Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
RELEVANCE OF THE VARIABILITY OF THE FELINE IMMUNODEFICIENCY VIRUS IN REGARD TO PATHOGENICITY AND VACCINATION IN NEW ZEALAND

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Animal Science

Massey University, Manawatū
New Zealand

Alison Louise Stickney
2018
Abstract

Cats infected with the feline immunodeficiency virus (FIV) show a range of clinical signs. Given the variability of the FIV genome, it is possible that there is variation in certain biological characteristics of FIV, such as pathogenicity. This may also be relevant to vaccination against FIV, as an effective vaccine would have to result in the generation of T cells that recognise a range of different variants in the field. The Fel-O-Vax® FIV vaccine has been available to veterinarians in New Zealand (NZ) for the past 12 years. Despite this, there is a paucity of studies investigating the cross-reactivity of the vaccine-induced immune response against different variants of FIV, and no studies investigating the efficacy of the vaccine in NZ.

The overall aim of the research in this thesis was to determine the relevance of the variability of FIV, in regard to pathogenicity and vaccination in NZ. Firstly, 2 separate assays were designed to assess variation in the ability of different isolates of FIV to induce apoptosis or inhibit mitogen-induced proliferation in lymphoid cells in vitro. Results showed that variation in FIV-apoptosis did occur, supporting the argument that FIV variants may also differ in pathogenicity. Secondly, the cross-reactivity of the vaccine-induced immune response was assessed in vitro and in vivo, by measuring antigen-specific cellular activation and a delayed type hypersensitivity (DTH) response in vaccinated cats following inoculation with NZ field isolates of FIV. Results showed that the response was at least partially cross-reactive, however quantitative differences were detected in the response to each isolate of FIV tested. Finally, efficacy of the Fel-O-Vax® FIV vaccine under NZ conditions was investigated by comparing the prevalence of FIV in vaccinated and unvaccinated cats in the field. Results showed that there was no effect of vaccination on FIV prevalence, suggesting poor efficacy of the Fel-O-Vax® FIV vaccine in NZ.

Results described in this thesis support the argument that there is variation among FIV in NZ, and that this may affect pathogenicity and vaccine efficacy in this country. The evidence presented did not support use of the Fel-O-Vax® FIV vaccine in NZ.
Acknowledgements

To the many people who have helped me on this journey, I am sincerely grateful. Firstly, to my supervisors; Associate Professor Nicholas Cave, Dr. Magda Dunowska and Dr. Anthony Pernthaner. Thank you Tony for taking the time to explain even the most basic concepts in flow cytometry, and for your patience in answering all my questions. I would like to express my gratitude to Magda for her friendship and support, especially in the laboratory. I have come a long way with her guidance, and appreciate all that she has taught me. I am especially grateful to Nick, who taught me to question everything and inspired me to embark on this journey. Thank you Nick for all the emotional support, your friendship and mentorship, and your understanding of the challenges that I faced throughout this adventure.

I would like to acknowledge the staff at the Hopkirk Institute, who allowed me to use their equipment and often assisted me with various assays. In particular, I would like to thank Joanna Roberts for all her assistance with the flow cytometry experiments. Thank you also to the staff at the Massey University Feline Nutrition Unit. I appreciate all of your help with sample collection and for always making me feel welcome. I am grateful to the staff in the virology laboratory who provided support along the way. In particular, to Sayani Gosh, for all her help with the samples towards the end; Kristene Gedye for helping me to understand the phylogenetic analysis, and to Laryssa Howe for taking the time to teach me how to run an ELISA. Thank you also to Jessica Hayward for her assistance in the initial phylogenetic analysis of the samples. I would like to acknowledge Zoetis, the NZ Companion Animal Society and the IVABS Postgraduate Research Fund for their financial support of this project.

Finally, I am eternally grateful to my family for their constant support throughout this process. To my beautiful children, Maryjane and Jack – I look forward to all the extra time we will now have together. And most importantly, to my husband Simon. Thank you for helping me get through this. For all the babysitting, your understanding of the time we have spent apart and constant emotional support, I will always be grateful.
Table of Contents

