Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Physiological and biochemical response of endophyte infected *Lolium perenne* to water stress and to plant hormone treatment when water sufficient.

A thesis presented in fulfilment of the requirement for the Degree of Master of Science, In Agricultural Science at Massey University, Palmerston North, New Zealand.

Michael Patrick Seawright

2005.
This focus of this thesis was centred on the water stress-induced interactions between the *Lolium perenne* and *Neotyphodium lolii* symbiotum and the *in vivo* biomass relationship between the two species. The aim was to test the hypotheses that endophyte bio-protective metabolites are synthesized at higher levels in water-stressed endophyte-colonised plants than in water-sufficient plants; to carry out ELISA experiments to measure tiller levels of ABA and JA in perennial ryegrass during the application of a controlled water stress and apply these levels, by dipping water-sufficient plants, thereby mimicking the abiotic stress, to test whether the levels of the endophyte-produced bio-protective metabolites, ergovaline, lolitrem B and peramine, increased. The evapotranspiration rate of endophyte hosted and endophyte free perennial ryegrass was measured and no significant difference was found.

The sodium borohydride reduction of ABA and JA, to yield protonated ABA and CA was developed using small quantities of the reducing agent, the products verified by nuclear magnetic resonance (NMR) spectroscopy and high performance liquid chromatography (HPLC). Radioactive sodium borohydride was then used to produce tritiated ABA and CA, the reduction products purified and used as spiking controls in the solid state extraction of ABA and JA from perennial ryegrass. The efficiency of DEAE Sephadex solid state columns at removing ABA and JA from perennial ryegrass leaf and sheath tissue was tested. The spiking methods, the results obtained and their use in adjusting analysed ABA and JA tissue levels are outlined. Hormone dipping regimes, obtained from the literature, were used as the basis for testing hormone uptake, after dipping, by measuring tissue levels by ELISA.

A trial was carried out, that measured by competitive ELISA, the ABA and JA leaf tissue levels in the perennial ryegrass genotypes after they had been progressively water stressed, by re-applying one third of the water lost in the previous 48 h. After 8 days of applied water stress the ABA levels increased substantially, peaking at 2.5×10^4 picomoles/g fresh weight while the JA increase was less dramatic and more sustained,
peaking at 1.68×10^3 picomoles/g fresh weight over the same period. This information was used to test the hypothesis that dipping water sufficient perennial ryegrass in known water stress levels of ABA and JA would increase alkaloid output by *N. lolii*.

The main statistically analysed split plot experiment, involved the dipping of water sufficient potted *L. perenne* genotypes in solutions (tissue mass adjusted) of increasing ABA, JA and ABA/JA concentrations from day 8 of an applied water stress, every 48 h for 16 days. The progression of water stress in the control treatments was measured independently. After this period of water stress the leaf and sheath tissue was harvested separately and the tissue levels of lolitrem B, ergovaline and peramine were analysed by HPLC. These dipped replicates were then compared with un-dipped water stressed and water sufficient controls. The data was analysed in three parts. Leaf and sheath combined, leaf only and sheath only data. There was a positive correlation coefficient (r) between the three alkaloids ergovaline, lolitrem B and peramine for the water-sufficient, hormone-treated and water-deficit-treated plants.

Considering ABA, JA and ABA/JA treatments on ergovaline levels in perennial ryegrass for the combined data; ergovaline levels in the sheath were significantly higher than the controls. During water stress where there was a highly significant increase in ergovaline levels in the sheath tissue. There was a significant increase in ergovaline levels in water stressed leaves when using leaf data. A significant increase in ergovaline level occurred in the leaves, but not the sheath, when water sufficient plants were dipped in JA and ABA separately. These levels dropped significantly in leaves when water sufficient plants were dipped in ABA/JA mixed solutions.

Lolitrem B was 3-fold higher in the sheath than the leaf. There was no response to hormone treatments. When sheath data was used, a significant decrease in sheath lolitrem B levels occurred in perennial ryegrass treatments that were water stressed.

Peramine levels were significantly higher in the sheath than the leaves when the combined data was analysed. When leaf data was considered peramine levels fell significantly during water stress while the analysed sheath data showed a significant 1.4-fold increase. Treatments that involved dipping in JA gave significant peramine
increases (1.35 fold). Other hormone treatments increased peramine levels but they were not significant. This study gave strong indications that there is a plant stress hormone communication between *L. perenne* and the mutualistic endophyte *N. lolii* and that water stress does increase endophyte ergovaline and peramine output and decreases lolitrem B levels.

During a confocal microscopic study, *L. perenne* meristems were successfully dissected out, re-hydrated, fixed, stained and 1.3 micron longitudinal sections, viewed. The sections were then digitalized, enhanced and re-assembled into a 3 dimensional rotating image; using computer based confocal microscope software. A stereoscopic anaglyph was made of ryegrass tiller leaf sections, highlighting *N. lolii* colonization patterns.

A non–invasive, means of measuring endophyte to ryegrass biomass ratios was developed using glutaraldehyde based fixing and staining protocols and used to threshold the endophyte mycelium in confocal microscopic images, using off line draw fill software. Once this was done the biomass was estimated for each section, totaled and percentage endophyte occupancy estimated.
Acknowledgements

This thesis, and the research work that supports it, has been the result of the dedicated encouragement, help, direction and support, freely given, from a wide-ranging group of people and the organisations to which they belong. I am truly grateful and proud to have been given the privilege of working with you all.

Several individuals and their organisations deserve special mention. So, in no special order:

Thanks to Emeritus Professor Tim Brown who encouraged me in the first instance to apply for the Royal Society of New Zealand Science, Mathematics and Technology Teacher Fellowship.

I am particularly grateful to Professor Barry Scott for the offer of a position in his Molecular Genetics laboratory at Massey University (Scott Base). This offer was the key determinant in my receiving the Fellowship from the Royal Society in 2000. Professor Scott went on to act as my major research supervisor and mentor and provided all the extra commitment that came as a consequence of that.

I am grateful to the Royal Society of New Zealand for the award of the Fellowship and the generous research expense allowances that ensured that this project could proceed in the first instance. I had a wonderful and refreshing 13 months away from the classroom.

A special and heartfelt thanks to Dr Dave Barker, recently of AgResearch and now of Ohio State University, for the discussions, over a few beers, that led to the start of this whole research project. His considerable support has been ongoing via email and phone conversations, especially with regard to the statistical analysis and proof reading of the results section.

A special thanks to Dr Ivan Galis of the BioScience Institute, now of The Riken Institute in Yokahama, Japan, for the huge support, the explanations and the supervision, usually done in his own time, outside work hours, that enabled the work in
Sections 3.5 and 3.6 to be carried out and completed. His ongoing script proofing and discussions have been greatly appreciated.

To Wayne Simpson for his fellowship, council and support, all of which have been ongoing over the past 4 years. His approach in all matters pertaining to this project has been reflected in the approach taken by others at AgResearch, including Dr Brian Tapper for his HPLC and solid state extraction tuition and council on other matters and Mike Christensen for his enthusiastic demeanour and superb, world-leading endophyte knowledge, freely given and gratefully received. Others from whom I have received help and support at AgResearch include Dr David Hume and Chris Mercer. Also thanks to Elizabeth Davies for her assistance and direction in preparing and running the plant samples for HPLC alkaloid analysis.

Thanks to all the members of my laboratory: Dr Carolyn Young (now of Ohio State University) and Lisa McMillan (now of Forestry Research) for their patient support and direction. To Dr Xiuwen Zhang, Michelle McGill, Rohan Lowe, Dr Shuguang Zhang and Jonathan Astin (now of Cambridge University) for their friendship and support, ranging from ‘how to do’ to ‘where it is’ during my time in the laboratory; along with Erroll Kwan, Jim and others of the Protozoa Research Unit for all their computer help.

The confocal section, Chapter 5, was completed with the patient tuition, the practical insight and the careful direction from Liz Nickless, of the Confocal Facility in the Institute of Molecular BioScience facility at Massey University. My heartfelt thanks Liz!

Others in the Institute of Molecular BioScience who deserve my thanks and my gratitude include Dr Max Scott, Dr Paul O’Toole (now of Cork University), Dr Mike McManus, Dr Rosie Bradshaw and Professor Paula Jameson, for their information, direction and encouragement when most needed, as well as the indomitable Robert Cleaver and Paul Hocquard for tracking down the equipment and chemicals I needed, usually at short notice, as the pressure to finish became acute.

Acknowledgement and thanks to Dr Simon Fielder of HortResearch for the discussions and directions that gave me the understanding I needed to carry out the production and
acquisition of the internal HPLC standards and the production of scintillated ABA and CA, which were needed for the successful solid state extraction protocols. Thanks to Joe Hislop of the Fundamental Science Institute for providing the equipment and direction I needed in that regard.

