Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
ATR – FTIR Chemometrics for Biological Samples

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

in

Nanoscience

at Massey University, Manawatū, New Zealand.

Josiah David Cleland
2018
Abstract:

This project has used the analytical infrared reflectance technique of *Attenuated Total Reflectance Fourier Transform Infrared* (ATR-FTIR) spectroscopy, for the prediction of chemical components in a range of biological samples. Data collection was carried out on 40 hyperaccumulator samples, 56 chicken feed samples, 54 lamb faecal samples and 188 forage feed samples. Predictions were made using several different regression methods including: Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net, Principal Components (PCR) and Partial Least Squares (PLS). The best methods were identified as LASSO, Elastic Net and PLS. Several spectral data pre-treatments were explored, the best of which combined Standard Normal Variant scaling (SNV) with a first-order Savitzky–Golay (SG) spectral derivative and smoothing filter. Several of the resulting models illustrated high quality predictions ($R^2 > 0.8$, Relative Performance Deviation (RPD) ≥ 2). The SNV and SG pre-treatment almost completely reduces the contribution of strong water-based signals to the regression model, allowing the possibility of *in situ* prediction of forage feed composition with minimal sample preparation. ATR-FTIR spectrometers are available in a hand-held form, and the results of this research suggest that in situ forage quality analysis could be performed using mid–infrared (MIR) reflectance spectroscopy.
Preface:

A portion of this research thesis has been submitted to the Journal of Animal Feed Science and Technology for publishing. The article is titled “Mid-Infrared Reflectance Spectroscopy as a tool for forage feed composition prediction” and was authored by Josiah D. Cleland, Ellie Johnson, Patrick C. H. Morel, Paul R. Kenyon, Mark R. Waterland.
Acknowledgements:

First and foremost, I would like to acknowledge my wonderful wife, Jo and daughter Ayla, I wouldn’t be where I am today without their love and support. I would like to also thank my parents, Darryl and Trish, for all their help and support throughout my studies.

A special thanks is in order for my supervisor, Associate Professor Mark Waterland, for his guidance and expert advice. Mark’s enthusiasm for the theory involved in this project has led to many productive discussions, and contributed greatly to the successes of this research.

The project included a variety of sample types, an additional thanks is extended to the people who kindly provided them, namely Dr Fifi Zaefarian, Dr Felicity Jackson, Miss Antoinette Danso and Associate Professor Chris Anderson. I am also very thankful to Professor Patrick Morel, Professor Paul Kenyon and again Associate Professor Chris Anderson for the specific knowledge they were able to input into the project regarding the forage feed samples and hyperaccumulator samples, respectively.

I would like to also acknowledge Massey University for selecting me as a recipient of the Massey University Masterate Scholarship, the funds helped greatly during my studies.
Abbreviations:

PT Pre – Treatment
SG Savitsky – Golay filter
SNV Standard normal variate scaling
MSC Multiplicative Scatter Correction
DWT Discrete Wavelet Transform
AsLS Asymmetric Least Squares
PLS Partial Least Squares
PCR Principal Component Regression
PCA Principal Component Analysis
RR Ridge Regression
LASSO Least Absolute Shrinkage and Selection Operator
EN Elastic Net
NDF Neutral Detergent Fibre
ADF Acid Detergent Fibre
GE Gross – Energy
ME Metabolisable – Energy
OM Organic Matter
DOMD In vitro Digestible Organic Matter
PC Principal Component
ATR FTIR Attenuated Total Reflectance Fourier Transform Infrared
MIR Mid – Infrared
NIR Near – Infrared
FIR Far – Infrared
MPAES Microwave Plasma Atomic Emission Spectrometer
RMSEP Root Mean Squared Error of Prediction
RMSECV Root Mean Squared Error of Cross – Validation
SEP Standard Error of Prediction
SECV Standard Error of Cross – Validation
RPD Relative Performance Deviation
Table of Contents:

