Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
IDENTIFICATION OF PUTATIVE DOTHISTROMIN BIOSYNTHETIC GENES.

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Molecular Biology at Massey University, Palmerston North, New Zealand.

Brendon Joseph Monahan
1998
Dothistromin is a polyketide-derived mycotoxin produced by the *Pinus* pathogen *Dothistroma pini*, and is thought to be important in the development of the necrotic disease *Dothistroma* needle blight. Targeted disruption of dothistromin biosynthetic genes will allow the direct assessment of the role of the toxin in *D. pini* pathogenicity. Dothistromin displays structural and biochemical similarities to the aflatoxins (AF) and sterigmatocystin (ST) which are produced by various *Aspergillus* species. In our laboratory, knowledge from the well characterised ST/AF pathway is being used to isolate and characterise genes likely to be involved in dothistromin production.

The *D. pini* lambda clone, λCGV1, was isolated from a *D. pini* genomic library by heterologous hybridisation with a fragment of the *Aspergillus parasiticus* ver1 gene (Gillman, 1996). In this study, the complete nucleotide sequence of λCGV1 was determined. Analysis revealed that five genes are located within the 13.3 kb genomic region sequenced. Three of these genes (*dkrI*, *doxl* and *dteI*) display strong similarities to genes contained within the ST/AF biosynthetic gene clusters. The *dtpI* gene, located between *doxl* and *dteI*, shows similarities to transmembrane efflux pumps and is proposed to be a dothistromin toxin pump. The *ddhI* gene, located upstream of *dkrI*, shows similarities to bacterial dehydrogenases. However, the *ddhI* coding sequence contains a premature stop codon (encoding a product of 63 amino acids), indicating that the product may be non-functional.

Expression analysis of each gene identified in this study confirmed that *dkrI*, *doxl*, *dteI* and *dtpI* are expressed. However, no obvious expression was detected for the *ddhI* gene. Southern blot analysis confirmed the genomic clustering of the genes and indicated that a single copy of each gene was present in the *D. pini* genome.

Due to the biogenetic relationship between dothistromin and ST/AF biosynthesis, and because genes identified in this study show similarities to genes involved in ST/AF production, it is thought that these genes are likely to be involved in dothistromin biosynthesis and constitute part of a dothistromin biosynthetic gene cluster.
ACKNOWLEDGEMENTS.

My sincerest thanks goes to my supervisor Rosie Bradshaw for her support and encouragement throughout my project. A big thanks also to Peter Lockhart for his expert help with the phylogenetic analysis and to Bill Jones (and lab) for much needed guidance with the ELISA work, and also for some very informative chats. I would also like to thank the Holt Forest Trust for financial assistance.

I am very appreciative for the support I have received in and out of the lab. A big thanks to Paul, Linda, Dianne, Anita, Carmel, Bran, Tania, Lisa, Mike and Tash for answering all of my many questions when I started (and beyond). Answering many more questions has been Carolyn, and I thank you for all your effort and time. And to the present lab members (Bek, Beccy and Seth) thanks for your support and best of luck with your research.

Special thanks to all my flatmates, especially Pig and Dave, its been a good five and a bit years and cheers for the many many laughs. Thanks also to anyone that has had a beer(s) and a chat with me over at Wharerata (or anywhere else for that matter) over the last few years, especially Austen, David and a couple of Irish people.

Many thanks and best wishes to Helen, Kirsty and Amanda for all the support and company at lunch. A big thanks must go to Austen for everything, keep up the great work. Also a big thank-you to Bek, for all your help and encouragement, especially over the last few months.

Finally, I have my family to thank for many many things. Thanks to all, especially mum, for your love, encouragement and support. Your effort is a huge factor in the completion of this thesis.
TABLE OF CONTENTS