In conjunction with this work, sincere thanks to Dr Pat Edwards for assistance with identifying the NMR reduction products, and for proofreading the relevant section of the thesis.

Help with the ELISAs was given freely by Dr Grant Abernathy (New Zealand Pharmaceuticals, Palmerston North). He was always unstinting in the time and support he offered, usually in the evening, after he had finished his own work. His support and encouragement are thankfully received.

To Dr David Burritt (Otago University Botany Department) and Nigel Gapper (now of Food and Crop) for their help with the jasmonic acid ELISA. Also thanks to Dr Sheila Mackerness of the Department of Plant Genetics and Biochemistry, Horticulture Research International, Wellesbourne, Warwick, UK, for her suggestions and guidance when on her New Zealand AgResearch visit in 2000 and the follow-up references sent on her return to the UK.

Much gratitude to Dr Claire Woodhall for all her excellent ‘writing in science’ guidance, grammatical nuances, accepted formatting and an introduction to the use of the semi-colon.

To members of the staff of Havelock North High School, especially Herman Philipsen for all the computer technology support received over a period of 3 years, a big thanks! And finally, thanks to all my family, immediate and extended, and all my good friends for all their support, patience and encouragement.

A special and heartfelt thanks to my mum, Nan, who passed away on 27 June 2003 after a whole life of love, support and encouragement. She was so looking forward to the completion of this work, but could not hold on. For my part, in terms of this thesis, I
have sorely missed the contemplative walks along Ohope Beach and our chats together regarding its various aspects. RIP Ma!
Chapter 1

Literature Review and Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Taxonomy, agronomy and genetics of perennial ryegrass.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Taxonomy of the endophytes Epichloë and Neotyphodium.</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Taxonomy.</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Distribution of N. lolii in L. perenne.</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Endophyte biological effects.</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Protection from biotic stress.</td>
<td>7</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Protection from abiotic stress or abiotic effects.</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Biosynthesis of N. lolii alkaloids.</td>
<td>8</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Biosynthesis of the ergot alkaloid ergovaline.</td>
<td>8</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Biosynthesis of indole-diterpenes.</td>
<td>9</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Biosynthesis of peramine.</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>Plant stresses and hormonal responses.</td>
<td>10</td>
</tr>
<tr>
<td>1.5.1</td>
<td>UV light stress.</td>
<td>11</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Heat stress.</td>
<td>11</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Pathogenic stresses and the hormones involved.</td>
<td>12</td>
</tr>
<tr>
<td>1.5.3.1</td>
<td>Jasmonates.</td>
<td>12</td>
</tr>
</tbody>
</table>
1.5.3.2 SA and stress responses. 13
1.5.3.3 ABA and stress responses. 16
 Seed and bud dormancy. 16
 General stress tolerance. 16
 Cellular transpirational control. 17
 Other effects. 18
1.6 Effects of water stress on Lolium hormone levels and Neotyphodium alkaloid production. 18
1.7 Endogenous levels of plant hormones. 20
 1.7.1 Pathways of hormonal entry into the plant. 20
 Hypothesis and aims. 24

Chapter 2
Materials and Methods 25

2.1 Plant Material. 26
2.2 Growth and maintenance of perennial ryegrass. 27
2.3 Microscopy. 31
2.4 Experimental design. 31
2.5 Measurement of water loss. 33
2.6 Preparation of protonated abscisic acid (ABA) and cucurbic acid (CA). 33
 2.6.1 Large scale cold production of protonated ABA and CA by sodium borohydride reduction. 33
 2.6.2 Small scale cold production of protonated ABA and CA
by sodium borohydride reduction.

2.7 Small scale hot production of tritiated ABA and CA by sodium borohydride reduction

2.8 HPLC verification of the tritiated reaction products and their purification.

2.8.1 HPLC verification of tritiated CA.

2.8.2 C18 column purification of CA.

2.8.3 C18 column purification of tritiated ABA

2.9 Solid state extraction of ABA and JA.

2.9.1 Pre-conditioning the DEAE Sephadex 25 and loading the column

2.9.2 Pre-conditioning the C18 columns.

2.9.2.1 To remove chlorophyll, carotenes and xanthophyll.

2.9.2.2 To remove plant hormones.

2.9.3 ABA and JA vacuum extraction protocols

2.10 ABA and JA extraction protocols.

2.10.1 Plant tissue preparation.

2.10.2 Solid state extraction protocol.

2.10.3 Calculation of the percentage recovery and sample storage.

2.11 Endogenous levels of ABA and JA found in *L. perenne* as measured by ELISA when these hormones were applied by dipping and after the imposition of a prolonged water stress.

2.11.1 ABA and JA concentrations used to test the absorption
rates of these hormones when applied by dipping.

2.11.2 JA ELISA analysis of *L. perenne* after dipping and the imposition of a prolonged drought. \(\text{Page 48} \)

2.11.3 Purification of Ovalbumin-JA (OVA-JA) antiserum. \(\text{Page 48} \)

2.11.4 JA competitive ELISA. \(\text{Page 49} \)

2.11.5 ABA competitive ELISA. \(\text{Page 49} \)

2.12 The main experiment. \(\text{Page 50} \)

2.12.1 Experimental. \(\text{Page 50} \)

2.12.2 Using the tiller fresh weight to estimate the dipping solution concentrations. \(\text{Page 51} \)

2.12.3 Dipping concentrations deduced from ELISA results. \(\text{Page 51} \)

2.12.4 Protocol used to independently check the water stress status of the *L. perenne* genotypes as the water stress was imposed in the main experiment. \(\text{Page 56} \)

2.12.5 Watering regimes used on all trial potted plants. \(\text{Page 57} \)

2.12.6 Sample preparation for alkaloid HPLC analysis. \(\text{Page 58} \)

2.12.7 Statistical analysis. \(\text{Page 59} \)

2.13 An experiment that produced deuterated methyl jasmonic acid using Pt as a catalyst. \(\text{Page 61} \)

2.14 An experiment to produce deuterated salicylic acid (SA). \(\text{Page 63} \)

Chapter 3

Results

3.1 Source of plant material for drought experiments. \(\text{Page 65} \)

3.2 Measurement of water loss to assess drought regime. \(\text{Page 66} \)

3.3 Assessment of endogenous levels of JA and ABA and
3.4 Preparation of tritiated plant hormones.

3.5 HPLC verification of the tritiated reduction product CA and its purification.
 3.5.1 HPLC verification of tritiated CA.
 3.5.2 Purification of tritiated CA from the crude extract.
 3.5.3 Verification of the efficiency of the small scale purification.
 3.5.4 Large scale purification of tritiated CA.

3.6 Development, verification and extraction of the plant hormones ABA and JA from \textit{L. perenne}.

3.7 ELISA analysis of endogenous hormone levels of ABA and JA in water stressed plants and uptake of these hormones after dipping.
 3.7.1 Plant hormone levels in water-stressed \textit{L. perenne}.
 3.7.2 ELISA results for ABA.
 3.7.3 ELISA results for JA.
 3.7.4 Dipping experiments A and D.
 Dipping experiment A.
 Dipping experiment D.
3.8 Effect of water deficit and plant hormones on the biosynthesis of alkaloids by endophytes.

3.8.1 HPLC results and ANOVA analysis for ergovaline, lolitrem B and peramine using the combined leaf and sheath results.