1 - Introduction .. 1

1.1 Chemometrics .. 1

1.2 Infrared Spectroscopy .. 1

1.3 Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy 2

1.4 Samples .. 4

1.4.1 Forage Feed .. 4

1.4.2 Faecal ... 6

1.4.3 Chicken Feed .. 6

1.4.4 Hyperaccumulators ... 11

1.5 Mathematical Pre-treatment .. 13

1.5.1 Scatter Correction Pre-treatments ... 13

1.5.1a Multiplicative Scatter Correction ... 13

1.5.1b Standard Normal Variate Scaling .. 15

1.5.2 Savitsky – Golay Filtering ... 16

1.5.3 Asymmetric Least Squares ... 17

1.5.4 Discrete Wavelet Transform .. 20

1.6 Multivariate Regression .. 22

1.7 Principal Component Analysis .. 24
1.8 Regression Methods .. 25

1.8.1 Ridge Regression ... 26

1.8.2 LASSO Regression .. 26

1.8.3 Elastic Net Regression ... 27

1.8.4 Principal Component Regression .. 28

1.8.5 Partial Least Squares ... 29

1.9 Chemometrics: Infrared Spectroscopy of Forage Feeds .. 31

1.10 Project Aims ... 33

2 - Methodology and Technical Background ... 35

2.1 Methodology ... 35

2.1.1 Initial Forage Feed Samples .. 35

2.1.2 Expanded Forage Feed Samples ... 35

2.1.3 Chicken Feed Samples .. 35

2.1.4 Faecal Samples ... 36

2.1.5 Hyperaccumulators .. 36

2.1.6 Wet Chemical Analysis .. 36

2.1.7 ATR – FTIR Spectra Collection .. 37

2.1.8 Statistical Analysis ... 38

2.2 Technical Background: Regression Methods ... 41

2.2.1 Introduction .. 42

2.2.2 Ordinary Least Squares .. 44

2.2.3 Ridge Regression ... 50
2.2.4 Least Absolute Shrinkage and Selection Operator ...53

2.2.5 Elastic Net ..56

2.2.6 Geometry Background ...57
 2.2.6.1 Oblique Projections ...57
 2.2.6.2 Geometry of Ellipsoids ...59
 2.2.6.3 Planes of Tangency ..62
 2.2.6.4 The Power Method ...65

2.2.7 Principal Component Regression ..67

2.2.8 Principal Component Regression Geometry ...70

2.2.9 Partial Least Squares ...72
 2.2.9.1 Residual Matrices ..76
 2.2.9.2 Properties of the Partial Least Squares Algorithm78
 2.2.9.3 Partial Least Squares for Linear Regression82
 2.2.9.4 Derivation of PLS Regression Coefficient Vector84

2.2.10 Geometry of the PLS Algorithm ...86
 2.2.10.1 Single Response, Two Predictor Variables86
 2.2.10.2 The Object Space ...87
 2.2.10.3 The Variable space ...89

3.0 - Spectral Pre-treatment and Principal Components Analysis Results91

4.0 - Results and Discussion I: Feature Extraction Regression Methods103
 4.1 Ridge Regression ...104
 4.2 LASSO Regression ...122
 4.3 Elastic Net Regression ...138
5.0 - Results and Discussion II: Feature construction Regression Methods 157

5.1 Principal Component Regression ... 158

5.2 Partial Least Squares Regression ... 173

6.0 - Conclusions and Future Work ... 195

6.1 Conclusions .. 195

6.2 Future Work .. 196

7.0 - Appendices .. 197

7.1 Appendix 1: Asymmetric Least Squares Process .. 197

7.2 Appendix 2 Discrete Wavelet Transform – Brief Example 200

7.3 Appendix 3: Properties of OLS residuals and Markov – Gauss assumptions. 203

7.4 Appendix 4: Derivation of the Eigenvalue Equations for PLS 206

7.5 Appendix 5: Geometric Properties of the PLS Vectors 208

7.6 Appendix 6: Residual Matrices Derivations .. 213

7.7 Appendix 7: Demonstration of repeatability of ATR-FTIR 214

7.8 Appendix 8: Tables of Wet Chemistry Results .. 215

8.0 - References .. 227