Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Ewe size and nutrition during pregnancy

Effects on metabolic and productive performance of the offspring

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Animal Science

at Massey University, Turitea, Palmerston North,

New Zealand.

Danitsja Stephanie van der Linden

2010
Thesis supervisors

Associate Professor P. R. Kenyon
Professor H. T. Blair
Dr C. M. C. Jenkinson
Dr S. W. Peterson

Thesis examiners

Associate Professor D. D. S. Mackenzie
Massey University, Palmerston North
Associate Professor F. H. Bloomfield
University of Auckland
Dr M. P. Tygesen
Copenhagen University, Denmark
Exposure of the fetus to adverse conditions in utero may result in developmental adaptations that alter metabolism and postnatal growth of the offspring. This thesis investigated the effects of dam size and nutrition during pregnancy on growth, metabolic function and lactational and productive performance of the female offspring to two years of age. Four-hundred and fifty heavy (60.8 kg ± 0.18) and 450 light (42.5 kg ± 0.17) dams were randomly allocated to ad libitum or maintenance nutritional regimens from days 21 - 140 of pregnancy, under pastoral grazing conditions. From one week prior to lambing, all dams were fed ad libitum until weaning. After weaning, female progeny were managed and fed under pastoral conditions as one group. Maternal nutrition during pregnancy affected lamb growth to weaning, however, after weaning lamb growth was affected by dam size. Dam size had no effect on glucose metabolism, adrenal function or fat metabolism in 16-month-old female twin offspring. Dam nutrition during pregnancy had a minor effect on glucose metabolism and no effect on adrenal function or lipolysis, however, it did possibly affect gluconeogenesis and/or glycogenolysis, with increased glucose production in ewes born to maintenance-fed dams. Ewes born to dams fed maintenance showed greater milk production, lactose percentage, lactose and crude protein yield. Ewes born to heavy dams showed greater milk production and lactose yield. Dam size had no effect on reproductive performance of the female offspring. Being born to a larger dam showed no advantages over being born to smaller dams, for number of lambs born and weight of lambs at birth and weaning. ‘Grand’dam maintenance nutrition increased lamb birth and weaning weight and lamb growth rates of the ‘grand’offspring. Ewes born to maintenance-fed dams could have an advantage over ewes born to ad libitum-fed dams in physiological stressful situations in life as their liver may be able to supply more glucose to support their growing conceptus and milk production to increase the chances of survival of their offspring. These results indicate that it is possible to programme the offspring by feeding their dams differently during pregnancy under grazing conditions. With a better understanding of how offspring can
be programmed through different maternal nutritional regimens, it may be possible to significantly increase the production potential of the New Zealand ewe population.
SAMENVATTING