3.8.1.1 Ergovaline.

3.8.1.2 Lolitrem B.

3.8.1.3 Peramine

3.8.2 Correlation analysis of the three alkaloids and MAOVA.

3.8.3 HPLC results and ANOVA analysis for ergovaline, lolitrem B and peramine using only the sheath results.

3.8.3.1 Ergovaline.

3.8.3.2 Lolitrem B.

3.8.3.3 Peramine

3.9 Production and acquisition of stable internal standards.

3.9.1 Deuteration of methyl jasmonate.

3.9.2 Acquisition of D₆ ABA from Australia.

3.9.3 A supercritical exchange reaction to make deuterated SA.

Chapter 4
Discussion

4.1 Introduction.
4.2 Dipping Treatments. 132

4.3 Influences of water stress and hormones on ergovaline levels. 134

4.4 Influences of water stress and hormones on lolitrem B levels. 135

4.5 Influences of water stress and hormones on peramine levels. 137

4.6 Effects of growth chamber versus greenhouse on the alkaloids. 138

4.7 Limitations of the experimental design. 140

4.8 Limitations of current research and future research. 141

4.9 Conclusions 142

Chapter 5
Confocal Study of *Neotyphodium lolii* colonization of *Lolium perenne* 145

5.1 Introduction and aims. 146

5.2 Materials and methods. 148

5.2.1 *Lolium perenne* meristem dissection and preparation for confocal examination. 148

5.2.2 Protocols for fixing leaf tissue. 149

Protocol 1. 149
Protocol 2. 149
Protocol 3. 150
Protocol 4. 150

5.2.2.1 Refinements to protocol 4. 150

Protocol 4-2. 150
Protocol 4-3. 150
Protocol 4-4. 151
Protocols 4-5. 151
Protocol 4-6. 151
Protocol 4-6A. 152
Protocol 4-6C. 152
Protocol 4-6D. 152
Protocol 4-6E. 152
Protocol 4-6F. 152
Protocol 4-6G. 153
Protocol 4-6H. 153
Protocol 4-6I. 153
Protocol 4-6J. 153
Protocol 4-6K. 153
Protocol 4-6L. 153
Protocol 4-6M. 153
Protocols 4-6N, 4-6O and 4-6P. 153
Protocol 4-6Q. 153
Protocol 4-6R. 154

5.3 Confocal Results. 155

5.3.1 Confocal microscope analysis of perennial ryegrass meristem. 155

5.3.2 A stereoscopic anaglyph 160

5.3.3 Optimization of protocols for fixing leaf tissue 162
Protocols 1 to 4 162
Refinements to protocol 4 163
Further modifications of protocol 4-6 168

5.3.4 Measurement of endophyte biomass 172

5.4 Confocal Discussion. 175

Appendix 176

Bibliography 194
List of Tables

Chapter 2
Materials and Methods

Table 2.1 The conventions used for labeling different genotypes. 27
Table 2.2 The selected *L. perenne* genotypes and their allocated replicates 31
Table 2.3 Treatments for replicate 5. 32
Table 2.4 Treatments for replicates 1 and 2. 32
Table 2.5 Treatments for replicates 3 and 4. 32
Table 2.6 The average dry weight of the 16 *L. perenne* genotypes. 40
Table 2.7 A summary of ABA treatments used by various researchers under a variety of different conditions. 45
Table 2.8 A summary of the JA dipping concentrations used by various researchers under a variety of different conditions. 47
Table 2.9 Concentrations of ABA and JA used in the dipping solutions, when *L. perenne* was dipped to test for leaf hormone absorption. 48
Table 2.10 Tiller numbers in each replicate in August 2000. 52
Table 2.11a Tillers numbers with averages for each genotype and treatment. 53
Table 2.11b Fresh weight increases in hormone treated pots over the experiment. 54
Table 2.12 ABA dipping concentrations for the dipping days shown, using Tables 2.11a and 2.11b (Excel generated). 55
Table 2.13 JA dipping concentrations for the dipping days shown, using Tables 2.11a and 2.11b. (Excel generated) 56
Chapter 3

Results

Table 3.1 Evapotranspiration of *L. perenne* with and without 67
Table 3.2
Table 3.3 Recovery of tritiated ABA mixed with plant tissue following 82
solid state extraction.

Neotyphodium lolii grown under different environmental conditions. 83

Table 3.4 Effect of sorbent source and type on plant hormone recovery 84
Table 3.5 Effect of elution method on plant hormone recovery. 85
Table 3.6 The effect of water on the efficiency of counting. 86

Table 3.7 Efficiency of hormone extraction from water-stressed samples 87
of *L. perenne*.

Table 3.8 ABA levels in water stressed plants of *L. perenne* grown in the 89
AgResearch glasshouse.

Table 3.9 The efficiency of 3H-CA recovery from water-stressed 92
samples of *L. perenne* grown in a growth chamber.

Table 3.10 ABA levels in water stressed plants of *L. perenne* genotypes 93
grown in the AgHort growth chamber.

Table 3.11 JA levels in water stressed plants of *L. perenne* grown in the 96
AgResearch glasshouse.

Table 3.12 JA levels in water stressed plants of *L. perenne* genotypes 97
grown in the AgHort growth chamber.

xvii
Table 3.13 The efficiency of hormone extraction after solid state extraction, of *L. perenne* (G1076) for dipping trial A. 100

Table 3.14 ABA levels in *L. perenne* tissue after dipping in hormone solution of 10 mg/L JA and 20 mg/L ABA. 101

Table 3.15 JA levels in *L. perenne* tissue after dipping in hormone solution of 10 mg/L JA and 20 mg/L ABA. 103

Table 3.16 The efficiency of hormone extraction after solid state extraction of *L. perenne* (G1076) for dipping trial D. 104

Table 3.17 ABA levels in *L. perenne* tissue after dipping in hormone solution of 1.25 mg/L JA and 2.5 mg/L ABA. 105

Table 3.18 JA levels in *L. perenne* tissue after dipping in hormone solution of 1.25 mg/L JA and 2.5 mg/L ABA. 107

Table 3.19 Ergovaline, lolitrem B and peramine levels found in *L. perenne*. 111

Table 3.20 Ergovaline concentration (ppm) in perennial ryegrass subjected to plant hormone and water deficit treatments. 112

Table 3.21 Lolitrem B concentration (ppm) in perennial ryegrass subjected to plant hormone and water deficit treatments. 114

Table 3.22 Peramine concentration (ppm) in perennial ryegrass subjected to plant hormone and water deficit treatments. 115

Table 3.23 Correlations coefficient (r) between the three alkaloids ergovaline, lolitrem B and peramine for the water-sufficient, hormone-treated and water-deficit-treated plants (n-1 = 79). 115

Table 3.24 Multivariate analysis of variance (MANOVA) for a combined analysis of the three alkaloids. 116

Table 3.25 Ergovaline, lolitrem B and peramine levels found in *L. perenne* leaves. 116

Table 3.26 Ergovaline concentration (ppm) in perennial ryegrass leaves subjected to plant hormone and water deficit treatments. 118

Table 3.27 Lolitrem B concentration (ppm) in perennial ryegrass leaves subjected to plant hormone and water deficit treatments. 119
Table 3.28 Peramine concentration (ppm) in perennial ryegrass leaves subjected to plant hormone and water deficit treatments. 120

Table 3.29 Ergovaline, lolitrem B and peramine levels found in *L. perenne* sheaths. 120

Table 3.30 Ergovaline concentration (ppm) in perennial ryegrass sheaths subjected to plant hormone and water deficit treatments. 122

Table 3.31 Lolitrem B concentration (ppm) in perennial ryegrass sheaths subjected to plant hormone and water deficit treatments. 123

Table 3.32 Peramine concentration (ppm) in perennial ryegrass sheaths subjected to plant hormone and water deficit treatments. 124

Chapter 5
Confocal Study

Table 5.1 Treatments used for the development of protocol 4-6. 152

Table 5.2 Estimation of biomass of a single thresholded confocal section. 174

Table 5.3 Endophyte bio-volume in perennial ryegrass leaf tissue. 174
List of Figures

Chapter 1
Introduction

Fig 1.1	Co-ordinated life cycles of *Epichloë festucae* and its host grass *Festuca rubra.*	3
Fig 1.2	The hyphae of highly branched distorted *Neotyphodium lolii* in the outer sheath of *Lolium perenne* of an artificially established association.	6
Fig 1.3	The proposed pathway for the biosynthesis of ergot alkaloids and indole-diterpenes in *Epichloë* endophytes.	10
Fig 1.4	Tunable dial model for the regulation of defence gene expression by the three signals JA, ethylene and SA.	15
Fig 1.5	The components of the epidermal cell wall.	20
Fig 1.6	The entry of the dye fluorochrome into leaves of *Pyrus communis* as related to the concentration of surfactant (Vatsol OT) and the state of opening of the stomata.	22
Fig 1.7	The uptake of 2,4-D by oat coleoptile sections, showing the initial rapid uptake phase followed by a steady slower phase	23

