Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
APPLICATION FOR APPROVAL TO EMBARGO A THESIS

JUSTIFICATION
The study was funded and use a commercial enzyme (Zyactinase) which develop by the company.

Vital Food who funded the research and supplied the enzyme would still like the thesis to be embargoed for 2 years.

Student ID number: 03230120
First name: Noriza
Surname: Ahmad
Programme of study:
Thesis title: Beef hydrolysis using Zyactinase enzyme
Chief supervisor: Assc. Prof Dr. Marie Wong
Phone extension:

As author of the above-named thesis, I request that my thesis be embargoed from public access until:
Date: 17 10 2018

for the following reason(s):

✓ The thesis contains commercially-sensitive information
☐ The thesis contains information which is personal or private and/or which was given on the basis that it would not be disclosed
☐ Immediate disclosure of the thesis' contents would not allow the author a reasonable opportunity to publish all or part of the thesis
☐ Other. Please specify:

Student's signature: Noriza Ahmad
Date: 17 10 16

Chief supervisor's signature: Marie Wong
Date: 18 10 2016

Approved

Signature of representative of the Vice-Chancellor:
Date: 26 01 2017

NOTE: The standard embargo is for a maximum of two years.
BEEF HYDROLYSIS BY ZYACTINASE™
ENZYMES

A thesis presented in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy

at Massey University, Auckland,
New Zealand.

NORIZA BINTI AHMAD

2016
Abstract

Protein hydrolysis is the term that applies to all possible ways of splitting proteins to produce products with lower molecular weight. There is a continuous search for novel products derived from waste materials. In the developed nations considerable amount of meat off-cuts are discarded each year. Utilizing these leftovers by developing new technology for protein recovery and modification and production of a broad spectrum of food ingredients greatly enhances its final value.

The aim of this research was to partially hydrolyse beef meat protein with a commercial kiwifruit product called Zyactinase™, which is essentially freeze-dried kiwifruit to determine the effect of various processing conditions that influence the extent of beef meat hydrolysis. Secondly to determine the peptide and amino acid profile of the beef meat sample after hydrolysis. Thirdly to determine the relative reaction of Zyactinase™ on various beef meat protein fractions. This study also aimed to evaluate the rate and the extent of partial enzymic hydrolysis of lean beef using Zyactinase™ enzymes in order to obtain a better understanding of protein hydrolysis reaction.

Lean beef minced was partially hydrolysed using the Zyactinase enzymes for different processing times (up to 360 minutes), temperatures (27°C to 70°C) and varying enzyme concentrations. No pH adjustment on the raw material was carried out except for pH studies. The hydrolysates were collected and analysed for total nitrogen content and degree of hydrolysis. The method used to characterize the extent of protein hydrolysis was SN-TCA index (fraction of nitrogen soluble in trichloroacetic acid) also called non-protein nitrogen NPN. Peptide and amino acid in protein hydrolysates were analysed by HPLC and different protein fractions in the hydrolysates were characterised by SDS-PAGE.

The relationship between the reaction temperature, enzyme concentration and processing time to the total nitrogen and NPN were determined. The total nitrogen content remained relatively constant throughout the hydrolysis process. In addition, the NPN content increased as the temperature, processing time and enzyme concentration increased. The optimum pH range for the enzyme’s activity was 4 – 5.6 and optimum temperature was 60°C. Furthermore, most of the higher molecular weight protein bands on SDS-PAGE disappeared after hydrolysis and lower molecular weight protein
bands increased in intensity. Zyactinase was also found to digest protein in the myobrilla and sarcoplasmic meat fractions at similar rates as whole beef meat.

The results provide basic understanding of the kiwifruit enzymes action toward protein that may lead to improved methods for recovering meat protein or developing new food materials.
Acknowledgements

I would like thank all who in one way or another contributed in the completion of this thesis. Firstly, I give thanks to God for protection and ability to finally get it done.

My special and heartily thanks to my supervisor, Associate Professor Marie Wong who encouraged and directed me. Her continuous support and believe that brought this work towards a completion. I am really thankful for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my PhD study. For any faults I will take full responsibility. I am also deeply thankful to my co – supervisors Professor Ray Winger and Dr. Sung Je Lee with their help and guidance and insightful comment that I am able to complete this thesis.

Besides my supervisors I would like to thank Helen for her technical assistance to my project.

I am thankful to my colleagues Nayawit, Yan, Nabiha, Azie, Kataraina and Vivian for the help and support during my stay in Albany, New Zealand.