Blootstelling van een ongeboren jong aan ongunstige omstandigheden in utero (baarmoeder), kan resulteren in veranderingen in de ontwikkeling van het metabolisme en de groei van het nageslacht. In dit proefschrift worden de effecten beschreven van het gewicht en het voedings niveau van de Nieuwe Zeelandse ooi tijdens de dracht op de groei, het metabolisme, de lactatie en het productie vermogen van haar vrouwelijke nageslacht tot twee-jarige leeftijd. Vierhonderdvijftig zware (60.8 kg ± 0.18) en 450 lichte (42.5 kg ± 0.17) ooien waren ad random verdeeld over twee groepen: een groep had toegang tot ad libitum gras en een groep werd gegraasd op onderhouds-niveau van dag 21 – 140 van de dracht. Alle ooien werden gehouden onder graas omstandigheden. Vanaf één week voor het lammeren, alle ooien hadden toegang tot ad libitum gras tot aan het spenen. Hierna werd het vrouwelijke nageslacht als één groep gemanaged en hadden ad libitum gras beschikbaar. Het voer niveau van de ooi tijdens de dracht beïnvloedde de groei van het nageslacht tot aan het spenen. Het gewicht van de moeder beïnvloedde de groei van de lammeren na het spenen, maar dit had geen effect op het functioneren van het glucose metabolisme, de bijnieren (adrenal) en ook niet op het vet weefselman metabolisme op een leeftijd van 16 maanden. Het voer niveau van de ooi tijdens de dracht had ook geen effect op het functioneren van het glucose metabolisme, de bijnieren en lipolyse (vetafbraak), maar het had mogelijk wel een positief effect op het proces van gluconeogenese (opnieuw vormen van glucose) en/of glycogenolyse (het process waarbij glycogeen wordt afgebroken en omgezet in glucose). Vrouwelijk nageslacht van ooien die op het onderhoudsniveau gevoerd werden, hadden een grotere glucose produktie. Nageslacht van ooien die onderhouds-niveau gevoerd werden, produceerden meer melk, lactose en eiwitten en hadden hogere lactose percentages in de melk. Nageslacht van zware ooien produceerden meer melk en lactose. Het gewicht van de ooi had geen effect op het reproductie vermogen van het nageslacht. Er waren geen verschillen gevonden tussen de zware en lichte groep in het aantal geboren lammeren (tweede generatie) en het gewicht van deze lammeren zowel bij de geboorte als bij
het spenen. Voeren van het onderhouds-niveau aan de (groot)moeder verhoogde het geboorte en speen gewicht en ook de groei van de tweede generatie lammeren. Vergeleken met het nageslacht van ooiën die ad libitum gevoerd werden, had het nageslacht van ooiën die het onderhouds-niveau gevoerd kregen een voordeel in fysiologische stressvolle situaties. Omdat hun lever mogelijk meer glucose kan produceren en waardoor er meer glucose beschikbaar is voor het groeiende jong tijdens de dracht en voor de daarop volgende melk productie is de overlevingskans voor dit nageslacht groter. De resultaten in dit proefschrift laten zien dat het mogelijk is om het nageslacht te ‘programmeren’ door de moeder verschillende niveaus te voeren tijdens de dracht. Door meer inzicht in het ‘programmeren’ van het nageslacht te krijgen, door middel van verschillende voer niveaus tijdens en na de dracht, is het mogelijk om het productie vermogen van de Nieuw Zeelandse schapen te vergroten.
The acknowledgements, the last bit of my thesis to write, but it is definitely not the least as I would not have been able to do all this work without the help of my supervisors, family and friends.

First of all, I would like to thank Meat and Wool New Zealand and the National Research Centre for Growth and Development for funding this great project. I also would like to thank AGMARDT for giving me the financial support to be able to work on this project full time.

A big thank you to my chief supervisors Paul and Hugh. Thank you both for giving me the opportunity to work with you on this project. Thank you for correcting my ‘Denglish’, all your support, advice, patience, and great guidance along the way. Thanks also to my supervisors Catriona and Sam, for all your support and advice, it was all much appreciated.

I would not have been able to do all my (flash) statistical analysis without the great help of Nicolas Lopèz-Villalobos. Nicolas, thank you for all your help, great statistical insight and patience, I have learned a lot and always enjoyed our meetings and chats!

I would also like to thank Duncan McKenzie. Duncan, thank you for all your great feedback after reading my papers, it really was a big help!

Also big thanks to Mark Oliver and Eric Thorstensen from Auckland University. Mark, thanks for all your great advice for the metabolic challenges and thanks for showing me how to catheterize sheep. Eric, thanks for having me in your lab and teaching me the different techniques of hormone/metabolites analyses. I really enjoyed it!

Thanks to the great team at IVABS for all their help in the field along the way and AgServices for looking after ‘my girls’ on the farm.

I also would like to thank Florence, Alouette, Lisette, and Ilse for all their great work and help on my trials when they were here in New Zealand, girls, I hope I have not worked you too hard!

Jo, Rene, Kathryn, Becs, Gina and Nicola or in other words: Mafia 3.06, thank you all for your friendship and making the office a fun and nice environment to work in and of course all your
help and advice during my trials, I could not have done it without you all! Thanks to Jeremy, Erica, Christine, Felusha, Kavitha, Francisco, Hye-Jeong, Rajesh and Maria for being such awesome roommates!