Chapter 2
Materials and Methods

<p>| Fig 2.1 | Source of perennial ryegrass material used in this work. | 26 |
| Fig 2.2 | Potted perennial ryegrass genotypes used in this work growing in the glasshouse and the growth chamber. | 28 |
| Fig 2.3 | Morphological features of a typical L. perenne tiller. | 30 |
| Fig 2.4 | The protonation of ABA and JA. (A) Reduction of ABA. | 34 |</p>
<table>
<thead>
<tr>
<th>Fig</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 2.5</td>
<td>Equipment and process used to extract ABA and JA from perennial ryegrass tissue.</td>
<td>41</td>
</tr>
<tr>
<td>Fig 2.6</td>
<td>Equipment and process used in stage two of the solid state hormone extraction process.</td>
<td>42</td>
</tr>
<tr>
<td>Fig 2.7</td>
<td>The hormone dipping procedure.</td>
<td>50</td>
</tr>
<tr>
<td>Fig 2.8</td>
<td>Deuteration of methyl jasmonate.</td>
<td>61</td>
</tr>
<tr>
<td>Fig 2.9</td>
<td>The celite filter used to remove the PtO₂ catalyst.</td>
<td>62</td>
</tr>
<tr>
<td>Fig 2.10</td>
<td>The rotary vacuum flask used to remove the ether from the reaction products.</td>
<td>63</td>
</tr>
<tr>
<td>Fig 2.11</td>
<td>The bomb used to carry out the supercritical exchange reaction of salicylic acid.</td>
<td>63</td>
</tr>
<tr>
<td>Fig 2.12</td>
<td>The chemical reaction showing the protonation of salicylic acid.</td>
<td>64</td>
</tr>
</tbody>
</table>

Chapter 3

Results

Fig 3.1	Light micrograph of a perennial ryegrass leaf sheath stained with aniline blue.	66
Fig 3.2	Daily water losses as a result of evapotranspiration (mL/pot/day) for endophyte-infected (E⁺) and endophyte-free (E⁻) perennial ryegrass plants.	68
Fig 3.3	Chemical structures of S-cis-ABA, reduced S-cis-ABA, JA and CA.	70
Fig 3.4	¹³C DEPT 90 NMR spectra of JA and CA.	71
Fig 3.5	¹H NMR spectra of JA and CA.	72
Fig 3.6	¹H NMR spectra of ABA and reduced ABA.	74
Fig 3.7	Two-dimensional ¹H–¹H COSY experiment, which was carried out to analyse the reduction product produced from 5 mg of ABA.	75
Fig 3.8	Comparison of HPLC separation times for JA and CA	77
Fig 3.9	HPLC fractionation of the unpurified tritiated JA reduction product.	79
Fig 3.10 Radioactivity found in the HPLC fractions purified by C18 solid state extraction.

Fig 3.11 The ELISA standard curve used to obtain the concentration of ABA from perennial ryegrass tissue samples.

Fig 3.12 The concentration of ABA in perennial ryegrass when subjected to a water stress.

Fig 3.13 The concentration of ABA in perennial ryegrass with the trend line imposed from the 21 September trigger point.

Fig 3.14 The concentration of ABA in perennial ryegrass when subjected to a water stress.

Fig 3.15 The ELISA standard curve used to obtain the concentration of JA from perennial ryegrass tissue samples.

Fig 3.16 The concentration of JA in perennial ryegrass grown in the AgResearch glasshouses, when subjected to a water stress.

Fig 3.17 The concentration of JA in perennial ryegrass, grown in the AgHort growth chamber at Massey University when subjected to a water stress.

Fig 3.18 Tissue levels of ABA after genotype G1076 (endophyte-free perennial ryegrass) was dipped in a hormone solution containing 10 mg/L JA and 20 mg/L ABA for one hour.

Fig 3.19 Tissue levels of JA after genotype G1076 (endophyte-free perennial ryegrass) was dipped in a hormone solution containing 10 mg/L JA and 20 mg/L ABA for on hour.

Fig 3.20 Tissue levels of ABA after genotype G1076 (endophyte-free perennial ryegrass) was dipped in a hormone solution containing 1.25 mg/L JA and 2.5 mg/L ABA for one hour.
Fig 3.21 Tissue levels of JA after genotype G1076 (endophyte-free perennial ryegrass) was dipped in a hormone solution containing 1.25 mg/L JA and 2.5 mg/L AB for one hour.

Fig 3.22 RWC of the water-stressed genotypes over the course of the main experiment.

Fig 3.23 Thin layer chromatogram of the reactants and products used in the reaction that produced deuterated methyl jasmonate.

Fig 3.24 Chemical equation of the deuteration reaction.

Fig 3.25 Structure of deuterated ABA.

Fig 3.26 Mass spectrum deuterated ABA (D₆ ABA).

Fig 3.27 Chemical reaction showing the protonation of SA.

Chapter 5

Confocal microscope study

Fig 5.1 Confocal micrographs of 1.3 μm sections through a perennial ryegrass apical meristem.

Fig 5.2 Re-assembled confocal images of a perennial ryegrass apical meristem.

Fig 5.3 An anaglyph of 30 confocal images of perennial ryegrass leaf sheath.

Fig 5.4 Confocal micrograph of a 1.3 μm section of perennial ryegrass leaf sheath tissue prepared using protocol 4-1.

Fig 5.5 Confocal micrograph of a 1.3 μm section of perennial ryegrass leaf sheath tissue prepared using protocol 4-2.

Fig 5.6 Confocal micrograph of a 1.3 μm section of perennial ryegrass leaf sheath tissue prepared using protocol 4-3.

Fig 5.7 Confocal micrograph of a 1.3 μm section of perennial ryegrass leaf sheath tissue prepared using protocol 4-4.
Fig 5.8 Confocal micrograph of a 1.3 µm section of perennial ryegrass leaf sheath tissue prepared using protocol 4-5.

Fig 5.9 Confocal micrograph of a 1.3 µm section of perennial ryegrass leaf sheath tissue prepared using protocol 4-6.

Fig 5.10 Five confocal micrographs of 1.3 µm sections of perennial ryegrass leaf sheath tissue prepared using protocols 4-6A to 4-6F.

Fig 5.11 Six confocal micrographs of 1.3 µm sections of perennial ryegrass leaf sheath tissue prepared using protocols 4-6G to 4-6L.

Fig 5.12 Six confocal micrographs of 1.3 µm sections of perennial ryegrass leaf sheath tissue prepared using protocols 4-6M to 4-6R.

Fig 5.13 Confocal micrographs of 1.3 µm sections (A, B, C, D) prepared using protocol 4-6M.

Fig 5.14 Confocal micrograph of a single 1.3 µm section that was prepared using protocol 4-6M.
1.1 Taxonomy, agronomy and genetics of perennial ryegrass

Perennial ryegrass *Lolium perenne* is the most widely grown forage crop in New Zealand. This grass is a member of the family Gramineae, sub-family Pooideae within the tribe Poeae. The cultivars used in agriculture are predominantly diploid (2n = 14) but some tetraploid genotypes are also grown, although these have been shown to have low pasture persistence.

Until 1950, imported perennial ryegrass was oversown into pastures that were previously composed of native grass species. Perennial ryegrass has always been favoured as a forage crop because of its pasture persistence, palatability and ability to withstand close grazing due to its basally sited meristem (Soper & Mitchell, 1955). Over the years, ecotypes arose in response to differences in microclimates and grazing regimes. Several of these ecotypes were pooled, interbred and released as New Zealand certified *L. perenne* (Grasslands Ruanui). In the late 1950s, a superior ecotype was identified at Mangere and, in 1962, 1000 randomly selected genotypes from the Mangere site were evaluated against Ruanui in single plot trials. From this trial, nine elite genotypes were selected and polycrossed. The seed from this cross was bulked and released as Grasslands Nui perennial ryegrass (Armstrong, 1977).

1.2 Taxonomy of the endophytes *Epichloë* and *Neotyphodium*

1.2.1 Taxonomy

The *Epichloë* endophytes are a group of clavicipitaceous fungi that form mutualistic intercellular associations (symbiota) with temperate Pooideae grasses (Christensen et al., 2001; Scott, 2001 b). All the *Epichloë* species are sexual and spread both vertically and horizontally, whereas their asexual *Neotyphodium* (previously *Acremonium*) derivatives spread mainly vertically. The life cycle of these fungi is shown in Fig 1.1. (Schardl & Philips, 1997).
The life cycle of Neotyphodium lolii

Fig 1.1 Co-ordinated life cycles of Epichloë festucae and its host grass Festuca rubra. Neotyphodium species found in Lolium perenne are transmitted vertically in a similar manner.

Currently nine Epichloë species are recognized and it is thought that the similar asexual Neotyphodium spp. evolved either from a single Epichloë species or more often by an interspecific hybridization (Scott, 2001a & Schardl & Phillips, 1997). The seed-transmitted species, Neotyphodium lolii, is the predominant endophyte found in L. perenne. This association of endophytes with Lolium was first noted by (Neill, 1940). However, the true significance of this mutualism was not fully appreciated until 1981 when two scientists, Fletcher and Harvey (Fletcher & Harvey, 1981), were able to correlate endophyte levels in Nui with lamb toxicosis, a syndrome known as ryegrass staggers.

