Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Molecular analysis of plant innate immunity triggered by secreted effectors from bacterial and fungal pathogens of apple

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)
in Plant Science

Institute of Agriculture and Environment
Massey University, New Zealand.

Maxim Prokchorchik

December 2017

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Abstract

In comparison to animals, plants do not have a dedicated immune system with mobile immune cells to protect themselves. Instead, they rely on the innate immunity of each cell. Plant immunity branches into two classical layers: PTI (PAMP-triggered immunity) and ETI (Effector-triggered immunity). PTI detects the conserved molecular patterns (PAMPs) associated with pathogens and often can be overcome by pathogens translocating effector molecules into plant cells to inhibit the PTI. ETI, in turn, relies on intracellular receptors that can specifically recognize effectors or their activity and activate a rapid and robust response.

The research presented in this thesis is focused on two pathogens of apple plants: the bacterial pathogen *Erwinia amylovora* (the causal agent of fire blight) and fungal pathogen *Venturia inaequalis* (the causal agent of apple scab disease). As both bacterial and fungal pathogens deliver effector molecules in order to promote their virulence, ETI engineering is a promising universal strategy to control these pathogens.

In Chapter 3, the main aim was to elucidate the requirements and precise mechanism of how an important effector of *E. amylovora*, AvrRpt2, is recognized by the MR5 disease resistance (R) protein, derived from a hybrid apple *Malus x robusta* 5. I identified that a fragment of the guardee apple protein RIN4 was required and sufficient and required for MR5 activation. I further identified crucial amino acid residues responsible for this activation. Interestingly, cognate residues in RIN4 guardee homolog from *Arabidopsis thaliana* are responsible for suppression of the autoactivity of R protein RPS2. These findings led to the proposal of a novel hypothesis for evolutionary guardee adaption to the pool of R proteins present in plants.

In Chapter 4, the main focus was to apply newly acquired whole-genome sequencing data of *V. inaequalis* for identifying the previously mapped AvrRvi8 effector, as well as several novel effectors predicted *in silico*. The sequences of these effectors were validated by amplification and resequencing of candidate genes from *V. inaequalis* cDNA. Further functional analysis of the selected gene candidates was performed. In addition, a library of constructs for generating *V. inaequalis* knock-out strains was prepared for future work.

The findings from this thesis expected to be useful for breeders of apple to battle two economically important pathogens devastating the industry.
Deployment of the MR5 system in apples should facilitate fire blight resistance in pipfruit and offers the opportunity for further engineering of MR5 to detect other pathogens.

Furthermore, the effector library developed for *V. inaequalis* offers a novel tool for studying both virulence and avirulence mechanisms present in the apple-scab pathosystem. It is envisaged that further effector research will elucidate authentic targets critical for resistance development in apple.
Acknowledgments

I would like to thank my supervisor, Prof. Kee Hoon Sohn, for his support, scientific guidance and overall help while undertaking my PhD. His excellent knowledge of the field and creativity always served as a beacon, helping me navigate a sea of data and failed experiments. His support and enthusiasm encouraged me to never give up or stop the journey of my PhD. I also want to thank Dr. Cecile Segonzac for the invaluable guidance in the lab, as well as in the world of Western Blotting and CoIPs.

I am very grateful to Dr. Janet Reid, Dr. Vincent Bus and Dr. David Chagne for their guidance, insightful discussions and support. I want to thank Dr. Rosie Bradshaw and Dr. Joanna Bowen for the enormous help with thesis preparation and scientific advice. I enjoyed my time doing research and having fun weekends with the "PhD awesome foursome" of KSL lab, including Jay, Sera and Toby. I also want to thank members of KSL in Korea, including Jeongmin, Hayoung and Haseong for their help to get used to a completely different country.

