MOISTURE TRANSPORT PROCESSES AND
CONTROL OF RELATIVE HUMIDITY IN
REFRIGERATED FACILITIES

A thesis presented in partial fulfilment of the requirements for the degree of
Master of Engineering
at Massey University, Palmerston North,
New Zealand.

Maumoon Sujau
2007
ABSTRACT

Increasingly air relative humidity (RH) is becoming an important design and operational variable for refrigerated facilities. An integrated dynamic model of the main heat and moisture transfer mechanism in a refrigerated facility was developed. Specific features of the model that enabled RH to be predicted were:

- Multiple air zones to represent variation of temperature and RH with position.
- A single zone evaporator model with dehumidification based on a straight line approach to the saturation condition at the surface temperature.
- Condensation and evaporation of water from surfaces and structures in the facilities.
- Evaporator defrost assuming that a fraction of the defrost heat melts frost and the rest heats the evaporator and refrigerant mass.
- Hot gas bypass with liquid refrigerant desuperheating to prevent the compressor operating into vacuum.
- Moisture sorption by packaging associated with the product.

The model was validated against data collected from a walk-in cool store 3.3m wide by 4.4m long by 3.0m high. The cool-store was cooled by an air cooled direct expansion HFC-134a refrigeration system with electric defrost, a suction line heat exchanger and electronic evaporation pressure regulating (EPR) valve for temperature control. To mimic the different design and operating conditions extra sensible and latent heat loads were provided by the cool store lights, up to 5 kW of electric heaters, and an ultrasonic humidifier.

For the validation room trials fan speed, coil size, sensible load, latent loads and temperature set point were varied. Other conditions were held constant as far as possible and the room was operated for at least two defrost cycles.
For the coolstore the model computed about 70 ordinary differential equations and more than 160 algebraic equations which were solved using Matlab 6.5, with the ODE45 solver.

The measured and predicted store air temperature, RH, refrigerant suction and discharge temperatures and pressures showed good agreement for most of the trials during both pull-down and the mainly steady-state operation between defrosts. Differences in measured and predicted RH and refrigeration system operating conditions were largely explained by uncertainty in model input data, measurements and calibration; and imprecision of the actual refrigeration control system and particularly the hot gas bypass capacity control and the expansion valves. This suggests that the model is a useful tool for the design and optimisation of passive or active RH control strategies for refrigerated stores.

Trials were also undertaken to quantify the effect of defrost frequency on the coolstore performance. Defrost efficiency and defrost duration were both proportional to defrost interval and doubled as defrost interval increased from 6 hours to 30 hours. For short defrost intervals; temperature control was poorer due to the frequent pull-downs. For longer defrost interval the room RH was lower and temperature control was poorer due to frost induced decline of evaporator performance. The optimal defrost interval for the particular cool store was 8 to 12 hours. Overall energy use did not change significantly due to the use of EPR temperature control and the low latent heat loads used.
ACKNOWLEDGEMENTS

I have received much help and guidance during this study project. First of all I would like to thank my supervisor Professor Donald Cleland, (Institute of Technology and Engineering, ITE, at Massey University) for taking me on as a post graduate student and for the help and discussions.

I would also like to thank the following persons for advice and assistance during the course of this project:

Dr Inge Merts, ITE, Massey University.
Dr John Bronlund, ITE, Massey University.
Dr Richard Love, Fresh Technologies, Massey University.
Dr Tony Paterson, ITE, Massey University.

Thanks for the assistance from the following during the experimental phase of the project that helped make data collection easier;

Mr. Bruce Collins, ITE, Massey University
Mr. Craig Bellhouse, ITE, Massey University
Mr. Leo Bolter, ITE, Massey University
Ms. Sue Nicholson, Fresh Technologies, Massey University.
Ms. Ann-Marie Jackson, ITE, Massey University

Thanks to Judd Refrigeration Ltd for the modifications to the refrigeration circuit to enable detailed monitoring of the coolstore.