The New Zealand strain of N. lolii can be considered to be homogeneous with little genetic variation across New Zealand. When the initial ryegrass introductions were made into New Zealand from the UK it is surmised that they were L. perenne genotypes that hosted a narrow range of Neotyphodium genotypes. This has led to the relatively homogeneous levels of alkaloid found in endophytes today. At the time of the introduction in the late 19th century the nature or existence of the symbiotum was unknown. This was probably due to the manner of its original introduction. Survey
work done at Ruakura has shown that there are no recorded instances of endophytes that
do not express alkaloid genes, while in the UK many cases of non-expression have been
found in this particular symbiontum. It is proposed that the quantitative differences in
ergovaline, peramine and lolitrem B production between Lolium genotypes are due to
differences in interaction between N. lolii with these different Lolium genotypes, rather
than genetic profile differences in Neotyphodium.

1.2.2 Distribution of N. lolii in L. perenne

The endophyte colonization of grasses is without exception intercellular with no known
intracellular invasion. This would be expected for a mutualistic interaction. However,
the delicate balance between the endophyte triggering a hypersensitive response from
the plant and maintaining compatibility with its host is not well understood (Christensen
et al., 2002).

The distribution of an endophyte within its host has also been studied (Keogh et al.,
1996) using sectioned plant parts, such as age-related leaf sections, ligules and sheath
sections, and analysed for endophyte using enzyme-linked immunosorbent assay
(ELISA). This work showed that endophyte biomass was highest in the sheath and
lowest in leaf tissue. Older tissue generally had a higher biomass of endophyte than
younger tissue.

N. lolii is also known to produce the alkaloids lolitrem B, ergovaline and peramine.
Peramine is very soluble whereas lolitrem B and ergovaline are relatively insoluble and
thus more restricted in their movement throughout the plant. Analysis of plant sections
for these insoluble alkaloids by high performance liquid chromatography (HPLC)
confirmed the biomass findings, that lolitrem B and ergovaline, and therefore the
endophyte, are found more commonly in the sheath tissue.

Because the concentrations of alkaloids may simply reflect the biomass of endophyte
rather than being a direct consequence of the interaction between the endophyte and the
plant, a further study was done (Herd et al., 1997) using transformed Acremonium
(Neotyphodium) carrying the Escherichia coli β-D-glucuronidase gene (gusA) under the
control of a constitutive promoter to assess metabolic activity. This study found that
endophyte activity decreased with an increase in plant size and that around 70% of the activity was confined to the leaf sheaths. The results indicated that there is a younger to older basal-apical gradient and that it is established early in leaf development. The study also established that the endophyte in each part of the plant is regulated so that a predetermined threshold of total endophyte activity per plant is not exceeded and a consistent distribution pattern is maintained.

However, a key issue with all these studies is the difficulty in measuring endophyte biomass within the plant. This is an important issue because if there is an active interaction between the participants of the association, then there is a need to correlate endophyte biomass with alkaloid output under different plant stress regimes.

Methods used to determine endophyte biomass include hyphal counts in plant cross-sections (Yong et al., 2001), chitin levels (Roberts & Cabib, 1982; Roberts et al., 1948) and competitive polymerase chain reaction (PCR) (Panaccione et al., 2001; Groppe & Boller, 1997). Confocal imaging has also been used for estimating fungal biomass (Dickson & Kolesik, 1999; Running et al., 1995).

A more detailed morphological examination of Neotyphodium distribution in Lolium has shown that vascular invasion can occur in some artificial endophyte associations (pers comm Simpson, AgResearch Grasslands Division, Palmerston North, New Zealand 2002; Christensen et al., 2001). However, there is little evidence for vascular invasion that leads to pathogenicity in the wild. There is circumstantial evidence to suggest that the host grass influences the concentration of the hyphae in the leaf sheaths and blades and that hyphal extension and branching occurs for only a short time during the life of a leaf (Christensen et al., 2001). This influence probably occurs as the leaf is growing. The host may also control the concentration of alkaloids produced by the endophyte.

Neotyphodium / Epichloë endophytes, with few exceptions, interact with vegetative tillers of their host grasses in a highly regulated manner (Yong et al., 2001). The hyphae in the leaf sheaths of the host grass seldom branch and tend to align parallel to the leaf axis. The hyphae are randomly distributed and not clustered around the vascular bundles. When found in leaf blades, they tend to cluster around the small un-sheathed vascular bundles, presumably because they have access to nutrients. However, a
benomyl-resistant *N. lolii* mutant and p-endophytes show a different growth pattern when introduced into *L. perenne* (Christensen *et al.*, 2002). In contrast to the normal restrictive endophytic growth pattern, these endophytes show a highly branched growth pattern (Fig 1.2) that does not revert to normal growth when leaf growth ceases.

![Fig 1.2 The hyphae of highly branched distorted *Neotyphodium lolii* in the outer sheath of *Lolium perenne* of an artificially established association (upper) and the hyphae of a p-endophyte (lower).](image)

For these interactions, the endophyte is acting more as a pathogen than as a mutualistic partner. This unregulated growth of the endophyte could be due to some internal host plant control having been either down-regulated or switched off, resulting in the predetermined threshold of total endophyte activity per plant being exceeded (Herd *et al.*, 1997).

1.3 Endophyte biological effects

Around 1984, scientists in New Zealand and the USA began to appreciate that a number of toxins were being produced by grass containing endophytes and *N. lolii*, formerly
Acremonium lolii, isolated from L. perenne was described for the first time (Latch et al., 1984). Farmers also realized that livestock were less productive than would have been expected based on the nutritional dry weight value of the grass. Stock behaviour also pointed to a lack of palatability. This lack of palatability and apparent nutritional value was due to the fungal endophyte producing mammalian toxins. In natural ecosystems these toxins confer major fitness enhancements to the grass host (Prestidge et al., 1993; Gallagher et al., 1985). These toxins (or alkaloids) fall into four major groups: the lolines, peramine, ergot alkaloids and the lolitrems (Bush et al., 1997). The lolines are found in both Festuca arundinacea and F. pratense associations, whereas all the other toxins are found in ryegrass and tall fescue associations. Given that there was a high correlation between the toxicosis and the presence of the endophyte, it was assumed that the endophyte had the genetic capacity to synthesize the alkaloid toxins. Lolitrems, ergot alkaloids and peramine are commonly found in associations between perennial ryegrass and N. lolii (Christensen et al., 1993). Fungal synthesis of peramine (Rowan, 1993), lolitrem (Reinholz & Paul, 2001; Penn et al., 1993) and ergovaline (Bacon et al., 1988; Bacon & Hill, 1979) has been confirmed by culturing the endophytes in axenic culture.

1.3.1 Protection from biotic stress

Lolitrems B is thought to be responsible for the neurotoxic malady known as ryegrass staghgers. The correlation of endophyte to this condition was first noted in 1981(Fletcher & Harvy, 1981). Peramine, a pyrrolopyrazine alkaloid has as its primary activity the deterring of feeding insects such as black beetle and Argentine stem weevil (Bush, et al., 1997). Most other insects tested are insensitive to peramine. Peramine has no known activity against mammalian herbivores. Ergovaline is mainly active against vertebrate herbivores although insecticidal activity from ergopeptine alkaloids, including ergovaline, against Heteronychus arator (black beetle) has been noted (Ball et al., 1997). The alkaloid ergovaline has been correlated with reduced weight gain, elevated body temperature, restricted blood flow, reduced reproduction and reduced milk production in vertebrate herbivores. Ergovaline is associated with tall fescue toxicosis and gives similar symptoms in ryegrass. At this stage little is known about synergistic interactions between the different classes of metabolites. However, there is evidence
that high levels of ergovaline will enhance lolitrem B toxicosis (pers comm. Hume, AgResearch 2002).

1.3.2 Protection from abiotic stress or abiotic effects

There have been reports of drought and mineral stress tolerance in grasses infected with Neotyphodium spp. (Malinowski & Belesky, 2000). Endophytes are thought to affect osmoregulation by indirectly changing root morphology and function. It is thought that these mineral and drought adaptations may arise from a chemical signalling system in the symbiotum. The initial perception of the stress signal occurs in the roots, and affects a range of responses in the host plants that may influence the uptake and transport of water and nutrients. These responses contribute to the adaptability and subsequent persistence in challenging edaphic and environmental conditions. Much of the mineral stress work has been done on tall fescue rather than perennial ryegrass.