Further, a big thanks to Malin, thanks for your help, advice and friendship when you were here and even now back in Denmark, I am looking forward to working (and cooking) with you again soon!!

Jan and Doug, thank you for all that you have done for me during my PhD, you are both great

Thanks to all my friends and family (here and overseas) for their interest, reading drafts and making daily life fun, the last three years would have been very boring without you all!

Pap en mam, ondanks dat jullie ver weg zijn, hebben jullie me onwijs gesteund tijdens mijn PhD. Onwijs bedankt voor jullie betrokkenheid, interesse, geduld en alles wat jullie voor mij doen. Ook Bas en Kel, bedankt voor alle gezelligheid en interesse, ondanks dat we elkaar niet zo vaak zien!

Special thanks to Ross, you started with looking after ‘my girls’ on the farm and you ended up with ‘looking after me’. Thanks for all your support, patience and just for being there in the good and the not so great times during my PhD. I am lucky to have you in my life!
TABLE OF CONTENTS

Abstract iii
Samenvatting v
Acknowledgements vii
Table of figures and tables x

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>Review of Literature</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>Comparison of four techniques to estimate milk production in ewes</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>Background information dams</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>The effects of ewe size and nutrition during pregnancy on growth and onset of puberty in female progeny</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>Effects of ewe size and nutrition during pregnancy on glucose metabolism, fat metabolism and adrenal function of post-pubertal female twin offspring</td>
<td>91</td>
</tr>
<tr>
<td>7</td>
<td>Relationships between early postnatal growth and metabolic function of 16-month-old female offspring born to ewes exposed to different environments during pregnancy</td>
<td>115</td>
</tr>
<tr>
<td>8</td>
<td>Effects of ewe size and nutrition on fetal mammary gland development and lactational performance of offspring at their first lactation</td>
<td>139</td>
</tr>
<tr>
<td>9</td>
<td>Effects of ewe size and nutrition during pregnancy on the performance of two-year-old female offspring</td>
<td>163</td>
</tr>
<tr>
<td>10</td>
<td>General Discussion</td>
<td>183</td>
</tr>
</tbody>
</table>

References 197
Chapter 2 Review of Literature:

Figure 2.1. Summary of the main developmental windows during the reproductive period in sheep during which manipulations of the maternal diet significantly modulate placental and fetal development. Filled bars represent windows of developmental plasticity with respect to adipose tissue and muscle (Adapted from Symonds et al. (2007)). ... 25

Figure 2.2. Schematic overview of pancreatic development. During early embryonic growth, the specification of the future dorsal (DP) and ventral (VP) pancreatic buds involves induction by similar morphogens from adjacent mesodermal structures, such as notochord, dorsal aorta, cardiogenic mesoderm and *septum transversum*, as noted. The exo-endocrine specification is controlled by the Notch/Hes signalling system, leading to the suppression of neurogenin-3, which determines the duct and acinar fate. From mid – late fetal growth, the endocrine cell differentiation is based on the successive expression of transcription factors, some steps being presented in the figure. (Adapted from Remacle et al. (2007) and Fowden and Hill (2001)). ... 26

Figure 2.3. Approximate timing of reproductive development events in the sheep which may be sensitive to early life nutritional influences, expressed as days of gestation and percentage of gestation (Adapted from Rhind (2004)). ... 28

Figure 2.4. Diagram of the ‘thrifty phenotype’ hypothesis (Adapted from Hales and Barker (2001))... 30

Table 2.1. The effects of maternal dietary manipulation during different periods of gestation on birth and live weight of the offspring. ... 34

Table 2.2. The effects of maternal dietary manipulation during different periods of gestation on reproductive traits of the offspring. .. 37

Table 2.3. Weighted means (± S.E.) of estimates for direct (h^2) and maternal (m^2) heritability and correlation between direct and maternal genetic effects (r_{am}) for growth traits in sheep..... 46