CHAPTER ONE

REVIEW OF THE LITERATURE ... 1

1.1. INTRODUCTION ... 3

1.2. GENETIC DIVERSITY OF FIV ... 5

1.2.1. The FIV genome .. 5

1.2.2. Subtype classification ... 6

1.2.3. The clinical relevance of subtype classification .. 8

1.3. BIOLOGY OF FIV .. 9

1.3.1. Cell tropism and the virus-host cell interaction .. 9

1.3.2. Virus assembly .. 13

1.3.3. Viral transmission .. 14

1.3.4. Viral dissemination .. 14

1.4. FELINE ACQUIRED IMMUNODEFICIENCY SYNDROME .. 15

1.4.1. FIV-induced immune dysfunction .. 18

1.4.2. FIV-associated neurological disease .. 26

1.4.3. FIV-associated neoplasia .. 28

1.4.4. FIV-associated gingivostomatitis ... 29

1.5. THE IMPACT OF GENETIC DIVERSITY ON THE PATHOGENICITY OF FIV.. 32

1.5.1. Viral evolution ... 34

1.5.2. Replication rate ... 34

1.5.3. Cell Tropism .. 35

1.5.4. Neurotoxicity .. 35

1.5.5. Lymphocyte apoptosis .. 36

1.6. NATURAL IMMUNITY AGAINST FIV .. 37

1.6.1. Intrinsic anti-FIV immunity .. 37

1.6.2. Innate anti-FIV immunity ... 38

1.6.3. Acquired anti-FIV immunity .. 39

1.7. FIV VACCINATION ... 41

1.7.1. Evidence for efficacy of the Fel-O-Vax FIV vaccine .. 42

1.7.2. Vaccine-induced immunity .. 48

1.7.3. The impact of genetic diversity of FIV on the efficacy of the Fel-O-Vax FIV vaccine 50

1.8. FIV IN NEW ZEALAND .. 54

1.8.1. Current considerations for use of the Fel-O-Vax FIV vaccine in NZ ... 55

1.9. CONCLUSION ... 57

CHAPTER TWO

PREPARATION OF FIV STOCK .. 59

2.1. INTRODUCTION ... 61

2.2. MATERIALS AND METHODS ... 62

2.2.1. Recruitment of FIV positive cats ... 62

2.2.2. Conventional PCR .. 63

2.2.3. Sequencing of the PCR product .. 64

2.2.4. Phylogenetic analysis ... 64

2.2.5. Reverse transcriptase quantitative PCR ... 65

2.2.6. Virus isolation ... 68

2.2.7. Production of virus from infectious molecular clones .. 70

2.2.8. Concentration of virus stock .. 72

2.2.9. Quantification of virus stock ... 72

2.3. RESULTS ... 75

2.3.1. Recruitment of FIV positive cats ... 75

2.3.2. Conventional PCR .. 75

2.3.3. Phylogenetic analysis ... 76
List of figures

FIGURE 1-1 Phylogenetic classification of FIV subtypes. ... 7
FIGURE 1-2 The FIV-host interaction. ... 12
FIGURE 1-3 Apoptotic pathways and FIV-induced mechanisms of apoptosis. 23
FIGURE 2-1 Gel electrophoresis showing conventional FIV PCR results... 76
FIGURE 2-2 Phylogenetic analysis of NZ FIV isolates. ... 79
FIGURE 2-3 Nucleotide alignment of the selected FIV isolates used in subsequent chapters of this thesis. 80
FIGURE 2-4 Recombinant analysis of NZ RVC001 isolate... 81
FIGURE 2-5 Optimisation of the FIV qRT-PCR. .. 84
FIGURE 2-6 Gel electrophoresis showing primer-dimer formation with the FIV qRT-PCR. 84
FIGURE 2-7 Oligo 7 output showing potential for duplex formation between primers. 85
FIGURE 2-8 Mel tot results from the FIV qRT-PCR. ... 86
FIGURE 2-9 Nucleotide alignment of the sequenced FIV RT-qPCR product. .. 86
FIGURE 2-10 Standard curves generated using the optimised FIV RT-qPCR. 89
FIGURE 2-11 Standard curve generated for absolute quantification of FIV. .. 90
FIGURE 2-12 Virus isolation from FIV-infected PBMC co-cultured with donor PBMC. 91