1. INTRODUCTION ... 1

1.1 *DOTHISTROMA* NEEDLE BLIGHT... 1

1.2 *D. PINI* INFECTION OF *P. RADIATA* ... 1

1.3 CURRENT INFECTION CONTROL METHODS: WHY THE NEED FOR OTHERS... 3

1.4 *DOTHISTROMIN* ... 4

1.4.1 Disruption of Toxin Biosynthesis ... 5

1.5 AFLATOXINS .. 6

1.6 MOLECULAR BIOLOGY OF AFLATOXIN BIOSYNTHESIS 8

1.6.1 Isolation of Aflatoxin/Sterigmatocystin Biosynthetic Genes 8

1.6.2 The ST/AFB, Biosynthetic Gene Cluster ... 12

1.6.3 Expression and Regulation of the ST/AF Pathway Genes ... 15

1.7 GENE CLUSTERS ... 19

1.7.1 Evolution of Gene Clusters ... 20

1.7.2 Horizontal Gene Transfer ... 20

1.8 ISOLATION OF A PUTATIVE DOTHISTROMIN GENE BASED ON SEQUENCE SIMILARITY 21

1.9 AIMS AND OBJECTIVES ... 22

2. MATERIALS AND METHODS ... 23

2.1 FUNGAL AND BACTERIAL STRAINS, LAMBDA CLONES AND PLASMIDS 23

2.2 MEDIA ... 23

2.2.1 Luria Broth ... 23

2.2.2 Terrific Broth ... 23

2.2.3 Dothistroma Media (DM) .. 23

2.2.4 Dothistroma Broth (DB) .. 23

2.2.5 Dothistroma Sporulation Media (DSM) .. 23

2.3 GROWTH AND MAINTENANCE OF CULTURES .. 26

2.4 COMMON BUFFERS AND SOLUTIONS .. 26

2.4.1 TE Buffer .. 26

2.4.2 1 x TAE Buffer ... 26

2.4.3 1 x TBE Buffer .. 26

2.4.4 10 x Sequencing TBE Buffer .. 26

2.4.5 20 x SSC ... 27

2.4.6 Ethidium Bromide .. 27

2.4.7 RNase A (DNase free) ... 27

2.4.8 STET Buffer ... 27

2.4.9 Gel Loading Buffer (10 x) ... 27

2.4.10 Acrylamide mix .. 27

2.4.11 Hybridisation solution ... 27

2.4.12 50x Denhardt’s Solution ... 28
2.16 NORTHERN BLOTTING

2.15 ISOLATION OF RNA FROM D. PINI CULTURES

2.14 DNA SEQUENCING

2.13 AMPLIFICATION OF DNA BY THE POLYMERASE CHAIN REACTION (PCR)

2.12 SOUTHERN BLOTTING AND HYBRIDISATION

2.11 DNA SUB-CLONING TECHNIQUES

2.10 DETERMINATION OF DNA MOLECULAR WEIGHTS

2.9 AGAROSE GEL ELECTROPHORESIS OF DNA

2.8 RESTRICTION ENDONUCLEASE DIGESTION OF DNA

2.7 DETERMINATION OF DNA CONCENTRATION

2.6 PURIFICATION OF DNA

2.5 DNA ISOLATION

2.4 DNA SUB-C LONING TECHNIQUES

2.3 DNA AMPLIFICATION

2.2 DNA SUB-C LONING TECHNIQUES

2.1 DNA ISOLATION

2.13 10 X MOPS Buffer

2.5.1 Rapid Boiling Plasmid Preparation

2.5.2 Alkaline Lysis Plasmid Preparation (Small Scale)

2.5.3 Modified Alkaline-Lysis, PEG Precipitation Procedure (Small-Medium Scale)

2.5.4 DNA Isolation from Fungal Cultures (Large Scale)

2.6.1 Phenol/Chloroform Extraction

2.6.2 Ethanol Precipitation

2.6.3 Agarose Gel Purification of DNA Fragments

2.6.4 Purification of DNA from a PCR Reaction

2.7.1 Determination of DNA concentration by spectrophotometric assay

2.7.2 Determination of DNA concentration by fluorometric assay

2.7.3 Determination of DNA concentration by Gel Electrophoresis

2.8.1 PAGE Gel Electrophoresis of Sequencing Reactions

2.8.2 Manual Sequencing

2.8.3 Automated Sequencing

2.15 PROCEDURES USED FOR TREATMENT OF MATERIALS AND REAGENTS FOR RNA WORK

2.14.1 Sequencing reactions

2.14.2 PAGE Gel Electrophoresis of Sequencing Reactions

2.12.1 Southern (Capillary) Blotting

2.12.2 Preparation of [α-32P]dCTP-Labelled DNA Probe

2.12.3 Southern Blot Hybridisation

2.11.2.1 Preparation of Electroporation Competent E. coli Cells

2.11.2.2 Electroporation

2.11.2.2 Calcium Chloride Transformation of E. coli (Heat Shock Method)

2.10.1 Procedures Used for Treatment of Materials and Reagents for RNA Work

2.9.2 Total RNA Isolation

2.8.1 DNA Isolation from Fungal Cultures (Large Scale)

2.7.1 Rapid Boiling Plasmid Preparation

2.6.1 Phenol/Chloroform Extraction

2.5.1 Southern (Capillary) Blotting

2.4.111 Ligation Reactions

2.3.1 DNA AMPLIFICATION

2.2.1 DNA ISOLATION

2.1.1 DNA ISOLATION
2.16.1 Formaldehyde Gel Electrophoresis of RNA .. 39
2.16.2 Northern Blotting and Hybridisation ... 39
2.17 REVERSE TRANSCRIPTASE PCR (RT-PCR) ANALYSIS OF RNA 40
2.18 QUANTIFICATION OF DOTHISTROMIN USING COMPETITIVE ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) .. 40
2.19 PHYLOGENETIC ANALYSIS ... 41
3. SEQUENCING OF ACV1 AND IDENTIFICATION OF PUTATIVE DOTHISTROMIN BIOSYNTHETIC GENES .. 42