I am thankful to my parents for their endless support and understanding during my ups and downs. Even from far away they made me feel that they are very close. Finally, I would like to thank my partner Sera, who coped with me through the long course of this PhD, listening to my endless ideas during the good times and my limitless moaning during the bad.
Table of contents

Abstract ... 2
Acknowledgments .. 4
Table of contents .. 5
List of figures ... 10
List of tables ... 14
Abbreviations ... 16

Chapter 1. General introduction ... 20
1.1 Apple industry in New Zealand ... 20
1.2 Venturia inaequalis is the causal agent of apple scab disease 21
1.3 Erwinia amylovora is the causal agent of apple fire blight disease................. 26
1.4 Plant immunity general overview ... 32
1.5 PAMP-triggered immunity ... 35
 1.5.1 PAMP recognizing receptors .. 36
 1.5.2 Signaling during PTI .. 37
1.6 Effectors of plant pathogens ... 38
 1.6.1 Effector delivery from bacterial pathogens .. 39
 1.6.2 Effector delivery from oomycete and fungal pathogens 43
1.7 Effectors and their recognition .. 46
 1.7.1 Effectors suppressing PTI .. 48
 1.7.2 Effectors manipulating plant phytohormones ... 50
 1.7.3 Effectors targeting gene expression machinery .. 52
 1.7.4 Effectors interfering with the plant cell cytoskeleton ... 54
1.8 Effector triggered immunity in plants and R proteins ... 55
 1.8.1 NB-LRRs .. 56
 1.8.2 Cytoplasmic serine/threonine kinases .. 60
 1.8.3 Downstream signaling during ETI .. 60
1.9 Direct and indirect recognition of effectors ... 61
 1.9.1 Direct effector recognition ... 61
 1.9.2 Indirect effector recognition and guard-guardee/decoy hypothesis 62
 1.9.3 Integrated decoy as a strategy to trap effectors ... 66
1.10 Aims of this study ... 67

Chapter 2. Materials and Methods .. 70

2.1 Materials .. 70
 2.1.1 Bacterial strains used in this study: 70
 2.1.2 Plasmids and constructs used in this study: 70
 2.1.3 Plant material ... 99
 2.1.4 Bacterial & Plant Media ... 101
 2.1.5 Antibiotics .. 102

2.2 Microbiology methods ... 102
 2.2.1 Bacterial conjugation ... 102
 2.2.2 Competent cell preparation & transformation 103
 2.2.3 Glycerol stocks ... 103

2.3 Plant Methods .. 104
 2.3.1 Hypersensitive response assays in Arabidopsis thaliana 104
 2.3.2 Agrobacterium tumefaciens infiltration for transient protein expression .. 104
 2.3.3 N. benthamiana ion leakage assay 104
 2.3.4 Arabidopsis stable transformation 105
 2.3.5 Arabidopsis crossing ... 106

2.4 Molecular Biology Methods .. 106
 2.4.1 Enzymes used in this study ... 106
 2.4.2 Bacterial genomic DNA extraction methods 106
 2.4.3 Chelex plant genomic DNA extraction 106
 2.4.4 Plant genomic DNA extraction methods 107
 2.4.5 Polymerase chain reaction ... 107
 2.4.6 Nested PCR .. 107
 2.4.7 Colony PCR .. 108
 2.4.8 Agarose gel electrophoresis .. 108
 2.4.9 Agarose gel purification of DNA 109
 2.4.10 Blunt-end Smal/T4 cloning .. 109
 2.4.11 Golden gate cloning ... 109
 2.4.12 Plasmid DNA purification .. 111
 2.4.13 Alkaline Lysis Miniprep .. 112
 2.4.14 Site-directed mutagenesis .. 112
2.4.15 DNA sequencing ... 113
2.4.16 RNA extraction ... 113
2.4.17 Reverse transcription PCR (RT-PCR) 114
2.4.18 Semi-quantitative PCR ... 114
2.4.19 Total protein extraction ... 114
2.4.20 SDS-PAGE & Western blot ... 115
2.4.21 CoIP ... 116