Thanks to Massey University's Building Maintenance staff for the electrical modifications and installation of the electrical measuring sensors on the coolstore.

I would also like to acknowledge Fresh Technologies, Massey University for making available the coolstore used in this work.
Finally thanks to my eldest son *Masood* for helping me to debug the computer programme.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>2</td>
</tr>
<tr>
<td>2.1 INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>2.2 HEAT AND MOISTURE TRANSPORT IN REFRIGERATED STORAGE FACILITIES</td>
<td>2</td>
</tr>
<tr>
<td>2.2.1 Evaporator</td>
<td>3</td>
</tr>
<tr>
<td>2.2.2 Frost / Condensate Formation on Inside Surfaces</td>
<td>3</td>
</tr>
<tr>
<td>2.2.3 Air Infiltration</td>
<td>3</td>
</tr>
<tr>
<td>2.2.4 Insulation</td>
<td>3</td>
</tr>
<tr>
<td>2.2.5 People and Equipment Load</td>
<td>4</td>
</tr>
<tr>
<td>2.2.6 Product</td>
<td>4</td>
</tr>
<tr>
<td>2.2.7 Absorption / Desorption by Packaging</td>
<td>4</td>
</tr>
<tr>
<td>2.2.8 Humidification</td>
<td>4</td>
</tr>
<tr>
<td>2.2.9 Temperature and RH Operating Point</td>
<td>5</td>
</tr>
<tr>
<td>2.2.10 Summary</td>
<td>5</td>
</tr>
<tr>
<td>2.3 MODELLING APPROACHES</td>
<td>6</td>
</tr>
<tr>
<td>2.4 OVERALL SYSTEM MODELS</td>
<td>8</td>
</tr>
<tr>
<td>2.5 COMPONENTS MODELLING</td>
<td>15</td>
</tr>
<tr>
<td>2.5.1 Air</td>
<td>15</td>
</tr>
<tr>
<td>2.5.2 Evaporator</td>
<td>17</td>
</tr>
<tr>
<td>2.5.3 Frosting</td>
<td>21</td>
</tr>
<tr>
<td>2.5.4 Defrost</td>
<td>26</td>
</tr>
<tr>
<td>2.5.5 Air Infiltration</td>
<td>32</td>
</tr>
<tr>
<td>2.5.6 Humidifiers</td>
<td>34</td>
</tr>
</tbody>
</table>
2.5.7 Insulation ... 36
2.5.8 Product and Packaging ... 37
2.6 AIR SPACE RELATIVE HUMIDITY 41
2.7 CONTROL OF REFRIGERATION SYSTEM 42
2.8 REFRIGERANT THERMODYNAMIC PROPERTY 45
3 RESEARCH OBJECTIVES .. 46
4 COOL STORE MODEL DEVELOPMENT 47
4.1 AIR ZONE ... 47
4.2 HEAT AND WATER VAPOUR FLOW DUE TO AIR FLOW 50
 4.2.1 Natural Convection with Adjacent Zones 52
 4.2.2 Forced Convection .. 54
 4.2.3 Fans ... 63
 4.2.4 Evaporators ... 66
 4.2.5 Door Model ... 73
 4.2.6 Surface Model ... 76
 4.2.7 Floor Model ... 82
 4.2.8 Structures Model .. 86
 4.2.9 Heat Generator Model ... 89
 4.2.10 Humidifier Model ... 90
 4.2.11 Product and Packaging 92
4.3 REFRIGERANT SIDE COMPONENTS 99
 4.3.1 Evaporator Model (Refrigerant-side) 101
 4.3.2 Suction Line Heat Exchanger (SLHE) 104
 4.3.3 Hot Gas Bypass ... 107
 4.3.4 Compressor Model ... 110
 4.3.5 Condenser Model ... 114
 4.3.6 Evaporator and Compressor Control 114
4.4 REFRIGERANT PROPERTIES FOR R134A 117
 4.4.1 Vapour Pressure and Saturation Temperature for R134a \((f_1 \& f_2) \)
 117
 4.4.2 Liquid Enthalpy for R134a \((f_3) \) 117
4.4.3 Saturated Vapour Enthalpy for R134a ... 118
4.4.4 Superheated Vapour Enthalpy for R134a (f₄) 118
4.4.5 Saturated Vapour-specific Volume for R134a 119
4.4.6 Superheated Vapour-specific Volume for R134a (f₅) 119
4.4.7 Enthalpy Change for Isentropic Compression for R134a (f₆) 119
 4.4.7.1 No Vapour Superheat at Suction .. 119
 4.4.7.2 Vapour Superheat at Suction ... 120