Table 2.4. Weighted means (± S.E.) of estimates for direct (h^2) heritability of reproduction traits and weighted means (95% confidence interval) for genetic correlations between adult weight and reproduction traits in sheep... 47
Chapter 3 Estimating milk production:

Figure 3.1. Overview of the udder (ventral view) and the dimensions (A, BLR, BTB and C) measured. Dimension A was the mean of three measurements from the posterior margin to the anterior margin of the udder along the midline and parallel to the midline immediately medial to each teat. Dimension BLR was the distance between the left and right lateral edges of the udder immediately anterior to the teats. Dimension BTB was the distance between the posterior margin to the anterior margin of the udder along the midline. Dimension C was the circumference of the gland at the base.

Table 3.1. Least square means (± S.E.) of milk yield (MY; kg/day), udder dimensions (A, BTB, BLR, and C; cm), and lamb growth rates (LWG; g/day) during the first 49 days of lactation and the mean (± S.E.) lamb milk intake (L/day) between days 7-14 of lactation.

Table 3.2. Estimates of the Pearson’s correlation coefficients between milk yield (kg), udder dimensions (A, BTB, BLR and C; cm), lamb growth rates (LWG; g/day) during the first 49 days of lactation and lamb milk intake (L/day) between days 7-14 of lactation.

Table 3.3. Estimates of the Pearson’s correlation coefficients between lamb growth rates (g/day), udder dimensions (A, BTB, BLR and C; cm) during the first 49 days of lactation and lamb milk intake (L/day) between days 7-14 of lactation.

Table 3.4. Multiple regression coefficients (± S.E.) of udder dimensions (A, BTB, BLR and C; cm) on milk yield (MY; kg) during the first 49 days of lactation of ewes bearing and rearing singleton lambs.

Table 3.5. Multiple regression coefficients (± S.E.) of lamb live weight (LW; kg) and lamb liveweight change (LWC_{LW_{n-7}}-LW_{7}; kg) on milk yield (MY; kg) during the first 42 days of lactation and the multiple regression equation of lamb birth weight (LW_{0}; kg) and total lamb live weight change during the first 49 days of life (LWC_{0-49}; kg) on accumulated milk yield over the first 49 days of lactation (AccMY_{0-49}; kg) of ewes bearing and rearing singleton lambs.

Table 3.6. Multiple regression coefficients (± S.E.) of milk yield (MY; kg) on lamb growth rates (LWG; g/day) during the first 49 days of lactation and the multiple regression coefficients of accumulated milk yield during the first 49 days of lactation(AccMY_{0-49}; kg) on total lamb growth rates during the first 49 days of life of ewes bearing and rearing singleton lambs.

Table 3.7. Multiple regression coefficients (± S.E.) of udder dimensions (A, BTB, BLR and C; cm) on lamb growth rates (LWG; g/day) during the first 49 days of lactation of ewes bearing and rearing singleton lambs.
Table 3.8. Multiple regression coefficients (± S.E.) of milk yield (MY; kg) and udder dimensions (A, BTB, BLR and C; cm) on lamb growth rates (LWG; g/day) during the first 49 days of lactation of ewes bearing and rearing singleton lambs. .. 71

Chapter 4 Background information:

Figure 4.1. Study design and overview of studies conducted in the female offspring............79

Figure 4.2. Live weight (kg) and body condition score (scale 0-5) of heavy (n = 255) and light (n = 255) dams fed either ad libitum (n = 242) or maintenance (n = 268) from days 21 - 140 of pregnancy at day -69, day 1, day 53 and day 140 of pregnancy * nutrition effect (P < 0.05), # size effect (P < 0.05) (Data adapted from Kenyon et al. (2009)). ... 80

Chapter 5 Growth and puberty:

Table 5.1: Effects of heavy or light dams fed either ad libitum or maintenance from days 21 - 140 of pregnancy on live weights (kg) from birth (day 0) until 396 days of age of female offspring. Table shows least square means ± S.E. ... 85