1.4 Biosynthesis of N. lolii alkaloids

Both ergovaline and lolitrem B are secondary metabolites that are produced from pathways that utilize isoprenoids as precursors (Scott, 2001a). These precursors are then combined in anabolic reactions with metabolites sourced from primary metabolic pathways such as glycolysis and the citric acid cycle to produce the alkaloid intermediates. Isoprenoids are derived from mevalonic acid (MA). This metabolite is phosphorylated and decarboxylated to produce isopentenyl pyrophosphate (IPP), which is then isomerised to produce dimethylallyl pyrophosphate (DMAPP). Both IPP and DMAPP are 5 carbon (C5) compounds.

1.4.1 Biosynthesis of the ergot alkaloid ergovaline

The first step in the ergot alkaloid biosynthesis reaction is a condensation between DMAPP and tryptophan that is catalysed by the enzyme DMAPP synthase to give dimethylallyl tryptophan (DMAT). DMAT is then converted via several intermediates to clavine alkaloids, such as lysergic acid, a member of the ergolene acid group. These intermediates are further transformed into complex ergopeptine derivatives, such as ergotamine produced by Claviceps purpurea, by two synthetases, lyserylg peptide
synthetase 2 (LPS2) and LPS1. LPS2 activates lysergic acid, which is transferred to LPS1, which sequentially adds the amino acids alanine, phenylalanine and proline to form ergotamine (Panaccione et al., 2001). The synthesis of ergovaline by endophytes involves similar LPSs that incorporate alanine, valine and proline.

Recently, the peptide synthetase gene from *N. lolii* was cloned and inactivated by making a gene knockout in *Neotyphodium* sp. strain Lp1 (Panaccione et al., 2001). The resulting strain retained full compatibility with its *Lolium* host as assessed by immunoblotting of tillers and quantitative PCR. No ergovaline was detected, as analysed by HPLC (Panaccione et al., 2001). For the first time, this provides genetic proof that *N. lolii* requires a peptide synthetase for ergovaline biosynthesis. This result demonstrated the possibility of ameliorating ergovaline toxicosis in livestock by the genetic manipulation of endophytes.

1.4.2 Biosynthesis of indole-diterpenes

Much less is known about this pathway, and what is known is based on radio-labeling studies (Munday-Finch et al., 1996; Mantle & Weedon, 1994). In *Penicillium paxilli*, the proposed pathway (Fig 1.3) for paxilline biosynthesis (Scott, 1999) involves indole that has been derived from tryptophan (or a tryptophan precursor) and IPP from MA as precursors. Indole is condensed with geranylgeranyl pyrophosphate (GGPP), a C20 molecule, to generate the first stable indol-diterpene intermediate, possibly paspaline. Paspaline is subsequently converted to paxilline via paspaline B and 13-desoxpaxilline. In endophytes, paspaline is the proposed intermediate that is converted to lolitrem B via the intermediates α-paxitrol and lolitriol.
1.4.3 Biosynthesis of peramine

It has been suggested that peramine is derived from the cyclization and condensation of the amino acids proline and arginine, with the final N-methylation carried out by an N-methyltransferase using S-adenosylmethionine as a cofactor. The mode of action of peramine is unknown but it is thought to interfere with a microsomal cytochrome P450 enzyme (Siegel & Bush, 1996).

1.5 Plant stresses and hormonal responses

A number of stress conditions are recognized in plants and in many cases the physiological responses have been identified. These include UV light, disease, grazing, nutritional and drought stresses. Hormones are central to the plant responses to these stresses (Davies, 1993).
1.5.1 UV light stress

UV-B radiation had a dramatic effect on the expression of chloroplast proteins in *Pisum sativum*, as demonstrated by severe reduction in chloroplast transcripts (Jordan et al., 1991). However, this effect was reversible and prolonged UV-B exposure tended to reduce the effect (Jordan et al., 1991). UV-B radiation was shown to down-regulate the production of certain photosynthetic transcripts in fully expanded pea leaves. The response was less marked in apical buds and was ameliorated by high-light intensities. Reactive oxygen species (ROS) were highest in low-light leaves and lowest in high-light leaves and buds. The feeding of antioxidants could prevent the UV-B effect (Mackerness et al., 1998). Further work on the effects of UV-B in *Arabidopsis thaliana* showed that, in addition to the down-regulation of the photosynthetic genes, two pathogen-related genes, *PR-1* and *PDF1-2*, were up-regulated and, at the same time, jasmonic acid (JA) and ethylene production increased. It was also shown that there was an increase in ROS. It is well known that salicylic acid (SA) plays a key role in activating the defence pathways that lead to the up-regulation of the pathogen-related *PR-1* and *PDF1-2* genes (Surplus et al., 1999). It is proposed that at least four signalling pathways mediate responses to UV-B. In this scheme

(i) ROS triggers the production of JA, which directly or indirectly triggers *PDF1-2* transcription.

(ii) ROS also triggers the production of ethylene, which then acts on the *PDF1-2* gene. Ethylene may also act indirectly via the SA pathway.

(iii) ROS directly triggers the production of SA, which then acts on the *PR-1* gene.

(iv) ROS acts to down-regulate the photosynthetic genes *Lhcb* and *psbA*.

From this work, it is clear that, although the perception of a stress in plants may be via different response pathways, the transducer signals that respond to the stress are similar, or at least act in parallel cascades (Mackerness et al., 1999; Mackerness et al., 2000).

1.5.2 Heat stress

External application of SA to willow (*Sinapis alba* L) plants enables them to tolerate heat stress up to 55°C. This is known as heat-acclimation (Dat et al., 1997).
1.5.3 Pathogenic stresses and the hormones involved

1.5.3.1 Jasmonates

Jasmonates are derived from the fatty acid linolenic acid via the octadecanoic pathway (Farmer et al., 1998). Most of the at least seven enzymatic steps in the pathway have been extensively characterized (Vick & Zimmerman 1984). The jasmonates are involved in a number of plant processes including fruit ripening, production of viable pollen, root growth and tendril coiling. However, these compounds play a major role in plant defence against pathogenic attack from viruses, fungi, bacteria and from insects. JA is known to act at the gene expression level, modulating transcription, transcript processing and translation (Creelman & Mullet, 1997).

JA and methyl JA synthesis increased when soybean (Glycine max L. Merr.) was wounded (Creelman et al., 1992). The JA levels in different tissues within a plant have also been investigated (Voros et al., 1998; Creelman & Mullet, 1995). In soybeans, they were shown to be highest in young tissues. When the leaves were dehydrated by 15%, there was a five-fold increase in JA within 2 h. These levels declined to the control level within 4 h of water restriction. Abscisic acid (ABA) took longer to reach its maximum. In this study, although ABA was shown to reduce transpiration by 72%, JA also reduced transpiration by 22%.

A phytoalexin was shown to accumulate in plants under fungal invasion, but production was triggered by CuCl₂, an abiotic elicitor, and not by fungal attack per se (Randeep et al., 1996). The production of phytoalexins in rice leaves could be reduced when the leaves were treated with JA biosynthesis inhibitors.

JA does not act alone. Increases in JA are usually accompanied by an accumulation of SA. SA stimulates the production of acidic pathogen response (PR) proteins (Hiroshi et al., 1996). When plants were wounded in the presence of the cytokinin benzylaminopurine, JA production started 6 h earlier than in untreated samples and, when a cytokinin antagonist was applied, the effect was negated. The conclusion was that cytokinins are directly involved in the control of endogenous levels of SA and JA.
JA is a key hormone responsible for the activation of signal transduction pathways in response to predation and pathogen attack. The wound-inducible formation of proteinase inhibitors occurs when JA combines with ABA and ethylene to protect the plant from predation (Wasternack & Parthier, 1997). Recently, the role that JA plays in external plant protection has also been investigated. When plants are attacked, they produce volatiles that attract the natural enemies of the pathogen. The parasitism of caterpillar pests increased two-fold when field-grown tomatoes were induced with JA (Thaler, 1999).

1.5.3.2 SA and stress responses

A plant hormone is a natural compound with the ability to affect physiological processes at concentrations far below those at which either nutrients or vitamins would affect the process. By this criterion SA has recently been classed as a plant hormone. SA biosynthesis is via the chain degradation of cinnamic acid, an important intermediate in the shikimic acid pathway. The final conversion to SA is via either o-coumaric acid or benzoic acid. It is not known if there is any connection between the prophylactic effects of salicylates in plants and their therapeutic effect in animals, although their chelating role in animal therapeutics may be utilized in some plant systems. However, there is growing evidence that SA plays a primary role in the induction of PR proteins during systemic and local acquired resistance, although its role as a primary transmission signal has not been established. SA does, however, increase systemically following inoculation with necrotizing pathogens.