3.1 INTRODUCTION ... 42
3.2 SUB-CLONING OF ACV1 FRAGMENTS .. 42
3.3 SEQUENCING AND CONSTRUCTION OF A SINGLE SEQUENCE CONTIG 45
 3.3.1 Construction of Contig 1 and Contig 2 ... 45
 3.3.2 PCR Amplification of Overlapping Regions and Completion of Sequence 46
 3.3.3 ACV1 Contains Part of a Putative Dohistromin Biosynthetic Cluster 50
3.4 SEQUENCE OF THE VER-LIKE GENE, DKRI .. 50
 3.4.1 The dkrl Gene Contains Two Introns .. 55
 3.4.2 Amino Acid Sequence Comparison .. 55
3.5 DOXI ENCODES A PUTATIVE HEME-BINDING OXIDASE 60
3.6 DTE1 IS A PUTATIVE THIOESTERASE GENE .. 66
3.7 DTP1 IS A PUTATIVE DOTHISTROMIN TOXIN PUMP 66
3.8 DDHI DISPLAYS SIMILARITIES TO DEHYDROGENASES 76
3.9 UNTRANSLATED REGIONS OF THE FIVE DOTHISTROMIN GENES 82
 3.9.1 Promoter Analysis ... 82
 3.9.2 3' Untranslated Region .. 83
3.10 GENOMIC ORGANISATION OF THE DOTHISTROMIN GENES 83

CHAPTER THREE DISCUSSION ... 89
3.11 IDENTIFICATION OF A PUTATIVE DOTHISTROMIN CLUSTER 89
 3.11.1 AF-Like Genes are Clustered in D. pini ... 89
 3.11.1.1 dkrl .. 90
 3.11.1.2 doxl .. 91
 3.11.1.3 dte1 ... 92
 3.11.2 Other Putative Dothistromin Genes .. 93
 3.11.2.1 dtp1 ... 93
 3.11.2.2 ddhi ... 94
3.12 SUMMARY ... 95

4. EXPRESSION ANALYSIS OF PUTATIVE DOTHISTROMIN BIOSYNTHETIC GENES 96
4.1 INTRODUCTION ... 96
4.2 CONSTRUCTION OF A D. PINI GROWTH CURVE .. 96
4.3 DOTHISTROMIN QUANTIFICATION .. 99
LIST OF TABLES

Table 2.1 Strains, λ clones and plasmids ..24
Table 2.2 Sequencing and PCR Primers ..36
Table 3.1 Summary of D. pini Genes present in the λCGV1 Clone53
LIST OF FIGURES.

Figure 1.1 Structures of Dothistromin, Sterigmatocystin, and Aflatoxin B1 ... 7
Figure 1.2 The Proposed Sterigmatocystin/Aflatoxin B1 Biosynthetic Pathway and Common Intermediates Found in Dothistromin-Producing Cultures ... 10
Figure 1.3 Sterigmatocystin and Aflatoxin B1 Biosynthetic Gene Clusters ... 13
Figure 3.1 \(\lambda \)CGV1 Restriction Map ... 43
Figure 3.2 Outline of \(\lambda \)CGV1 Sequencing ... 48
Figure 3.3 The Putative Dothistromin Gene Cluster ... 51
Figure 3.4 Nucleotide and Deduced Amino Acid Sequence of the Dothistroma pini dkr1 Gene ... 56
Figure 3.5 Alignment of the Deduced Amino Acid Sequence of dkr1 With Other Reductases ... 58
Figure 3.6 Nucleotide and Deduced Amino Acid Sequence of the Dothistroma pini doxl Gene ... 61
Figure 3.7 Alignment of the Deduced Amino Acid Sequence of doxl and Other Oxidases ... 64
Figure 3.8 Nucleotide and Deduced Amino Acid Sequence of the Dothistroma pini die1 Gene ... 67
Figure 3.9 Alignment of the Deduced Amino Acid Sequence of die1 with PKS Thioesterase domains ... 69
Figure 3.10 Nucleotide and Deduced Amino Acid Sequence of the Dothistroma pini dtp1 Gene ... 71
Figure 3.11 Alignment of the Deduced Amino Acid Sequence of dtp1 with Other Efflux Pumps ... 74
Figure 3.12 Nucleotide and Deduced Amino Acid Sequence of the Dothistroma pini ddhl Gene ... 77
Figure 3.13 Alignment of the Deduced Amino Acid Sequence of ddhl with Other Polysaccharide Dehydrogenases ... 80
Figure 3.14 Dothistroma pini genomic Southern Blots ... 84
Figure 4.1 Dothistroma pini Growth Curves and Dothistromin Concentration ... 97
Figure 4.2 Expression Analysis of the Dothistromin Genes ... 100
Figure 5.1 Dothistroma pini rDNA sequence ... 112
Figure 5.2 D. pini Phylogenetic analysis ... 114