Table 5.2: Effects of heavy or light dams fed either ad libitum or maintenance from days 21 - 140 of pregnancy on growth rates (g/day) until 396 days of age of female offspring. Table shows least square means ± S.E. ... 86

Table 5.3: Effects of heavy (H) or light (L) dams fed either ad libitum (A) or maintenance (M) from days 21 - 140 of pregnancy on the onset of puberty of female offspring. Table shows number of ewe lambs that reached puberty, percentage of ewe lambs that reached puberty (± 95% confidence interval), age at puberty, live weight at the average age of onset of puberty and the number of oestrus events (least square means ± S.E.). ... 87

Chapter 6 Metabolic function:

Figure. 6.1. Glucose (A) and insulin (B) responses to an intravenous glucose tolerance test (GTT) for ewes born to heavy (H) or light dams (L), fed ad libitum (A) or maintenance (M) during pregnancy. Data are presented as least square means (± 95% CI). Areas under the curve are shown as inset histograms and are presented as least square means (± S.E.). No interaction between dam nutrition and dam size was detected (P > 0.10); therefore, only the main effects are reported (n = 24 per dam treatment group). –●– and grey bars, ad libitum; –○– and open bars, maintenance; –■– and black bars, heavy; –□– and striped bars, light. * P < 0.05; dam nutrition effect. .. 103
Figure 6.2. Glucose response to an intravenous insulin tolerance test (ITT) for ewes born to heavy (H) or light dams (L), fed ad libitum (A) or maintenance (M) during pregnancy. Data are presented as least square means (± 95% CI). Areas under the curve are shown as inset histograms and are presented as least square means (± S.E.). No interaction between dam nutrition and dam size was detected (P > 0.10); therefore, only the main effects are reported (n = 24 per dam treatment group). –●– and grey bars, ad libitum; –ο– and open bars, maintenance; --- ■ --- and black bars, heavy; --- □ --- and striped bars, light. ... 104

Figure 6.3. Glucose (A) and insulin (B) responses to an intravenous epinephrine tolerance test (ETT) for ewes born to heavy (H) or light dams (L), fed ad libitum (A) or maintenance (M) during pregnancy. Data are presented as least square means (± 95% CI). Areas under the curve (AUC 0-20 min) are shown as inset histograms and are presented as least square means (± S.E.). No interaction between dam nutrition and dam size was detected (P > 0.10); therefore, only the main effects are reported (n = 24 per dam treatment group). —●— and grey bars, ad libitum; —ο— and open bars, maintenance; —■— and black bars, heavy; —□— and striped bars, light. * P < 0.05; dam nutrition effect. ... 107

Figure 6.4. NEFA (A) and triglycerides (B) responses to an intravenous epinephrine tolerance test (ETT) for ewes born to heavy (H) or light dams (L), fed ad libitum (A) or maintenance (M) during pregnancy. Data are presented as least square means (± 95% CI). Areas under the curve (AUC 0-20 min) are shown as inset histograms and are presented as least square means (± S.E.). No interaction between dam nutrition and dam size was detected (P > 0.10); therefore, only the main effects are reported (n = 24 per dam treatment group). —●— and grey bars, ad libitum; —ο— and open bars, maintenance; —■— and black bars, heavy; —□— and striped bars, light. * P < 0.05; dam nutrition effect. ... 108

Table 6.1. The effects of heavy (H) or light (L) dams fed ad libitum (A) or maintenance (M) during pregnancy on the female offspring’s glucose and insulin concentrations in response to glucose tolerance test. Data are presented as least square means (± S.E.). 101

Table 6.2. The effects of heavy (H) or light (L) dams fed ad libitum (A) or maintenance (M) during pregnancy on the female offspring’s glucose, cortisol and cortisone concentrations in response to an insulin tolerance test. Data are presented as least square means (± S.E.). 102