The role of SA in dicotyledons has been well documented but little work has been done on its role in monocotyledons. Work on SA in monocotyledons in response to diseases is urgently required. SA is also known to have a role in plant thermogenesis (Dat et al., 1997) and the control of flowering in some species (Raskin, 1992; Klessig & Malamy, 1994). The link between this process and its role in systemic acquired resistance (SAR) is not yet understood. That SA has a role as a signalling molecule in local defence reactions at infection sites and in the induction of the SAR has been confirmed in part by using Arabidopsis mutants. However, some work using these mutants has shown that, although SA is required for SAR, it is not absolutely required for the initial hypersensitive response. When a pathogen infection occurs, plants initiate a local
hypersensitive reaction that results in an oxidative burst followed by the induction of
genes for pathogenesis-related PR proteins. This is followed by the formation of
necrotic leaf spots, and restriction of pathogen growth and spread. Other genes are
thought to play a role in the development of SAR. Consequently, should a secondary
infection occur a few days later, then infection will result in much smaller lesions.
These responses are accompanied by elevated SA levels. By using *Arabidopsis* SA
pathway gene *cpri* and *cim3* mutants, it has been shown that the initial hypersensitive
reaction occurs but that the ongoing SAR reaction fails to occur, as determined by the
smaller lesions occurring in subsequent infections. However, when these plants are
treated with SA, the secondary effect can be restored. The role that SA has in plants is
similar to pathways found in other eukaryotes; for example, tobacco resistance gene N
(Nicotiana) and its product are similar to Toll proteins that activate defence mechanisms
in mammals and *Drosophila*. A further comparative analysis of animal and plant
defence responses should improve the understanding of plant disease resistance. More
recently, methyl SA has been shown to act as an airborne signal that activates defence
mechanisms in distal leaves and possibly even on neighbouring plants (Durner et al.,
1997).

Finally, although SA is an important signalling molecule in plant defence, plants
employ a network of transduction pathways (Pieterse & van Loon, 1999; Reymond &
Farmer, 1998), some of which are independent of SA. These independent pathways rely
on JA and ethylene but there is 'cross-talk' between them, which provides greater
potential for activating multiple resistance mechanisms in various combinations. This
potential for cross-talk is shown schematically in (Fig 1.4). (Reymond & Farmer, 1998).
An emerging hypothesis is that, by producing, mimicking or destroying any one of this trio of signals, pathogens and pests can reset the dial and alter the spectrum of the genes induced. Other work in this area using *Arabidopsis* mutants has shown that SA can act to have a negative effect on the activation of gene expression by the signal molecule JA to the extent that SA interferes with JA-dependent signalling (Gupta et al., 2000).

The role of plant hormones in viral defence has been studied by wick feeding plant hormones directly into the plant and then measuring the viral replication titre using ELISA. Under these circumstances, enhancement of the endogenous levels of ABA, IAA (indole-3-acetic acid) and gibberellic acid did not affect virus replication, whereas dihydrozeatin, 1-aminoacyclopropane-1-carboxylic acid, SA and JA enhancement all inhibited virus replication (Clarke et al., 1998).
1.5.3.3 ABA and stress responses

ABA is a sesquiterpenoid (15C) synthesized in the chloroplasts and plastids within the palisade cells in the leaves (Sengbush, 2000). Its biosynthesis is closely linked to the isoprenoid pathway and it is synthesized from farnesyl pyrophosphate, a linear C15 molecule. Many of the intermediates in this pathway have been shown to increase under drought conditions (Meyer et al., 1989). There are different isomers and enantiomers of ABA found in the plant and they may have different biological activities. The S-cis form is the most biologically active and the form most commonly found in plants. As is the case with most plant hormones ABA is multifunctional with a wide range of biological activities.

Seed and bud dormancy

ABA induces seed maturation in some plant species and enforces seed dormancy in others. During a mild autumn, ABA prevents seed germination by enforced seed dormancy. The seeds will not germinate until a period of winter chilling has occurred. ABA has a similar effect on bud meristems by enforcing their dormancy. For seed maturation, it has been shown that gibberellins antagonize ABA signalling in developing maize embryos, providing temporal control over the maturation phase (White & Rivin, 2000).

General stress tolerance

ABA levels increase when plants encounter saline and increased temperature conditions. Both these conditions are known to cause water deficiency. ABA acts to close the stomata under these conditions. Plant roots are able to sense drought conditions and ABA acts to reduce shoot growth while at the same time stimulating root development and increasing hydraulic conductance (Hartung & Turner, 1997). Prior to the onset of winter, ABA acts to cause the deciduous plants to respond to the upcoming stressful winter temperature by eliciting production of ethylene. Ethylene regulates the genes involved in the abscission process. ABA treatment of some plants at normal
temperatures has been shown to mimic the effect of cold temperature by producing the same set of proteins that are thought to protect the plant against freezing (Skriver & Mundy, 1990).

Cellular transpirational control

This is one of the fundamental actions of ABA in plants. During water stress, the levels of ABA, proline and glycine-betaine rapidly increase (Abernethy & McManus, 1998). Proline is thought to be synthesized de novo from glutamate. It has been suggested that proline may serve as a storage compound for reduced carbon and nitrogen during stress. This conclusion was drawn from experiments with New Zealand tussock (*Festuca zealandiae*), which showed proline levels decline, when a drought stress was prolonged for more than 24 h, in the absence of light. Under these conditions proline is the source of respiratory CO₂ under carbohydrate-deficient conditions (Hsiao, 1973). ABA acts to modulate various ion channels, especially calcium channels, in the guard cells to alter their osmotic potential in such a way as to promote their collapse over the stomata (Pei *et al.*, 2000). Previous work has shown that there are key molecules linking ABA to cyclic ADP ribose (cADPR). cADPR has become known as a universal signalling molecule (Pennisisi, 1997). The mechanism involves the binding of ABA to the plasma membrane receptors of the guard cells. This initiates a rise in pH in the cytosol, and importantly, the formation of cADPR. The increased pH stimulates the loss of K⁺ and organic ions from the cell, while rising levels of cADPR cause Ca²⁺ to move from the vacuole to the cytosol, which blocks the uptake of K⁺ into the guard cells. The combined effect results in the loss of solutes in the cytosol and this reduces the osmotic pressure of the cell and thus its turgor and the leaf stomata are closed by the guard cell collapse. The messenger molecule cADPR appears to be involved in signalling pathways in plants and in animals (Pennisisi, 1997).
Other effects

ABA may also inhibit the action of gibberellins by stimulating de novo synthesis of \(\alpha \)-amylase and inducing gene transcription for proteinase inhibitors in response to wounding. This would explain its role in pathogen defence (Maas, 2000). ABA also plays an important role in the wounding response. When ABA was sprayed on to potato plants, there was an increase in the \(\text{Pin2} \) gene mRNA transcripts in the absence of wounding. The accumulation was tissue specific and did not occur in the roots. The \(\text{Pin2} \) gene is known to be involved in plant tissue wounding (Pena-Cortes & Willmitzer, 1993).

1.6 Effects of water stress on \(\text{Lolium} \) hormone levels and \(\text{Neotyphodium} \) alkaloid production

There is some evidence that endophyte-infected tall fescue is more tolerant to drought than endophyte-free plants but the mechanism is unknown. One study showed that infected plants had greater concentrations of fructose and glucose in the leaf blades and higher concentrations of glucose in the sheaths than non-infected plants (Richardson et al., 1992). This was thought to contribute to increased osmotic potential and re-growth capacity of the endophyte-infected grasses. Another study, using detailed sward measurements of clonal material from perennial ryegrass, showed that the endophyte presence may confer advantages to plants only under moderate to severe conditions of drought and/or pest damage (Hume et al., 1993).

A complete picture of the advantages to both participants in the symbiotum has yet to be established. Perennial ryegrass normally spreads asexually by grazing-induced tillering. Mammals grazing low down on to the crowns, as occurs in severe drought, can destroy the low growing meristems of ryegrass causing widespread sward death. Because the endophyte-plant associations are widespread and persistent, a testable hypothesis could be that the mammalian endophytic toxins are not produced in normal growing conditions but only when the plants become stressed. Drought is a major stress of perennial ryegrass. During drought herbivores will begin to graze down on to the crowns, thus irreversibly damaging the very meristems that are facilitating the spread of the plant by tillering. It is at this time that drought stress hormonal signals produced by
perennial ryegrass could result in increased alkaloid production by the endophyte. The effect would be reduced grazing pressure on perennial ryegrass (Barker et al., 1997). One study showed that there was a significant increase in ergovaline levels in drought-stressed perennial ryegrass but that this increase did not occur in the other alkaloids such as peramine and lolitrem B (Barker et al., 1993). Other reasons could be the increased Neotyphodium biomass per se found in certain Lolium genotypes that result in an increased alkaloid output (Easton et al., 2002). Other factors may include environmental conditions such as soil nitrogen levels and ambient temperature (Lane et al., 1997).

