Evaluation of Kahne rumen sensors in fistulated sheep and cattle under contrasting feeding conditions

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Agriculture at Massey University, Palmerston North, New Zealand

Xiaoxiao Lin
2009
Abstract

The Kahne rumen sensor (bolus) is a device developed to measure temperature, pressure and pH in non-fistulated animals. This bolus allows real-time monitoring of the rumen environment, which could help preventing health problems such as rumen acidosis in cows. It is less invasive to use boluses compared to other technologies that measure the ruminal pH (e.g. rumenocentesis). Kahne boluses and transceivers are commercially available in the market.

Several studies on the relationships between data recorded by the bolus and actual data recorded by independent devices were conducted. The bolus temperature and pressure were compared with actual temperature and pressure under controlled conditions. The pH drift was studied by comparing the difference between bolus and direct measurement over time. The capture of the data was calculated for each bolus in various experiments to examine the factors affecting the data capture rate of the boluses. Animal to animal variation was studied using boluses in a group of cows fed and managed under uniform conditions. An animal experiment involving fistulated cows eating two different diets was performed using boluses to monitor the changes of ruminal pH.

There was no apparent interruption to normal animal behaviour as a result of using boluses. Regression relationships between bolus measurements and actual data for both temperature and pressure were developed and used for calibration of bolus data. The pH drift was a problem, as the regression relation between the pH difference and the time for one bolus from one experiment could not represent this bolus on other experiment. The data capture rate on the hourly basis ranged from 0 to 100%, but was usually between 30 to 70%. The data capture rate was affected by many factors and further studies to identify these factors are needed. A study of animal to animal variation suggests that in a comparison of 2 treatments, a minimum 3 cows per group would be required to detect the standard deviation of 0.11 for a pH difference of
5% of the mean (approximately 0.35 pH units). Seventeen cows per group would be required to detect the standard deviation of 0.33 for the same difference. The boluses effectively monitored the ruminal pH change in cows eating two different diets and the profile of change of pH was successfully analysed. Feeding 7.6 kg baleage twice a day cause pH to decrease at 0.009 pH units per minute during feeding, while offering a similar quantity of grass and hay once a day resulted in a decrease of 0.0009 pH units per minute during feeding. The beginning of pH increase was about 1 hour following feeding and continuous during resting and rumination. The level of pH increase did not differ significantly for two diets.

The Kahne devices appear to have advantages compared to other technologies for the measurement of parameters of the rumen environment on a real-time basis. Boluses are especially good at intensively monitoring the temperature, pressure, and pH in the rumen. The major limitations of this technology to be used are the data capture rate and the pH drift. By improving the limitations found in the experiment, the Kahne rumen sensor could become very useful for both scientific research and under commercial conditions for monitoring animal health.
Acknowledgements

I would like to gratefully thank my supervisors Dr Gerald Cosgrove and Dr Peter Kemp for their constant encouragement and guidance during the course of my Masters. Thanks for Gerald’s kindness and patients during the experiments when I have questions. Thanks for your for helping me with my English. Thanks for Peter for finding me this interesting project and for helping me arrange my course.

I would like to thank Kahne Ltd for letting me use their devices for free for my course. Thanks to Michael and Pat for helping me setup the devices and for answering me questions about the devices.

I would like to thank Dr Roger Littlejohn and Dr Alasdair Noble for the assistance of the statistic analysis of the raw data.

Many thanks to other staffs in INR and AgResearch who gave me help over the duration of my studies.

I would like to thank my family. Thanks to my wife for her strong support during the course, without you, I would not achieve it.
Chapter 1: Introduction and Literature Review

1.1 Introduction

1.2 Ruminal pH and subacute rumen acidosis (SARA)
 1.2.1 Rumen
 1.2.2 Ruminal pH
 1.2.3 Ruminal acidosis
 1.2.4 Economic damage of SARA
 1.2.5 Signs of SARA
 1.2.6 Prediction of SARA
 1.2.7 Methods of preventing SARA
 1.2.8 Treating SARA

1.3 Technologies for measuring ruminal pH
 1.3.1 Using rumen stomach tube for measuring ruminal pH
1.3.2 Using rumenocentesis to measure Ruminal pH 11
1.3.3 Using a rumen fistula for measurement of ruminal pH 13

1.4 Kahne device for continuously recording ruminal pH 15

1.5 Aim and objectives 17
1.5.1 Aim 17
1.5.2 Objectives 18

Chapter 2: Materials and Methods 19

2.1 Introduction 19

2.2 Kahne devices and the operation process 19

2.3 Temperature calibration 24

2.4 Pressure calibration 27

2.5 pH calibration 29
2.5.1 pH calibration for short-term (up to 24 hours) measurement 29
2.5.2 Validation for pH drift 32
2.5.3 pH calibration for long-term experiments 34

Data recording correlated indoor with boluses external to the animal 36

2.7 Indoor data recording from sheep 37

2.8 Indoor data recording from stall-fed cows 39

2.9 Outdoor data recording from grazing cows 42
2.10 Calculation of data capture rate 45

2.11 Use Kahne device for detecting animal to animal variation 46

2.12 The effect of diet on pH change in cows 46

Chapter 3: Results 51

3.1 Temperature calibration 51

3.2 Pressure calibration 54

3.3 pH calibration 55

3.4 Data capture rate 56
 3.4.1 The characters of Kahne bolus and transceivers on capturing data signals 56
 3.4.2 Data capture rate in the experiments 57