Table 6.3. The effects of heavy (H) or light (L) dams fed ad libitum (A) or maintenance (M) during pregnancy on the female offspring’s glucose, NEFA and insulin concentrations in response to an epinephrine tolerance test. Data are presented as least square means (± S.E.). 106
Chapter 7 Metabolic function and growth:

Figure 7.1. Linear regressions of pre-puberty growth rates \((\text{Growth}_{\text{prepub}}; 7-9 \text{ months of age})\) on glucose-metabolism variables at 16 months of age \((\text{GluAUC}_{\text{GTT}}; \text{glucose AUC and InsAUC}_{\text{GTT}}; \text{insulin AUC in response to GTT}; \text{GluAUC}_{\text{ITT}}; \text{glucose AUC in response to ITT})\) of ewes born to heavy or light dams fed either maintenance or ad libitum during pregnancy. Black solid line and ● heavy – ad libitum; black dotted line and ○ light – ad libitum; grey solid line and ■ heavy – maintenance; grey dotted line and □ light – maintenance .. 128

Figure 7.2. Linear regressions of post-puberty growth rates \((\text{Growth}_{\text{postpub}}; 9-12 \text{ months of age})\) on glucose-metabolism variables at 16 months of age \((\text{GluAUC}_{\text{GTT}}; \text{glucose AUC and InsAUC}_{\text{GTT}}; \text{insulin AUC in response to GTT}; \text{GluAUC}_{\text{ITT}}; \text{glucose AUC in response to ITT})\) of ewes born to heavy or light dams fed either maintenance or ad libitum during pregnancy. Black solid line and ● heavy – ad libitum; black dotted line and ○ light – ad libitum; grey solid line and ■ heavy – maintenance; grey dotted line and □ light – maintenance .. 131

Figure 7.3. Linear regressions of birth weight and growth rates to weaning \((\text{Growth}_{\text{wean}}; \text{birth - 4 months of age})\) on fat-metabolism variables at 16 months of age \((\text{InsAUC}_{\text{ETT}}: \text{insulin AUC and NefaAUC}_{\text{ETT}}: \text{NEFA AUC in response to ETT})\) of ewes born to heavy or light dams fed either ad libitum or maintenance during pregnancy. Black solid line and ● heavy – ad libitum; black dotted line and ○ light – ad libitum; grey solid line and ■ heavy – maintenance; grey dotted line and □ light – maintenance .. 134

Table 7.1. The effects of heavy (H) or light (L) dams fed ad libitum (A) or maintenance (M) during pregnancy on birth weight (BW; kg), growth from birth to weaning \((\text{Growth}_{\text{wean}}; \text{g/day})\), growth from weaning-7 months of age \((\text{Growth}_{\text{prepub}}; \text{g/day})\), growth from 7-9 months of age \((\text{Growth}_{\text{postpub}}; \text{g/day})\) and glucose-metabolism variables at 16 months of age \((\text{GluAUC}_{\text{GTT}} \text{and InsAUC}_{\text{GTT}}; \text{glucose AUC and insulin AUC in response to GTT}, \text{respectively}; \text{GluAUC}_{\text{ITT}}; \text{glucose AUC in response to ITT})\) and fat-metabolism variables at 16 months of age \((\text{InsAUC}_{\text{ETT}} \text{0-20} \text{and NefaAUC}_{\text{ETT}} \text{0-20}; \text{insulin AUC and NEFA AUC in response to ETT}, \text{respectively})\) of ewe offspring. Table shows least square means ± S.E. .. 125

Table 7.2. Linear regression equations \(^*\) of pre-puberty growth rates \((\text{Growth}_{\text{prepub}}; 7-9 \text{ months of age}; \text{kg/day})\) on glucose-metabolism variables at 16 months of age \((\text{GluAUC}_{\text{GTT}}; \text{glucose AUC and InsAUC}_{\text{GTT}}; \text{insulin AUC in response to GTT}; \text{GluAUC}_{\text{ITT}}; \text{glucose AUC in response to ITT})\) of ewes born to heavy (H) or light (L) dams fed either ad libitum (A) or maintenance (M) during pregnancy.. 127