I would also like to acknowledge the support of University of Kuala Lumpur and MARA who supported me financially and gave me time to do this PhD.

Finally, I take this opportunity to express the profound gratitude from my deep heart to my beloved parents, and my siblings for their love and continuous support – both spiritually and materially.
Table of Contents

Abstract .. iii

Acknowledgements... v

Table of Contents ... vi

List of Figures ... xiii

List of Tables ... xviii

Chapter 1 ... 1

Introduction... 1

Chapter 2 ... 4

Literature Review.. 4

 2.1 Muscle structure .. 4

 2.2 Muscle proteins .. 6

 2.2.1 Myofibrillar Proteins ... 7

 2.2.1.1 Myosin .. 9

 2.2.1.2 Actin .. 11

 2.2.1.3 Tropomyosin .. 12

 2.2.1.4 Troponin .. 12

 2.2.1.5 Actinin .. 12

 2.2.1.6 Filament protein .. 13

 2.2.1.7 Minor regulatory proteins ... 13

 2.2.2 Sarcoplasmic proteins ... 14

 2.2.2.1 Myoglobin .. 14

 2.2.2.2 Haemoglobin .. 15

 2.2.3 Connective tissue proteins ... 16

 2.2.3.1 Collagen .. 16

 2.2.3.2 Elastin ... 18

 2.3 Amino acids .. 18
2.4 Protein functional properties ... 20
 2.4.1 Protein solubility ... 20
 2.4.2 Effect of pH on protein solubility .. 21
 2.4.3 Effect of ionic strength on protein solubility 22
 2.4.4 Effect of temperature on solubility ... 23
 2.4.5 Emulsification capacity (EC) ... 23
 2.4.6 Viscosity ... 24
2.5 Protein modification via hydrolysis .. 24
2.6 Enzymatic modification of protein ... 25
 2.6.1 The extent of enzymatic hydrolysis process .. 26
2.7 Protein hydrolysis mechanism ... 27
 2.7.1 Degree of hydrolysis (DH) ... 29
 2.7.2 Nitrogen to protein conversion ... 30
 2.7.3 Bitter Peptides .. 31
2.8 Previous studies on meat hydrolysis ... 32
 2.8.1 Previous studies with kiwifruit and meat hydrolysis 34
 2.8.2 Proteolytic enzymes (Actinidin) .. 35
 2.8.3 The structure of actinidin ... 35
 2.8.4 Actinidin properties .. 36
 2.8.5 Actinidin activity ... 37
2.9 Kiwifruit enzymes and the effect on food proteins 38
2.10 Collagenase properties in kiwifruit enzymes .. 39
2.11 Conclusions .. 40

Chapter 3 ... 42

Materials and Methods .. 42
 3.1 Chemical preparations ... 42
 3.1.1 Acrylamide/Bis solution for SDS PAGE .. 42
3.1.2 Ammonium persulfate (APS) Solution (10% w/v) for SDS PAGE 42