1.7 Endogenous levels of plant hormones

To study the effects of endogenously produced plant hormones, these same hormones need to be applied externally in a quantitative manner and the plant responses need to be measured. Various methods of externally applying ABA and JA to water-sufficient L. perenne were investigated. These included spraying, wick feeding and dipping.

The wick feeding method (Clarke et al., 1998) places the hormone directly into the sap stream (phloem vessels) of the plant. This would be comparatively simple in dicotyledonous plants where the vascular bundles containing the phloem and xylem vessels are arranged in cross-sectional rings, but more difficult in the less structured monocotyledonous vascular system of perennial ryegrass where the vascular bundles are scattered individually as discrete units across the stem.

The spray method of hormone application, although universally used for commercial applications of pesticides and herbicides, is far less quantitative than would be needed to carry out a well-designed controlled experiment, involving the application of measured amounts of ABA and JA.

Spraying and wick feeding have various problems whereas modification of foliar application by dipping would seem from the literature to be more manageable. The method that was developed involved up-ending potted perennial ryegrass plants into containers of plant hormone solutions of known concentrations and leaving the leaves
submerged until an equilibrium/active uptake of the hormone occurred, usually around one hour, and then removing the bathing solutions and allowing the up-ended plant leaves to dry before placing them back on the watering trays (Fig 2.7).

1.7.1 Pathways of hormonal entry into the plant

The first major barrier to hormone uptake is the cuticle, which is made up of hydroxy-fatty acids that form a three-dimensional polyester network (Martin & Juniper, 1970) of insoluble lipid polyesters called cutin (Holoway, 1980), with its waxy extrusions (see Fig 1.5) (Leopold, 1964; Schieferstein & Loomis, 1956). This cuticle becomes thicker with age and not only covers the upper (adaxial) and lower (abaxial) epidermis but also covers, to a lesser extent, the mesophyll and palisade cells that line the sub-stomatal cavities in monocotyledonous plants.

![Diagram of cell wall components]

Fig 1.5 The components of the epidermal cell wall, showing extruded wax overlaying a cuticle, and then cell wall layers of pectin and pectin plus cellulose with some wax plates included. Inside the cell walls are tiny protoplasmic connections, called ectodesmata, that allow access into the protoplasm.

The cuticle is composed of polymerized fatty acids, esters and soaps and has ionic properties that allow it to take up water, due to its acidic nature. This gives the cuticle a sponge-like capacity and enables it to expand or contract depending on the availability of water. Wax plates permeate the cuticle and parts of the cell wall. The waxes that make up these plates are made up of fatty alcohols and esters that are produced in the cytoplasm. These plate-like deposits are often extruded in large amounts as waxy blooms. Research workers have demonstrated the presence of pectinaceous material in
the cuticle of apple leaves that was shown to be continuous, with similar layers in the walls of the epidermal cells below (Roberts et al., 1948).

The existence of this structure in monocotyledon leaves would make it possible for solutes to move along these pathways into the leaf. The permeability of aqueous sprays through the cuticle is determined by three further cuticular factors: the thickness and the chemical composition of the waxes, where they exist on the leaf, and the physical form of the extruded layer. For instance, if the extruded layer is rod-like, this will tend to hold the droplets away from contact with the cuticle. Inside the cuticle is the cell wall with its outer pectin layer and an inner layer composed of cellulose fibres embedded in pectin and other non-cellulosic polysaccharides. Unless the composition of the wall is high in waxy plates, it is usually quite permeable to water.

The plasma membrane is the last barrier. This is composed of a phospholipid bilayer with various protein protuberances. Entry of solutes can be by one of three methods: diffusion through pores in the fatty layer, solubilization into the fatty layer or binding to carrier sites within the membrane. Because of these three options, entry is influenced by the size, shape and charge of a molecule, its solubility in the fatty membrane layer or any other molecular feature that would enable it to become attached to carrier sites in the membrane. Electron micrographs of the cell wall have shown that tiny channels of connecting protoplasm or ectodesmata permeate the cell walls of epidermal cells (Franke, 1961).

Because ABA and JA have hydrophilic acid chains and lipophilic rings they probably enter through the interphase between the hydrophilic aqueous phases of the cuticle and the water-permeable plasma membrane with its lipoidal layer. The wetting of the cuticle is also important as expansion of the sponge-like cuticle will facilitate entry. Drying of the leaves will retard absorption.

The stomata also provide a route for entry of solutes (Fig 1.6), (Leopold, 1964; Martin & Juniper, 1970). First reported (Dybing & Currier, 1961). This is especially true for volatile auxin esters or solutions with added surfactants such as the organosilicone Pulse™. Pulse reduces the surface tension of the spray or bathing solution and allows these molecules to infiltrate directly into the foliage via the stomata.
Recent confocal laser scanning microscopy carried out on bean (*Vicia faba* L) and wheat (*Triticum aestivum*) has shown that the uptake of organosilicone solution into the monocotyledon *Triticum* is significantly slower and less than its uptake into *Vicia*. Using confocal, transmission electron and light microscopy, it was shown that *Triticum* has sub-stomatal cavities with discrete thick wall linings (Gaskin *et al.*, 1998) that restrict access and slow movement of organosilicone solutions into the adjacent mesophyll cells. These sub-stomatal cavity walls have been shown to be cuticular in composition. The rapid absorption into *Vicia*, a dicotyledon, in this study was due to the absence of any cuticular-lined sub-stomatal cavities. This allowed direct entry of surfactant solutions into the surrounding mesophyll tissue (Gaskin *et al.*, 1998) as shown in Fig 1.6 (Dybing & Currier, 1961).

The absorption in *Triticum*, and presumably *Lolium*, has been shown to be predominantly cuticular penetration whereas that in *Vicia* is mainly stomatal in nature (Gaskin, 1995).
Foliar uptake via the stomata is dependent on the concentration of organosilicone surfactant in a spray solution and the carrier volume applied (Gaskin et al., 1996); uptake via the stomata, of ABA and JA plus Pulse (0.125%), for 60 min would ensure substantial uptake into *Triticum* and *Lolium* species (*pers comm.* Gaskin, Forestry Research Institute, Rotorua, New Zealand 2002).

Cuticular penetration of ABA and JA in the absence of a surfactant, such as the organosilicone Pulse, is most likely the form of uptake (Martin & Juniper, 1970). Any cuticular uptake that occurred would be in two phases and would be adsorptive in nature.

When plant leaves are immersed in solutions containing inorganic or organic solutions, there are two stages in the kinetics of entry: an initial stage of rapid entry lasting about 20 min followed by a second steady but slower uptake (Fig 1.7) (Leopold, 1964). A dipping period of 60 min would ensure significant uptake of ABA and JA.

![Fig 1.7](image-url)

Fig 1.7 The uptake of 2,4-D by oat coleoptile sections, showing the initial rapid uptake phase followed by a steady slower phase (top). Extrapolation of the slower rate to the y ordinate permitted an estimate of the total amount taken up initially. When the sections were moved from the 0.5 mg/L labelled solution to an unlabelled solutions considerable elution occurred (bottom), indicating that the initial uptake was freely exchangeable.

The characteristics of the uptake time curves imply that it would be an adsorption (the taking up of the applied chemical at the surface of the cuticle). This view can be backed
up by the fact that the initial uptake is freely exchangeable (Fig 1.7); respiratory inhibitors do not interfere markedly with the initial uptake and the quantitative characteristics are those of an adsorption event (Leopold, 1964).

Further work done on 2,4-D would suggest that penetration occurs largely by preferential sites, including stomata, trichomes and the cuticle above the anticlinal walls of the epidermal cells. However, microautoradiograms of V. faba cuticles treated with \(^{14}\)C-2,4-D formulated with a surfactant (HLB 68.6) indicate a more diffuse pattern of penetration (Kirkwood, 1980).

Hypothesis and aims

(1) To test the hypothesis that endophyte bio-protective metabolites are synthesized at higher levels in water-stressed endophyte-infected plants than in water-sufficient plants.

(2) To test the hypothesis that external application of the plant hormones ABA, JA and SA to water-sufficient plants will increase levels of endophyte-produced bio-protective metabolites thereby mimicking abiotic stress.

(3) To carry out HPLC-ms experiments to measure tiller levels of ABA, JA, IAA and SA in perennial ryegrass during the application of a controlled water stress and then to correlate these to *N. lolii* produced alkaloid levels.

(4) To establish non-invasive protocols that would establish endophyte to perennial ryegrass biomass ratios using confocal microscopy.