Table 7.3. Linear regression equations \(^*\) of post-puberty growth rates \((\text{Growth}_{\text{postpub}}; 9-12 \text{ months of age}; \text{kg/day})\) on glucose-metabolism variables at 16 months of age \((\text{GluAUC}_{\text{GTT}}; \text{glucose})\).
AUC and InsAUC_{GTT}: insulin AUC in response to GTT; GluAUC_{ITT}: glucose AUC in response to ITT) of ewes born to heavy (H) or light (L) dams fed either <i>ad libitum</i> (A) or maintenance (M) during pregnancy.

Table 7.4. Linear regression equations* of birth weights (kg) on fat-metabolism variable InsAUC_{ETT} at 16 months of age (insulin AUC in response to ETT) of ewes born to heavy (H) or light (L) dams fed either <i>ad libitum</i> (A) or maintenance (M) during pregnancy.

Table 7.5. Linear regression equations* of growth rates (from birth until 4 months of age, Growth_{wean}: kg/day) on fat-metabolism variable NefaAUC_{ETT} at 16 months of age (NEFA AUC in response to ETT) of ewes born to heavy (H) or light (L) dams fed either <i>ad libitum</i> (A) or maintenance (M) during pregnancy.

Chapter 8 Lactational performance:

Figure 8.1. Digital image of a duplicate haematoxylin- and eosin-stained section of the fetal mammary gland at day 100 of pregnancy. Arrows indicate ducts.

Figure 8.2. Ewe live weight during the first 49 days of lactation for ewes born to dams fed <i>ad libitum</i> (A) --●-- (n = 39) or maintenance (M) --○-- (n = 33) during pregnancy and ewes born to heavy (H) --■-- (n = 45) or light (L) --□-- (n = 27) dams. Data are presented as least square means (± S.E.). # P < 0.05; ‡ P < 0.10; dam size effect.

Figure 8.3. Milk yield (top) and lactose percentage (bottom) during the first 50 days of lactation for ewes born to dams fed <i>ad libitum</i> (A) --●-- (n = 39) or maintenance (M) --○-- (n = 33) during pregnancy and ewes born to heavy (H) --■-- (n = 45) or light (L) --□-- (n = 27) dams. Data are presented as least square means (± S.E.). * P < 0.05; † P < 0.10; dam nutrition effect, # P < 0.05; ‡ P < 0.10; dam size effect.

Figure 8.4. Crude protein percentage (top) and fat percentage (bottom) during the first 50 days of lactation for ewes born to dams fed <i>ad libitum</i> (A) --●-- (n = 39) or maintenance (M) --○-- (n = 33) during pregnancy and ewes born to heavy (H) --■-- (n = 45) or light (L) --□-- (n = 27) dams. Data are presented as least square means (± S.E.). # P < 0.05; ‡ P < 0.10; dam size effect.

Table 8.1. Fetal weight, fetal mammary gland weight (g), total duct area (µm²), total number of ducts and total number of ducts containing lumen at day 100 of gestation of twin-fetuses carried by dams fed <i>ad libitum</i> (A) (n = 16) or maintenance (M) (n = 7) during gestation and fetuses carried by heavy (H) (n = 13) or light (L) (n = 10) dams. Table shows least square means (± S.E.).
Table 8.2. Accumulated milk, lactose, crude protein and fat yield (kg) and milk net energy (MJ) over 50-days lactation period of ewes born to dams fed ad libitum (A) \((n = 39)\) or maintenance (M) \((n = 33)\) during gestation and ewes born to heavy (H) \((n = 45)\) or light (L) \((n = 27)\) dams. Table shows least square means \((± S.E.)\). .. 151