3.1.3 Boric acid solution, 4 % w/v Kjeldahl analysis .. 42

3.1.4 Bradford reagent .. 43

3.1.5 Destaining Solution for SDS PAGE ... 43

3.1.6 Electrophoresis Running Buffer, pH 8.3 for SDS PAGE 43

3.1.7 Iodoacetate–KCl solution ... 43

3.1.8 Kjeldahl Catalyst Tablets ... 44

3.1.9 OPA reagent ... 44

3.1.10 Phosphate Buffer (0.03 M) for SDS PAGE .. 44

3.1.11 Phenolphthalein Indicator Solution .. 44

3.1.12 Derivatization reagent for SDS PAGE ... 45

3.1.13 Protein Electrophoresis Size Standard for SDS PAGE 45

3.1.14 Phosphate Buffer (0.1 M) for SDS PAGE .. 45

3.1.15 Resolving Buffer (1.5 tris-HCl, pH 8.8) for SDS PAGE 45

3.1.16 Sodium Hydroxide (NaOH), 40% w/v for Kjeldhal analysis 45

3.1.17 Sample Buffer (0.0625 M tris-HCl, pH 6.8) for SDS PAGE 45

3.1.18 Sodium dodecyl sulphate (SDS), 10 % w/v for SDS PAGE 46

3.1.19 Stacking Gel (0.5 M tris- HCl, pH 6.8) for SDS PAGE 46

3.1.20 Trifluoroacetic acid (TFA) (0.1 % v/v) for HPLC analysis 46

3.1.21 Trichloroacetic Acid (TCA) Solution (15% w/v) for precipitation of protein 46

3.2 Raw materials ... 47

3.2.1 Minced lean beef .. 47

3.2.2 Sarcoplasmic protein (water soluble protein) ... 48

3.2.3 Myofibrilla protein (salt-soluble protein) .. 49

3.2.4 Connective tissue ... 49

3.3 Enzymes used for hydrolysis reactions .. 50

3.4 Beef hydrolysis process .. 50
3.4.1 Hydrolysis process setup...50

3.5 General chemical analyses..56

3.5.1 Moisture content..56

3.5.2 Ash content ...56

3.5.3 Fat content ..57

3.5.4 pH measurement ...58

3.5.4.1 pH measurement of minced beef and meat hydrolysate samples58

3.5.4.2 pH measurement during the hydrolysis process.............................58