4.5 AIR HUMIDITY ... 120
4.6 NUMERICAL IMPLEMENTATION .. 122
5 EXPERIMENTAL METHODS .. 128
 5.1 INTRODUCTION ... 128
 5.2 COOL STORE DESCRIPTION ... 128
 5.3 EXPERIMENTAL SET-UP .. 130
 5.4 SENSOR CALIBRATIONS ... 132
 5.5 EXPERIMENTAL PLAN .. 138
6 MODEL VALIDATION .. 140
 6.1 INTRODUCTION ... 140
 6.2 PARAMETER VALUES ... 140
 6.2.1 Physical Measures ... 141
 6.2.1.1 Room Data ... 141
 6.2.1.2 Door, Heat Generator and Humidifier 145
 6.2.1.3 Evaporators and Fans .. 149
 6.2.1.4 Compressor and Condenser .. 150
 6.2.1.5 Room Surfaces ... 152
 6.2.1.6 Floor ... 154
 6.2.1.7 Structures .. 155
 6.2.1.8 Products ... 155
 6.2.2 Calibrated Parameter Values .. 157
 6.2.2.1 Thermal Buffering Factors .. 159
 6.2.2.2 Correction Factor for Evaporator Heat Transfer 175
 6.2.2.3 Correction Factor for Condenser Heat Transfer 182
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Schematic diagram of heat and moisture transport mechanisms in a refrigerated facility.</td>
</tr>
<tr>
<td>2-2</td>
<td>Rates of moisture entry and removal as a function of air relative humidity.</td>
</tr>
<tr>
<td>2-3</td>
<td>Heat and mass transfer between air and a wetted surface.</td>
</tr>
<tr>
<td>2-4</td>
<td>Psychrometric chart showing heat and mass transfer between air and wetted surface according to the straight line approach law.</td>
</tr>
<tr>
<td>4-1</td>
<td>Conceptual model of heat and mass transfer for the (i)th air zone.</td>
</tr>
<tr>
<td>4-2</td>
<td>Air zone mass balance due to air flow.</td>
</tr>
<tr>
<td>4-3(a)</td>
<td>Single fan supplying or drawing air from an evaporator.</td>
</tr>
<tr>
<td>4-4</td>
<td>General airflow pattern for forced draught fans.</td>
</tr>
<tr>
<td>4-5</td>
<td>General airflow pattern for induced draught fans.</td>
</tr>
<tr>
<td>4-6</td>
<td>Forced convection airflows for the (i)th zone.</td>
</tr>
<tr>
<td>4-7</td>
<td>Flow pattern in a 5 air zone, 2 fan, 2 evaporator example with forced draught fans, showing non zero positive air flow fractions only.</td>
</tr>
<tr>
<td>4-8</td>
<td>Airflow pattern through the (k)th fan.</td>
</tr>
<tr>
<td>4-9</td>
<td>Airflow pattern through the (j)th evaporator.</td>
</tr>
<tr>
<td>4-10</td>
<td>Cross section of a typical surface.</td>
</tr>
<tr>
<td>4-11</td>
<td>A typical floor cross section.</td>
</tr>
<tr>
<td>4-12</td>
<td>Two zone product model used to simulate product heat transfer.</td>
</tr>
<tr>
<td>4-13</td>
<td>Schematic of the refrigerant circuit and experimental measuring locations.</td>
</tr>
<tr>
<td>4-14</td>
<td>Schematic of the evaporator showing model nomenclature.</td>
</tr>
<tr>
<td>4-15</td>
<td>Schematic of the suction line heat exchanger.</td>
</tr>
<tr>
<td>4-16</td>
<td>Schematic diagram showing the hot gas by pass area of the refrigeration circuit.</td>
</tr>
<tr>
<td>4-17</td>
<td>Refrigerant flow from two evaporators to the compressor.</td>
</tr>
<tr>
<td>5-1</td>
<td>Cooling coils for the cool room.</td>
</tr>
<tr>
<td>5-2</td>
<td>Air cooled condensing unit.</td>
</tr>
</tbody>
</table>
Figure 5-3: Temperature and RH sensor locations in the cool room136