3.5 Animal to animal variation 63

3.6 The effect of diet on pH change in cows 66

Chapter 4: Discussions 71

4.1 Introduction 71

4.2 Temperature calibration 71

4.3 Pressure calibration 73
4.4 pH calibration

4.5 Data capture rate

4.6 Animal to animal variation

4.7 The effect of diet on pH change in cows

4.8 The comparison of Kahne devices with other technologies
 4.8.1 Technologies of measuring rumen temperature
 4.8.2 Technologies of measuring ruminal pressure
 4.8.3 Technologies of measuring ruminal pH
 4.8.4 Overall comparison

Chapter 5: Conclusions and Future work

5.1 Conclusions

5.1 Future work

References

Appendix

Appendix 1 The tables of hourly data capture rate (DCR) and frequency distribution of data capture rate for each indoor and outdoor experiment
Appendix 2 24-hour pH patterns for all cows and for each cow eating two different diets and the tables of the aggregated pH data

Appendix 3 Tables of the mean and standard deviation of pH data for the experiment to determine animal to animal variation
List of Tables

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.4.1</td>
<td>The measurement range, resolution, accuracy and drift of pressure, temperature and pH of rumen sensor</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.2.1</td>
<td>The usage and the features of different transceivers</td>
<td>20</td>
</tr>
<tr>
<td>Table 2.7.1</td>
<td>Summary of the measurements with boluses inserted in sheep</td>
<td>38</td>
</tr>
<tr>
<td>Table 2.8.1</td>
<td>Summary of indoor measurements with boluses inserted in cows</td>
<td>41</td>
</tr>
<tr>
<td>Table 2.9.1</td>
<td>Summary of outdoor measurements with boluses inserted in cows</td>
<td>42</td>
</tr>
<tr>
<td>Table 3.1.1</td>
<td>The slopes, intercepts, and their standard errors (SE) of 8 boluses tested in the experiment</td>
<td>51</td>
</tr>
<tr>
<td>Table 3.1.2</td>
<td>The linear regression analysis using the slope and intercept of bolus No.1 (b1) as parameter, the difference of slopes and interceptors of other boluses was compared</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.4.1</td>
<td>The mean data capture rate of transceiver KR2105 from boluses there were either external to the animal or in the rumen</td>
<td>57</td>
</tr>
<tr>
<td>Table 3.4.2</td>
<td>The mean data capture rate of transceiver KR2001 alone, KR2105 alone, and KR2105 and KR2002 operating together in various situations</td>
<td>60</td>
</tr>
<tr>
<td>Table 3.5.1</td>
<td>The frequency distribution of data capture rate for five boluses in a 71-hour period measurement</td>
<td>65</td>
</tr>
<tr>
<td>Table 3.5.2</td>
<td>The mean, standard deviation, and coefficient variation for each hour in the 24-hour period and for the whole 24-hour period</td>
<td>65</td>
</tr>
<tr>
<td>Table 3.6.1</td>
<td>Mean pH for each cow in each 24-hour period, mean pH for all cows recorded in each 24-hour period, mean pH for each cow in each diet</td>
<td>67</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.4.1</td>
<td>Kahne rumen sensor (bolus)</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.2.1</td>
<td>The process of using Kahne Data Processing System to get to “Configuration setup” box and configure the transceiver property</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.2.2</td>
<td>The process of setting the bolus property in the “Configuration setup” box</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.2.3</td>
<td>The process of downloading recorded data using Kahne Data Processing System</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.3.1</td>
<td>Equipments used for Temperature calibration of boluses</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.3.2</td>
<td>Boluses and temperature probe were put very close to each other in the water bath</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.3.3</td>
<td>Graph of plotting bolus temperature against actual temperature for one bolus using Excel</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.4.1</td>
<td>The reference barometer and battery</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.4.2</td>
<td>Graph of plotting bolus pressure against actual pressure for one bolus using Excel</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.5.1</td>
<td>Equipments used for pH calibration</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.5.2</td>
<td>Steps of setting up bolus property through Kahne software before factory calibration process</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.5.3</td>
<td>“Calibrate pH7” was clicked in order to enter the bolus ID for calibration</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.5.4</td>
<td>A fistulated cow was confined in a cattle crate for pH validation process</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.5.5</td>
<td>The pH probe was ready to be inserted into rumen through cannula</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.5.6</td>
<td>The pH reading was recorded when it reached a stabilized</td>
<td>34</td>
</tr>
</tbody>
</table>
phase in order to get the actual pH in the rumen

Figure 2.5.7 Graph of plotting pH difference against time for one bolus using Excel

Figure 2.7.1 The pen, the location of the sheep, computer and the transceiver KR2001

Figure 2.8.1 View of yard that is behind animal building block A from two different angles

Figure 2.8.2 Overhead view of yard

Figure 2.9.1 Pictures of holding area of measurements in May and June and the overhead view of holding area

Figure 2.9.2 Picture of holding area measurements on November and the overhead view of the holding area

Figure 3.1.1 The regression relationship between bolus temperature and actual temperature

Figure 3.1.2 The temperature difference plotted against actual temperature for 8 boluses

Figure 3.2.1 The regression relationship between bolus pressure and actual pressure

Figure 3.3.1 The regression relationship between pH difference and time

Figure 3.4.1 The linear regression relationship between distance and data capture rate

Figure 3.4.2 Hourly data capture rate for two boluses over a 24-hour period of measurement

Figure 3.4.3 Frequency distribution of data capture rate for two boluses over a 24-hour period measurement

Figure 3.6.1 Profile of mean 24-hour pH taken from all cows offered grass and hay diet

Figure 3.6.2 Profile of mean 24-hour pH taken from all cows offered baleage diet