3.5.5 Total nitrogen content ..59

3.5.6 Non-protein nitrogen (NPN) content ..59

3.5.7 Protein determination by Bradford method60

3.6 The effect of reaction parameters on minced beef hydrolysis61

3.6.1 Effect of pH on the extent of hydrolysis ..61

3.6.2 Effect of substrate concentration on the extent of hydrolysis61

3.6.3 Effect of reaction time on the extent of hydrolysis62

3.6.4 Effect of temperature on the extent of the hydrolysis62

3.6.5 Effect of enzyme concentration on the extent of hydrolysis62

3.7 Polyacrylamide gel electrophoresis (SDS-PAGE) analysis63

3.7.1 Gel preparation ..63

3.7.2 Sample preparation for SDS-PAGE ..63

3.7.3 Run conditions for SDS-PAGE ...63

3.7.4 Staining and destaining for SDS-PAGE ...64

3.7.5 SDS-PAGE imaging ..64

3.8 Hydrolysis of meat protein fractions (sarcoplasmic, myofibrilla and connective tissue) ..64

3.9 Peptide analysis on hydrolysates..65

3.9.1 Sample preparation ...65

3.9.2 Chromatographic conditions for peptide analysis65
List of Figures

Figure 2.1: Diagrammatic representation of striated muscle structure (Winger, 1979)............5
Figure 2.2: Portion of two myofibrils and a sarcomere (Forrest et al., 1975)..................8
Figure 3.1: (A) Lean beef meat, (B) Visible connective tissue and fat remove from the
beef meat..47
Figure 3.2: (A) Dimock meat grinder; (B) Mixed minced beef going through the meat
grinder for the second time. ...48
Figure 3.3: Grinder plate with hole size of 3 mm attached to meat grinder....................48
Figure 3.4: Experimental set up for hydrolysis process ..52
Figure 3.5: Gate stirrer used to mix beef samples during hydrolysis experiments52
Figure 3.6: Qualitative observations during hydrolysis of beef: Hydrolysis conditions;
60°C, 2% w/w enzyme concentration..55
Figure 4.1: SDS-PAGE of the enzyme ZyactinaseTM on 12% gel; Lane Z: 1.0 g protein
/ml buffer and Lane M: Molecular weight marker. (a) Actinidin, (b) kiwellin, (c) TLP and
(d) KiTH..73
Figure 4.3: Total nitrogen content in hydrolysate reactions at 40°C and 2% enzyme
concentration: (A) wet weight basis, (B) dry weight basis. Mean value ± standard
deivation, for n=4-6 trials..80
Figure 4.4: Changes of pH during hydrolysis at hydrolysis process at 40°C and 2%
enzyme concentration..81
Figure 4.5: NPN content (g/100 g dry sample) of hydrolysates at 60°C without enzyme
addition (control ●) and 2% enzyme concentration (O). Data points are mean values ±
standard deviation, n = 3..82
Figure 4.6: Total nitrogen content for hydrolysate at 40°C (A) without enzyme addition
(B) 1% enzyme concentration (C) 4% enzyme concentration. Data points are mean
values ± standard deviation, n = 2 to 6..84
Figure 4.7: Changes in pH value during the hydrolysis process at 50°C and 2% enzyme
concentration. Data points are mean values ± standard deviation n = 3...............86
Figure 4.8: The change in pH after addition of enzyme in the mixture (pH was
measured at 90 seconds reaction time). Data points are mean values ± standard
deivation n = 3 ..86
Figure 4.9: NPN content of the hydrolysates for different initial pHs of diluted meat, at
50°C, 2% enzyme addition. Data points are mean values ± standard deviation. n = 2 to
4. ..87
Figure 4.10: NPN concentration at different pHs after (A) 60 minutes and (B) 120 minutes of hydrolysis time. Mean value ± standard deviation for n=4 trials. 89
Figure 4.11: NPN content (g/100 g dry sample) of hydrolysate at different processing temperatures and 2% enzyme concentration. Data points are mean values ± standard deviation, n = 2 to 6. 91
Figure 4.12: NPN concentration (g/100 g dry sample) in hydrolysates after 120 minutes at different reaction temperatures, with 2% enzyme addition. Data points are mean values ± standard deviation, n = 2 to 6. 92
Figure 4.13: SDS –PAGE patterns of beef muscle proteins after hydrolysis with 2% w/w ZyactinaseTM at different temperatures for different reaction times. Lanes 1, 2 and 3: T = 40°C, 50°C and 60°C, respectively, 0 minutes, without enzyme; lane 4: molecular weight marker; Lane 5: T = 40°C, t = 5 minutes; Lane 6: T = 50°C, t = 5 minutes; Lane 7: T = 60°C, t = 5 minutes; Lane 8: T = 40°C, t = 90 minutes; Lane 9: T = 50°C, t = 90 minutes; Lane 10: T = 60°C, t = 90 minutes. (T = temperature, t = time) 93
Figure 4.14: SDS –PAGE of beef muscle after reaction with no enzyme at 60°C for different times (0, 30, 60 and 90 minutes). Lane 1, 2, 3, 4, 6, 7 and 8: t= 1 minute, 30 minutes, 60 minutes, 90 minutes, 120 minutes, 180 minutes and 0 minute, respectively. Lane 5: molecular weight marker. 94
Figure 4.15: SDS -PAGE of beef muscle hydrolysate with 2% enzyme concentration for different hydrolysis times and temperatures: A: 60°C, B: 50°C, C: 40°C. 95
Figure 4.16: NPN content (g/100 g dry sample) at different enzyme concentrations and different processing temperatures. A: 40°C, B: 50°C, C: 60°C. Data points are mean values ± standard deviation, n = 4 to 6. 97
Figure 4.17: Changes in pH during hydrolysis at difference enzyme concentrations: (A) no enzyme addition, (B) 1% enzyme concentration, (C) 2% enzyme concentration, (D) 4% enzyme concentration. Data points are mean values ± standard deviation, n = 2.98
Figure 4.18: SDS-PAGE: Beef muscle after hydrolysis with ZyactinaseTM enzyme at different enzyme concentrations for 0 & 120 minutes (1 mg/ml protein per load). Lane 1: 60°C, 0 minute, without enzyme; Lane 2: 60°C, 120 minutes, without enzyme; Lane 3: 60°C, 1 minute, 1%w/w enzyme; Lane 4: 60°C, 120 minutes, 1%w/w enzyme; Lane 5: Molecular weight marker; Lane 6: 60°C, 1 minute, 4%w/w enzyme; Lane 7: 60°C, 120 minutes, 4%w/w enzyme; Lane 8: 60°C, 1 minute, 2%w/w enzyme; Lane 9: 60°C, 120 minutes, 2%w/w enzyme. 99
Figure 4.19: Progress curve for NPN content (g/100 g dry sample) at (A) different substrate concentrations and (B) at 120 minutes ($r^2 = 0.98$). Data points are mean values ± standard deviation, $n = 3$.

Figure 5.1: The peptide mixture contained 0.5 mg of five different protein peptides; (1) GLY-TYR, molecular weight of 238.2 g mol$^{-1}$, (2) Methionine Enkephalin Acetate, MW = 573.7 g mol$^{-1}$ for free base (TYR-GLY-GLY-PHE-MET), (3) VAL-TYR-VAL, MW = 379.5 g mol$^{-1}$, (4) Leucine Enkephalin, MW = 555.6 g mol$^{-1}$ for free base (TYR-GLY-GLY-PHE-LEU) and (5) Angiotensin II Acetate, MW = 1046.2 g mol$^{-1}$ for free base (ASP-ARG-VAL-TYR-ILE-HIS-PRO-PHE).

Figure 5.2: HPLC chromatograph of peptides in the hydrolysates processed at 60°C and 1% enzyme concentration after 1, 30, 60, 90, 120 and 180 minutes hydrolysis.