Chapter 3: molecular basis of AvrRpt2 recognition by the NLR MR5 from the hybrid apple *Malus x robusta* 5 ... 117

3.1 Introduction .. 117
3.1.1 AvrRpt2 homologs are important for successful plant infection 117
3.1.2 AvrRpt2 recognition in Arabidopsis 118
3.1.3 MR5 is a CC-type NLR conferring resistance to fire blight 120

3.2 Results .. 121
3.2.1 Transiently expressed AvrRpt2 homologs induce moderate cell death in *Nicotiana benthamiana* leaves ... 121
3.2.2 AvrRpt2 activates MR5 by elimination of RIN4 122
3.2.3 AvrRpt2-mediated elimination of RIN4 homologs from apple closely-related species can activate MR5 .. 124
3.2.4 EaAvrRpt2^{C156S} does not lose catalytic activity and can be still recognized by MR5 and RPS2 ... 124
3.2.5 Mutation analysis of MR5 critical domains 127
3.2.6 RIN4 natural variants have differing abilities to suppress or activate NLRs .. 129
3.2.7 The presence of MdRIN4 CLV3 is necessary and sufficient to elicit MR5-mediated cell death ... 134
3.2.8 Only fully intact version of MR5 can be activated by MdRIN4 CLV3 ... 135
3.2.9 MR5 domain combinations cannot be activated by MdRIN4 CLV3 137
3.2.10 Two amino acid residues in a highly conserved part of MdRIN4 CLV3 are critical for MR5 activation ... 138
3.2.11 MR5 is not able to recognize RIN4 phosphorylation by AvrRpm1 or AvrB .. 141
3.2.12 Polymorphic residues alter the suppression and activation properties of full length RIN4 .. 142
3.2.13 Polymorphic residues alter the suppression and activation properties of RIN4 CLV3
...144
3.2.14 Polymorphic residues alter interaction of MdRIN4 with RPS2 and MR5
...146

3.3 Discussion ...148
3.3.1 Cysteine to serine substitution in position 156 in *E. amylovora* AvrRpt2
does not alter its RIN4 cleavage ability but might interfere with its delivery
...148
3.3.2 MR5 uses activation rather than de-repression to trigger immune
responses upon recognition of AvrRpt2 ...148
3.3.3 Two polymorphic residues in a conserved region of CLV3 dramatically
alter RIN4 properties ..151

Chapter 4. Validating and characterization of prospective *Venturia inaequalis* effectors ...153

4.1 Introduction ..153
4.1.1 *Venturia inaequalis* is the causal agent of apple scab disease153
4.1.2 The *Venturia inaequalis* and *Malus* pathosystem153
4.1.3 Relationship (8) of *V. inaequalis* NZ188B.2 and *M. sieversii* W193B...162

4.2 Results ..165
4.2.1 Cloning of AvrRvi8 effector candidate genes165
4.2.2 Functional validation of AvrRvi8 gene candidates *in planta*166
4.2.3 *Pseudomonas fluorescens* mediated delivery of AvrRvi8-7 into apple
leaves ..167
4.2.4 Validating *Venturia inaequalis* 120 Candidate Effectors168

4.3 Discussion ..172
4.3.1 Sequence and functional validation of *V. inaequalis* AvrRvi8172
4.3.1 Sequence and functional validation of novel *in silico* predicted *V.
inaequalis* effector candidates ..173

Chapter 5. General conclusions and Future directions ..175
5.1 General conclusions from a detailed study of MR5-RIN4 system............176
5.2 Evidence supporting co-evolution of guarded proteins with their
cognate NLRs ...177
5.3 Significance and future directions of the MR5-RIN4 system research180
5.4 General conclusions from *V. inaequalis* prospective effector genes research.. 181