FIGURE 2-13 Virus isolation from FIV-infected PBMC co-cultured with MYA-1 cells. 92
FIGURE 2-14 Quantification of viral RNA in culture of MYA-1 cells following passage of FIV isolates. 93
FIGURE 2-15 Viral replication following transfection of CRFK cells with PetF14 clones. 94
FIGURE 2-16 Melt curve analysis of FIV DNA from transfected CRFK cells. 94
FIGURE 2-17 Viral RNA sampled from transfected CRFK cells and infected MYA-1 cells. 95
FIGURE 2-18 Amplification plots of FIV DNA and cDNA in virus stocks. ... 96
FIGURE 2-19 Melt curve analysis following FIV RT-qPCR on virus stock. 97
FIGURE 2-20 Comparison of DNA extraction methods. ... 98
FIGURE 2-21 Amplification of live versus inactivated FIV. ... 99
FIGURE 2-22 Standard curve used to calculate the p24 concentration of virus stocks. 101
FIGURE 3-1 Flow cytometry graph of PBMC separation. ... 124
FIGURE 3-2 Flow cytometry graphs demonstrating camptothecin-induced apoptosis. 125
FIGURE 3-3 The effect of time and concentration on camptothecin-induced apoptosis.................... 126
FIGURE 3-4 The effect of media composition on cell viability over time. .. 127
FIGURE 3-5 The effect of ConA on cell viability and cellular activation... 128
FIGURE 3-6 The effect of ConA and FIV infection on apoptosis and necrosis of feline PBMC. 129
FIGURE 3-7 Flow cytometry graphs demonstrating camptothecin-induced apoptosis in MYA-1 cells. 130
FIGURE 3-8 The effect of time on camptothecin-induced apoptosis of MYA-1 cells. 131
FIGURE 3-9 Flow cytometry graphs demonstrating the effect of FIV infection in apoptosis in MYA-1 cells. 132
FIGURE 3-10 The effect of control conditions on MYA-1 cell viability .. 133
FIGURE 3-11 Flow cytometry graphs demonstrating the effect of FIV infection on MYA-1 cell apoptosis
 at day 10. ... 134
FIGURE 3-12 Overlay histogram demonstrating FIV-induced apoptosis at day 10. 134
FIGURE 3-13 Comparison of MYA-1 cell viability in cultures infected with different isolates of FIV. 136
FIGURE 3-14 Comparison of the percentage of MYA-1 cells undergoing apoptosis over time in cultures
 infected with the RVC009 and CVK001 isolates of FIV ... 137
FIGURE 3-15 Comparison of the percentage of MYA-1 cells undergoing necrosis at day 10 in cultures
 infected with different isolates of FIV. the RVC009 and CVK001 isolates of FIV 137
FIGURE 3-16 The effect of FIV infection on MYA-1 cell concentration. .. 139
FIGURE 3-17 The effect of FIV infection on mitogen-induced lymphocyte proliferation. 141
FIGURE 4-1 Flow chart depicting the allocation of cats to experimental groups. 159
FIGURE 4-2 Overlay histograms showing the effect of vaccination on CD25 expression. 168
FIGURE 4-3 The effect of vaccination on activation of FIV-specific lymphocytes. 168
FIGURE 4-4 Results from anti-CD25 antibody titration. ... 170
FIGURE 4-5 Results from anti-CD4 antibody titration. ... 171
FIGURE 4-6 Results from anti-CD8 antibody titration. ... 172
FIGURE 4-7 Four-colour flow cytometry on ConA activated PBMC. .. 173
FIGURE 4-8 The effect of FIV on CD25 expression in PBMC from unvaccinated cats. 174
List of tables