Table 8.3. Lamb birth weight (kg), lamb live weight (kg) at day 49 of age \((d49)\) and weaning, and lamb growth rates \((g/day)\) from birth to d49 \((\text{Growth}_{\text{birth-d}49})\) and from birth to weaning \((\text{Growth}_{\text{birth-wean}})\) for lambs born to ‘grand’ dams fed ad libitum (A) \((n = 78)\) or maintenance (M) \((n = 66)\) during pregnancy and lambs born to heavy (H) \((n = 90)\) or light (L) \((n = 54)\) ‘grand’ dams. Data are presented as least square means \((± S.E.)\). ... 154

Table 8.4. Regression \((\beta_1)\) of accumulated milk, lactose, crude protein and fat yield (kg) and milk net energy (MJ) over 50 days lactation period, total lamb birth weight, weight at day 49 of lactation and weaning weight on ewe metabolic live weight at mating \((\text{LW}^{n\cdot75})\) of ewes born to dams fed ad libitum (A) \((n = 39)\) or maintenance (M) \((n = 33)\) during gestation and ewes born to heavy (H) \((n = 45)\) or light (L) \((n = 27)\) dams. Table shows estimate \(\beta_1\) \((± S.E.)\). 156

Chapter 9 Productive performance:

Table 9.1. The effect of being a heavy or light dam fed ad libitum or maintenance during pregnancy on live weight (kg) at pregnancy day 1 (P1), 53 (P53) and 140 (P140). Table shows least square means \((± S.E.)\). ... 166

Table 9.2. The effects of heavy (H) or light (L) dams fed ad libitum (A) or maintenance (M) during pregnancy on the live weights (kg) of the ewe offspring at pregnancy day 0 (P0), 70 (P70) and 135 (P135) and at weaning (L77) of their lambs. Ewes were either bearing and rearing singleton (S) or twin (T) lambs or bearing twins but rearing singleton lambs (TS) to weaning (L77). Table shows least square means \((± S.E.)\). .. 171

Table 9.3. The effects of heavy (H) or light (L) dams fed ad libitum (A) or maintenance (M) during pregnancy on the body condition score (scale 1-5) of the ewe offspring at pregnancy day 0 (P0), 70 (P70) and 135 (P135) and at weaning (L77) of their lambs. Ewes were either bearing and rearing singleton (S) or twin (T) lambs or bearing twins but rearing singleton lambs (TS) to weaning (L77). Table shows least square means \((± S.E.)\). .. 172

Table 9.4. The effects of heavy (H) or light (L) dams fed ad libitum (A) or maintenance (M) during pregnancy on pregnancy scanning, lambing and weaning percentages of the ewe offspring and total weight (kg) of lambs weaned per ewe mated and ewe efficiency (kg). Table shows least square means \((± S.E.)\). ... 173
Table 9.5. The effects of heavy (H) or light (L) ‘grand’ dams fed ad libitum (A) or maintenance (M) during pregnancy on weight (kg) at birth, L24 and weaning (L77) of ‘grand’ offspring. Lambs were born and reared either as a singleton (S) or twin (T), or born as a twin but reared as a singleton (TS) to weaning (L77). Table shows least square means (± S.E.). 175

Table 9.6. The effect of heavy (H) or light (L) ‘grand’ dams fed ad libitum (A) or maintenance (M) during pregnancy on the thoracic girth (cm), crown-rump length (cm), length of right front and hind legs (cm) of ‘grand’ offspring. Lambs were born either as a singleton (S) or twin (T). Table shows least square means (± S.E.). .. 176

Table 9.7. The effects of heavy (H) or light (L) ‘grand’ dams fed ad libitum (A) or maintenance (M) during pregnancy on growth rates (g/day) from birth to L24, from L24 to weaning (L77) and from birth to weaning (L77) of ‘grand’ lambs, which were either born and reared as singleton or twin or born as a twin but reared as a singleton (TS) to weaning (L77). Table shows least square means (± S.E.). .. 178

Chapter 10 General discussion:

Table 10.1. Research design to examine the effects of nutrition during pregnancy on the mammary gland development and subsequent lactational performance of the offspring. 192