5.5 Significance and future directions of the *V. inaequalis* prospective effector genes research ... 182

References .. 185

Appendices ... 217
List of figures

Figure 1.1: Apple scab disease on apple fruits and apple leaves.................. 22
Figure 1.2: Venturia inaequalis life cycle... 24
Figure 1.3: Fire blight symptoms in apple caused by Erwinia amylovora on blossoms, fruits and shoots. .. 27
Figure 1.4: Fire blight disease cycle... 29
Figure 1.5: Schematic representation of plant immunity............................... 33
Figure 1.6: Pattern recognition receptors (PRRs) recognize multiple PAMPs from bacteria.. 35
Figure 1.7: Bacterial pathogens deliver effectors through type 3 secretion system (T3SS) ... 42
Figure 1.8: Fungal and oomycete structures for effector secretion............... 45
Figure 1.9: Schematic representation of important domains in NOD-Like Receptors (NLRs).. 57
Figure 1.10: Current understanding of NLR activation.................................... 59
Figure 1.11: Recognition of AvrB and AvrRpm1 or AvrRpt2 effectors by RPM1 and RPS2 NLRs respectively... 64
Figure 1.12: Recognition of AvrPphB effector by RPS5................................. 65
Figure 1.13: Recognition of PopP2 effector from Ralstonia solanacearum by RPS4-RRS1 complex.. 66

Figure 2.1. Schematic representation of Golden Gate cloning system......... 111

Figure 3.1: Phylogenetic analysis of AvrRpt2 homologs............................... 118
Figure 3.2: Model of RPS2 activation via RIN4 cleavage by AvrRpt2........ 119
Figure 3.3: Agrobacterium mediated overexpression of P. syringae and E. amylovora AvrRpt2 variants in N. benthamiana................................. 121
Figure 3.4: AvrRpt2-directed cleavage of MdRIN4 is recognized by both RPS2 and MR5.. 123
Figure 3.5: RIN4 homologs from Pyrus species can activate MR5 in presence of EaAvrRpt2... 124
Figure 3.6: EaAvrRpt2C1568 can be recognized by RPS2 and MR5 systems. 126
Figure 3.7: Expression of MR5 variants with mutations in critical domains. ..128
Figure 3.8: RIN4 natural variants have different abilities to suppress autoactive NLRs...130
Figure 3.9: Different regions of RIN4 are required for suppression and activation of NLRs...133
Figure 3.10: Cleavage at MdRIN4 RCS2 is required for MR5 activation.....134
Figure 3.11: MdRIN4 CLV3 can activate MR5 even in absence of AvrRpt2.135
Figure 3.12: Only fully intact MR5 protein can initiate signaling when co-expressed with MdRIN4 CLV3...136
Figure 3.13: Co-expression of separate domains of MR5 cannot recapitulate PCD-triggering activity in the presence of MdRIN4 CLV3.........137
Figure 3.14: Two amino acid residues in the conserved C-NOI domain of CLV3 are critical for NLR compatibility.................................140
Figure 3.15: MR5 cannot activate PCD in presence of AvrRpm1 and AvrB or RIN4 phosphorylation mimic..141
Figure 3.16: Two amino acid residues in the conserved C-NOI domain of CLV3 are critical for NLR compatibility with full length RIN4 variants.......143
Figure 3.17: MdRIN4 CLV3 carrying D186N and F193Y mutations suppresses NLR autoactivity...145
Figure 3.18: An MdRIN4 variant showing enhanced suppression of RPS2 autoactivity forms a stronger association with RPS2...............147
Figure 3.19: Comparison of well-studied RPS2-mediated AvrRpt2 recognition and proposed model of MR5-mediated AvrRpt2 recognition. ..150

Figure 4.1: Scab resistance reactions on apple leaves..............................154
Figure 4.2: Global positions of the 17 Rvi scab resistance genes identified in the apple genome to date...162
Figure 4.3: AvrRvi8-7 overexpression in N. benthamiana and N. tabacum does not trigger a macroscopic response..167
Figure 4.4: AvrRvi8-7 delivery via P. fluorescens T3SS does not trigger a macroscopic response in susceptible or resistant apple plants......168
Figure 4.5: *V. inaequalis* candidate effectors do not trigger any macroscopic response when expressed in *N. benthamiana* leaves. .. 170

