin
BSIgA: Bovine Secretory Immunoglobulin A
ELISA: Enzyme linked immunosorbent assay
GIT: Gastrointestinal tract
HCL: Hydrochloric acid
IgA: Immunoglobulin A
IgG: Immunoglobulin G
MSIgA: Murine Immunoglobulin A
PBS: Phosphate buffered saline
pIgR: Polymeric immunoglobulin receptor
PP: Peyer’s patch
P: Probability
SC: Secretory component
SEM: Standard error of the mean
sed: Standard error of the difference
SIgA: Secretory IgA
SMP: Skim milk powder
TBS: Tris-HCL buffered saline
TBST: 1% Tween®20 in TBS
w/v: weight per volume
WPC: Whey protein concentrate