Figure 5.3: Changes of amino acid content after 1 minute and 120 minutes processing time. Amino acid concentration in hydrolysates after 1 and 120 minutes, at 60°C and 1%. w/w enzyme concentration. (*Asp= aspartic acid, Thr= threonine, Ser=serine, Glu=glutamic acid, Ala= alanine, Val= valine, Met= methionine, Ile=isoleucine, Leu= leucine, Tyr= tyrosine, Phe=phenylalanine, His= histidine, Lys= lysine, Arg= arginine, Trp= tryptophan).

Figure 6.1: Formation of NPN during hydrolysis reactions for whole meat and different protein fractions (myofibrillar, sarcoplasmic, connective tissue). Data points are mean values of 3 replicates ± standard errors.

Figure 6.2: SDS-PAGE analysis of whole meat protein and myofibrillar protein fraction hydrolysis. M = molecular markers, 0 – 60 min = processing time. a) Myosin heavy chain (MHC), b) β-actinin, c) α--actinin (95 kDa), d) unknown (75 kDa) e) desmin (55kDa), g) actin (42 kDa), h) unknown (38 kDa), i) tropomyosin β-chain (36 kDa), j) tropomyosin α-chain (34 kDa), k) troponin-T (35 kDa), l) unknown (25kDa), m) unknown (23kDa), n) troponin--I (21 kDa), o) troponin-C (18 kDa).

Figure 6.3: SDS-PAGE analysis on sarcoplasmic and connective tissue hydrolysis using ZyactinaseTM. M = molecular markers, 0 – 60 min processing time. Sarcoplasmic: [] represent the formation of smaller proteins/peptides. Connective tissue: Band in Lane 0 represents a) Collagen type 1 (300 kDa), b) β band (200 kDa) and c) α band (100 kDa).

Figure 7.1: Correlation analysis between % DH (by OPA) and NPN (g NPN per 100g sample) or hydrolysis of beef mince at 60°C for 120 minutes.

Figure 7.2: Possible reaction pathway for protein hydrolysis.
Figure 7.3: Progress curves for hydrolysis at 60°C at different enzyme concentrations (%w/w) monitored by A: OPA method (%DH) and B: SN-TCA method (NPN). Data points are mean values ± standard deviation, n = 2 - 4. ...122

Figure 7.4: Effect of addition of fresh enzyme during hydrolysis. Data points are mean values ± standard deviation, n=4. Hydrolysis at 60°C and 2% w/w enzyme concentration. ...124

Figure 7.5: Hydrolysis curve of meat hydrolysis using 2% w/w Zyactinase at 60°C and 360 minutes. ..125

Figure 7.6: Effect of addition of fresh enzyme during hydrolysis. Data points are mean values ± standard deviation, n=4 at Figure 7.4 : Hydrolysis curve at 60°C ,2% w/w and up to 300 minutes hydrolysis time...126

Figure 7.7: Progress curve for amino acid released during hydrolysis reactions at 60°C and substrate concentration 22.2% protein for 180 minutes. Control – no enzyme addition and 2%w/w enzyme added. Data points are mean values ± standard deviation, n=2 to 4. ..128

Figure 7.8: Determination of initial velocity (V₀) for the linear part of the hydrolysis progress curve at different substrate concentrations and 2% w/w enzyme concentration. Substrate concentration % w/w protein: A= 2.0%, B= 4.0%, C=6.0%, D=8.0%, E=10.0%, F= 15.0% and G = 22.2%. Data points are mean values ± standard deviation, n = 4. ..129

Figure 7.9: Determination of initial velocity (V₀) for the linear part of the hydrolysis progress curve at different substrate concentrations and 4% w/w enzyme concentration. Substrate concentration % w/w protein: A= 2.0%, B=4.0%, C=6.0%, D=8.0%, F=10.0%, G= 12.0%, H = 15.0%, I=22.2% . Data points are mean values ± standard deviation, n = 4 ...130

Figure 7.10: Determination of initial velocity (V₀) for the linear part of the hydrolysis progress curve at different substrate concentration and 7.5% w/w enzyme concentration. Substrate concentration % w/w protein: A= 2.0%, B= 4.0%, C=6.0%, D=8.0%, E=10.0%, F= 15.0% and G = 22.2%.Data points are mean values ± standard deviation, n = 4. ...131