Figure 4.6: *V. inaequalis* candidate effectors are able to attenuate RPS2 and HopAS1-mediated response when expressed in *N. benthamiana* leaves. .. 171

Figure 6.1: Protein alignment of AvrRpt2 effector from *Pseudomonas syringae* JL1506 and *Erwinia amylovora* Fb12-027. ... 222

Figure 6.2: Protein alignment of *Malus domestica* RIN4-1 and RIN4-2 homologs.. 223

Figure 6.3: Nucleotide alignment of *Venturia inaequalis* AvrRvi8-1 and AvrRvi8-2 candidates predicted in silico with the sequencing results of amplification products from cDNA... 224

Figure 6.4: Nucleotide alignment of *Venturia inaequalis* AvrRvi8-6 and AvrRvi8-8 candidates predicted in silico with the sequencing results of amplification products from cDNA... 225

Figure 6.5: Nucleotide alignment of *Venturia inaequalis* AvrRvi8-candidate predicted in silico with the sequencing results of amplification products from cDNA... 226

Figure 6.6: Schematic representation of intron mis-annotations and early STOP-codons in nucleotide alignments of *Venturia inaequalis* AvrRvi8-10 and AvrRvi8-11 candidates predicted in silico with the sequencing results of amplification products from cDNA... 227

Figure 6.7: Schematic representation of intron mis-annotations STOP-codon variations in nucleotide alignments of *Venturia inaequalis* ViCE5, 7 and 8 genes predicted in silico with the sequencing results of amplification products from cDNA.. 228

Figure 6.8: Plasmid map of pICH41021 ... 229

Figure 6.9: Plasmid map of pICH86966 ... 230

Figure 6.10: Plasmid map of pICH86988 ... 231

Figure 6.11: Plasmid map of EpiGreenB5::Spec::GG ... 232

Figure 6.12: Plasmid map of pAGM4723 ... 233

Figure 6.13: Plasmid map of pBBR1MCS-5 with AvrRps4 promoter and fragment coding for AvrRps4 secretion signal ... 234
Figure 6.14: Plasmid map of pBBR1MCS-5 with AvrRpm1 promoter and fragment coding for AvrRpm1 secretion signal.

235
List of tables

Table 1.1: New Zealand apple fresh fruit industry overview and dynamics. .. 20
Table 1.2: Relative susceptibility of common apple and pear cultivars to fire blight .. 31

Table 2.1 Standard constructs and vectors for Golden Gate cloning 72
Table 2.2. Constructs generated for Venturia inaequalis 120 AvrRvi8 candidates cloning .. 75
Table 2.3. Constructs used for Venturia inaequalis 120 AvrRvi8 transient protein expression and T3SS delivery .. 76
to plant cells .. 76
Table 2.4. Constructs used for bacterial effector cloning 77
Table 2.5. Constructs used for bacterial effector T3SS delivery and transient expression: .. 78
Table 2.6. Constructs used for plant genes cloning .. 80
Table 2.7. Constructs used for plant protein transient expression and stable transformation .. 84
Table 2.8. Constructs used for Venturia inaequalis predicted candidate effectors (ViCE) cloning ... 94
Table 2.9. Constructs used for Venturia inaequalis predicted candidate effectors (ViCE) transient expression ... 95
without signal peptide ... 95
Table 2.10. Constructs used for Venturia inaequalis predicted candidate effectors (ViCE) transient expression fused ... 97
with PR1α signal peptide ... 97
Table 2.11. Arabidopsis thaliana genotypes used in this study ... 99
Table 2.12. Arabidopsis thaliana genotypes generated during this study... 99

Table 4.1: Representation of gene-for-gene relationships between Venturia inaequalis and Malus .. 156
Table 4.2. Sequence analysis and validation of 12 in silico predicted AvrRvi8 gene candidates .. 166
Table 4.3. Sequence validation of *V. inaequalis* candidate effectors (*ViCE*).