TABLE 1-1 SUMMARY OF VIRAL NOMENCLATURE ... 4
TABLE 1-2 CELL TROPISM OF FIV. .. 13
TABLE 1-3 SUMMARY OF THE DUAL-SUBTYPE FIV VACCINE EFFICACY STUDIES. ... 43
TABLE 2-1 PCR PRIMERS USED FOR AMPLIFICATION OF THE env GENE IN CONVENTIONAL PCR. .. 64
TABLE 2-2 REAL-TIME PCR PRIMERS FOR AMPLIFICATION OF THE gag GENE ... 66
TABLE 2-3 ADDITIONAL PRIMERS USED TO DETERMINE SENSITIVITY OF THE FIV RT-qPCR. .. 67
TABLE 2-4 CLINICAL CHARACTERISTICS OF CATS INFECTED WITH SELECTED NZ FIELD ISOLATES. .. 75
TABLE 2-5 PAIRWISE COMPARISON OF NZ FIV ISOLATES TO REFERENCE SEQUENCES .. 77
TABLE 2-6 PAIRWISE COMPARISON OF SELECTED NZ FIV ISOLATES .. 77
TABLE 2-7 FINAL AMPLIFICATION CONDITIONS FOR THE OPTIMISED FIV RT-qPCR .. 87
TABLE 2-8 REPRESENTATIVE RESULTS FROM ENDPOINT DILUTION ASSAY .. 100
TABLE 2-9 THE P24 CONCENTRATION OF EACH VIRUS STOCK SOLUTION ... 101
TABLE 2-10 SUMMARY OF QUANTIFICATION RESULTS FOR EACH VIRUS USING 3 DIFFERENT METHODS. 102
TABLE 3-1 MEDIA FORMULATIONS USED FOR OPTIMISATION OF PBMC CULTURE .. 119
TABLE 4-1 AN EXAMPLE TO DEMONSTRATE THE GROUPING OF CELLS FROM UNVACCINATED CATS FOR STATISTICAL ANALYSIS ... 165
TABLE 4-2 THE METHOD USED TO POOL RESULTS FOR STATISTICAL ANALYSIS OF CD25 EXPRESSION .. 166
TABLE 5-1 HOUSEKEEPING GENE PCR PRIMERS .. 197
TABLE 5-2 SUMMARY OF RESULTS FROM ALL VACCINATED AND UNVACCINATED CATS ... 211
TABLE 5-3 SUMMARY OF RESULTS FROM FIV-TESTED VACCINATED CATS AND UNVACCINATED CATS. 211
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-ME</td>
<td>2-Mercaptoethanol</td>
</tr>
<tr>
<td>7AAD</td>
<td>7 amino actinomycin D</td>
</tr>
<tr>
<td>AB</td>
<td>Annexin binding buffer</td>
</tr>
<tr>
<td>AICD</td>
<td>Activation induced cell death</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CFGS</td>
<td>Chronic feline gingivostomatitis syndrome</td>
</tr>
<tr>
<td>ConA</td>
<td>Concanavalin A</td>
</tr>
<tr>
<td>CPM</td>
<td>Counts per minute</td>
</tr>
<tr>
<td>CPT</td>
<td>Cell preparation tube</td>
</tr>
<tr>
<td>Cq</td>
<td>Quantification cycle</td>
</tr>
<tr>
<td>CRD1</td>
<td>First cysteine rich domain of the CD134 molecule</td>
</tr>
<tr>
<td>CRD2</td>
<td>Second cysteine rich domain of the CD134 molecule</td>
</tr>
<tr>
<td>CRFK</td>
<td>Crandell-Reese Feline Kidney</td>
</tr>
<tr>
<td>CTLA-4</td>
<td>Cytotoxic T lymphocyte antigen 4 (CD152)</td>
</tr>
<tr>
<td>DC-SIGN</td>
<td>Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTH</td>
<td>Delayed-type hypersensitivity</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>env</td>
<td>Envelope</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal bovine serum</td>
</tr>
<tr>
<td>FHV-1</td>
<td>Feline herpesvirus 1</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FIV</td>
<td>Feline immunodeficiency virus</td>
</tr>
<tr>
<td>FMO</td>
<td>Fluorescence minus one</td>
</tr>
<tr>
<td>FSC</td>
<td>Forward scatter</td>
</tr>
<tr>
<td>gag</td>
<td>Group-specific antigen</td>
</tr>
<tr>
<td>GM</td>
<td>Growth medium</td>
</tr>
<tr>
<td>gp100</td>
<td>Surface unit of the FIV envelope glycoprotein</td>
</tr>
<tr>
<td>gp35</td>
<td>Transmembrane unit of the FIV envelope glycoprotein</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimum essential medium</td>
</tr>
<tr>
<td>MFI</td>
<td>Mean fluorescence intensity (geometric)</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>MOI</td>
<td>Multiplicity of infection</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MUAEC</td>
<td>Massey university animal ethics committee</td>
</tr>
<tr>
<td>MUFNU</td>
<td>Massey university feline nutrition unit</td>
</tr>
<tr>
<td>MUVTH</td>
<td>Massey university veterinary teaching hopsital</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
</tbody>
</table>
NEAA Non-essential amino acids
NK Natural killer
NZ New Zealand
OD Optical density
ORF Open reading frame
p24 Capsid peptide of the FIV gag protein
PBMC Peripheral blood mononuclear cells
PBS Phosphate buffered saline (pH 7.2)
PCR Polymerase chain reaction
PD-1 Programmed death receptor 1
PF Preventable fraction
PI Post inoculation
pol Polymerase
PS Phosphatidylserine
qPCR Quantitative PCR
RNA Ribonucleic acid
RPMI Roswell park memorial institute (medium)
rRNA Ribosomal RNA
RT Reverse transcriptase
SI Stimulation index
SSC Side scatter
SU Surface unit of the FIV envelope glycoprotein (gp100)
TCID_{50} Median tissue culture infectious dose
TH1/2 T helper 1/2 cells
TM Transmembrane unit of the FIV envelope glycoprotein (gp35)
TNF Tumour necrosis factor
UV Ultraviolet
V1-V9 Hypervariable regions (1-9) of the FIV envelope gene
vif Viral infectivity factor
VNA Virus neutralising antibodies