Figure 7.11: Initial velocity (Serine NH₂ (meq g⁻¹ min⁻¹)) from at different substrate concentrations (%S = 2, 4 and 7.5 w/w protein). Data points are mean values ± standard deviation, n= 4..134
Figure 7.12: Lineweaver-Burk transformation of the progress curve at different substrate concentrations (1/S where S = %S or [S], 60°C. Enzyme concentrations 2, 4 and 7.5% w/w. Data points are mean values ± standard deviation, n=4...................... 135

Figure 7.13: Enzyme rate with predicted hyperbolic kinetic pattern on progress curve at different substrate concentrations (1/S where S =% S or [S], 60°C. Enzyme concentrations 2, 4 and 7.5% w/w. Data points are mean values ± standard deviation, n=4. ... 136

Figure 7.14: Initial rate of amino acid released at different enzyme concentrations (%w/w) and 10% (w/w protein) substrate concentration.. 137
List of Tables

Table 2.1: Proximate composition of meat from various sources expressed as a percentage of weight of edible portion (Fennema et al., 2008) ..4
Table 2.2: Amino acid composition in fresh meat ..19
Table 3.1: Preparation of resolving and stacking gels for analytical and preparative SDS-PAGE. (Bio-Rad formulation, Bio-Rad Laboratories Inc., USA)63
Table 3.2: Nitrogen content of the starting material for meat protein fraction hydrolysis ...65
Table 3.3: The chromatographic gradient programme used for peptides separation...66
Table 3.4: The chromatographic gradient programme used for amino acid separation 68
Table 4.1: Proximate composition of minced beef used for all experiments. Results are mean values of 10 replicates ± standard deviation ...74
Table 4.2: Proximate composition of meat hydrolysate Results are mean values 3 replicates ± standard deviation. ...76
Table 4.3: Moisture content (g water per 100 g sample) during hydrolysis at 40°C (Results are mean ± standard deviation, n = 3) ...77
Table 6.1: Mass of fractions recovered after separation of beef meat into different fractions ...108
Table 6.2: Composition of diluted hydrolysis solutions for each meat fraction. Results are mean values of 3 replicates ± standard deviation ...109
Table 7.1: Michaelis-Menten K_m and V_max values for meat hydrolysis at different Zyactinase™ enzyme concentrations – from Lineweaver-Burk transformations........ 133

List of abbreviations

The following table describes the significance of various abbreviations and acronyms used throughout the thesis.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-COOH</td>
<td>Carboxyl group</td>
</tr>
<tr>
<td>-NH2</td>
<td>Amino group</td>
</tr>
</tbody>
</table>

xviii
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulfate</td>
</tr>
<tr>
<td>ARI</td>
<td>Allegenicity reduction index</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>C</td>
<td>Weight percentage of cross linker</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>Calcium</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DH</td>
<td>Degree of hydrolysis</td>
</tr>
<tr>
<td>DM</td>
<td>Dry matter</td>
</tr>
<tr>
<td>DTNB</td>
<td>Ellman’s Reagent (5,5'-dithio-bis-[2-nitrobenzoic acid])</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EC</td>
<td>Emulsification capacity</td>
</tr>
<tr>
<td>F-actin</td>
<td>Filament actin</td>
</tr>
<tr>
<td>G- actin</td>
<td>Globular actin</td>
</tr>
<tr>
<td>HMM</td>
<td>Heavy meromyosin</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IgE</td>
<td>Immunoglobulin E</td>
</tr>
<tr>
<td>k<sub>cat</sub></td>
<td>Turnover number</td>
</tr>
<tr>
<td>k<sub>m</sub></td>
<td>Michaelis constant</td>
</tr>
<tr>
<td>LMM</td>
<td>Light meromyosin</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NPN</td>
<td>Non-protein nitrogen</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>OPA</td>
<td>o-phthalaldehyde</td>
</tr>
<tr>
<td>pI</td>
<td>Isoelectric point</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SH</td>
<td>Sulfhydryl group</td>
</tr>
<tr>
<td>T</td>
<td>Total monomer concentration</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TN-C</td>
<td>Troponin C</td>
</tr>
<tr>
<td>TN-I</td>
<td>Troponin I</td>
</tr>
<tr>
<td>TN-T</td>
<td>Troponin T</td>
</tr>
<tr>
<td>T_s</td>
<td>Shrink temperature</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume over volume</td>
</tr>
<tr>
<td>V_0</td>
<td>Initial velocity</td>
</tr>
<tr>
<td>V_max</td>
<td>Maximum velocity</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
</tbody>
</table>