..169

Table 6.1: Primers used in this study for Golden Gate module generation:

..217

Table 6.2: Primers used in this study for site-directed mutagenesis:........220
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>Amino acids</td>
</tr>
<tr>
<td>ABA</td>
<td>Abscisic acid</td>
</tr>
<tr>
<td>At</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP-binding cassette</td>
</tr>
<tr>
<td>Avr</td>
<td>Avirulence</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BAK1</td>
<td>BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1</td>
</tr>
<tr>
<td>BIC</td>
<td>Biotrophic interfacial complex</td>
</tr>
<tr>
<td>BIK1</td>
<td>BOTRYTIS INDUCED KINASE 1 (a cytoplasmic kinase)</td>
</tr>
<tr>
<td>BR</td>
<td>Brassinosteroid</td>
</tr>
<tr>
<td>CC</td>
<td>Coiled-coil (a domain in NB-LRRs)</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CEBiP</td>
<td>CHITIN OLIGOSACCHARIDE ELICITOR BINDING PROTEIN</td>
</tr>
<tr>
<td>CIN1</td>
<td>Cellophane induced protein 1</td>
</tr>
<tr>
<td>CIN3</td>
<td>Cellophane induced protein 3</td>
</tr>
<tr>
<td>CK</td>
<td>Cytokinin</td>
</tr>
<tr>
<td>CNL</td>
<td>Coiled-coil nucleotide-binding leucine-rich-repeat receptor</td>
</tr>
<tr>
<td>CSP</td>
<td>Cold-shock protein</td>
</tr>
<tr>
<td>CWDE</td>
<td>Cell wall-degrading enzymes</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dpi</td>
<td>Days post inoculation</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EDS1</td>
<td>Enhanced disease susceptibility 1</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetraacetic acid</td>
</tr>
<tr>
<td>EFR</td>
<td>EF-Tu receptor (a sensor PRR/RLK)</td>
</tr>
<tr>
<td>EF-Tu</td>
<td>Elongation factor thermo unstable</td>
</tr>
<tr>
<td>EIX</td>
<td>ETHYLENE-INDUCING Xylanases</td>
</tr>
<tr>
<td>elf18</td>
<td>EF Tu-derived epitope from Escherichia coli</td>
</tr>
<tr>
<td>Ea</td>
<td>Erwinia amylovora</td>
</tr>
<tr>
<td>ET</td>
<td>Ethylene</td>
</tr>
<tr>
<td>ETI</td>
<td>Effector-triggered immunity</td>
</tr>
<tr>
<td>EV</td>
<td>Empty vector</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FLS2</td>
<td>Flagellin-sensitive 2 (a sensor PRR/RLK)</td>
</tr>
<tr>
<td>flg22</td>
<td>Flagellin-derived epitope from Pseudomonas aeruginosa g gram</td>
</tr>
<tr>
<td>FOB</td>
<td>Free on board</td>
</tr>
<tr>
<td>GA</td>
<td>Gibberellic acid</td>
</tr>
<tr>
<td>h</td>
<td>hours</td>
</tr>
<tr>
<td>His</td>
<td>Histidine</td>
</tr>
<tr>
<td>Hpa</td>
<td>Hyaloperonospora arabidopsis</td>
</tr>
<tr>
<td>hpi</td>
<td>Hours post infiltration</td>
</tr>
<tr>
<td>HR</td>
<td>Hypersensitive response</td>
</tr>
<tr>
<td>HSP90</td>
<td>Heat shock protein 90</td>
</tr>
<tr>
<td>IFP</td>
<td>Integrated fruit production</td>
</tr>
<tr>
<td>IP</td>
<td>Invasion pattern</td>
</tr>
<tr>
<td>IPR</td>
<td>Invasion pattern receptor</td>
</tr>
<tr>
<td>IPTR</td>
<td>Invasion pattern triggered response</td>
</tr>
<tr>
<td>JA</td>
<td>Jasmonic acid</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodaltons</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LRD</td>
<td>leucine-rich domain</td>
</tr>
<tr>
<td>LRR</td>
<td>Leucine rich repeat</td>
</tr>
<tr>
<td>Leu</td>
<td>Leucine</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>Md</td>
<td>Malus domestica</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>Mr5</td>
<td>Malus x robusta 5</td>
</tr>
<tr>
<td>NBS</td>
<td>Nucleotide binding site (domain of NB-LRR)</td>
</tr>
<tr>
<td>NLR</td>
<td>Nod-like receptors</td>
</tr>
<tr>
<td>NLS</td>
<td>Nuclear localization signal</td>
</tr>
<tr>
<td>NDR1</td>
<td>Nonrace-specific disease resistance 1</td>
</tr>
<tr>
<td>NOI</td>
<td>NO_3-induce domain</td>
</tr>
</tbody>
</table>
OD Optical density of bacterial suspension with 600nm wavelength light
PAD4 Phytoalexin deficient 4
PAMP Pathogen-associated molecular pattern
PDA Potato dextrose agar
PCD Programmed cell death
PCR Polymerase chain reaction
PG polygalacturonase
PGN Peptidoglycan
PR Pathogenesis-related
PRR Pattern recognition receptor
PTI PAMP-triggered immunity
Pf *Pseudomonas fluorescens*
Pp *Pyrus pyrifolia*
Ps *Pseudomonas syringae*
Pto *Pseudomonas syringae pv. tomato*
Pu *Pyrus ussuriensis*
qPCR Quantitative polymerase chain reaction
RIN4 RPM1-interacting 4
RLCK Receptor-like cytoplasmic kinase (intracellular)
RLK Receptor-like kinase (a class of PRR)
RLP Receptor-like protein (a class of PRR)
RNA Ribonucleic acid
ROS Reactive oxygen species
RPP Resistance to *Peronospora parasitica* (NLRs for *Hyaloperonospora arabidopsidis*)
RPM1 RESISTANCE TO PSEUDOMonas *SYRINGAE* PV. MACULICOLA 1
RPS2 RESISTANCE TO PSEUDOMonas *SYRINGAE* 2
RPS4 RESISTANCE TO PSEUDOMonas *SYRINGAE* 4
RPS5 RESISTANCE TO PSEUDOMonas *SYRINGAE* 5
RRS1 RESISTANCE TO RALSTonia *SOLANACEARUM* 1
s seconds
SA Salicylic acid
SAG101 Senescence associated gene 101
SAR Systemic acquired resistance
SDS Sodium dodecyl sulphate
SGT1 Suppressor of G2 allele of skp1 (required for most NLRs)
SID2 Salicylic acid induction deficient 2
SOBIR1 Suppressor of bir1-1 (a helper RLK)
TAE tris acetate EDTA
TAL Transcriptional activator-like (effector)
TCE Tray equivalent (18 kg sale weight)
TEMED N,N,N',N'-tetramethyl-ethylenediamine
TEV Tobacco etch virus
TIR Toll-interleukin-1 receptor (a domain in NB-LRRs)
TNL Toll-interleukin-1 receptor nucleotide-binding leucine-rich-repeat receptor
Tris tris(hydroxymethyl)aminomethane
Trp Tryptophan
T1SS Type I secretion system
T3SS Type-three secretion system
T3E Type-three secreted effector (bacterial)
Vi Venturia inaequalis
ViCE Venturia inaequalis candidate effector
\(\mu \text{L} \) microlitre
\(\mu \text{M} \) micromolar