Figure 5-4: Thermopile arrangement for the evaporators & condenser137
Figure 6-1: Air flow fractions between zones, evaporators and fans for the four fans...144
Figure 6-2: Comparison of predicted and measured temperatures and RH for simulation 1 (experimental trial 1, pull down)......................161
Figure 6-3: Comparison of predicted and measured temperatures and RH for simulation 3 (experimental trial 2, defrosting)......................162
Figure 6-4: Comparison of predicted and measured temperatures and RH for simulation 2 (experimental trial 13, defrosting)......................163
Figure 6-5: Comparison of predicted and measured refrigerant pressure and temperature for the low pressure side for simulation 1 (experimental trial 1) ...164
Figure 6-6: Comparison of predicted and measured refrigerant pressure and temperature for the low pressure side for simulation 3 (experimental trial 2) ...165
Figure 6-7: Comparison of predicted and measured refrigerant temperature and pressure for the low pressure side simulation 2 (experimental trial 13, defrosting)...166
Figure 6-8: Comparison of predicted and measured refrigerant pressure and temperature for the high pressure side for simulation 1 (experimental trial 1)...167
Figure 6-9: Comparison of predicted and measured refrigerant pressure and temperature for the high pressure side for simulation 3 (experimental trial 2, defrosting)...168
Figure 6-10: Comparison of predicted and measured temperature and pressure for the high pressure side for simulation 2 (experimental trial 13, defrosting)...169
Figure 6-11: Comparison of predicted and measured surface temperatures for simulation 1 (experimental trial 1, pull down)....................170
Figure 6-12: Comparison of predicted and measured surface temperature for
simulation 3 (experimental trial 2, defrosting) .. 171
Figure 6-13: Comparison of predicted and measured surface temperature for
simulation 2 (experimental trial 13, defrosting) .. 172
Figure 6-14: Comparison of predicted and measured surface temperature for
simulation 3 (experimental trial 2) ... 173
Figure 6-15: Comparison of predicted and measured surface temperature for
simulation 2 (experimental trial 13) .. 174
Figure 6-16: Comparison of predicted and measured temperature and RH for
simulation 3 (experimental trial 2) with low sensible heat load 175
Figure 6-17: Comparison of predicted and measured temperature and RH,
simulation 2 (experimental trial 13) with high sensible heat load 176
Figure 6-18: Comparison of predicted and measured refrigerant pressure and
temperature for the low side for simulation 3 (experimental trial 2) 179
Figure 6-19: Comparison of predicted and measured refrigerant pressure and
temperature for the low pressure side for simulation 2 (experimental trial 13).
.. 180
Figure 6-20: Comparison of predicted and measured refrigerant pressure and
temperature for the high pressure side for simulation 3 (experiment trial 2).
.. 183
Figure 6-21: Comparison of predicted and measured refrigerant pressure and
temperature for the high pressure side for simulation 2 (experiment trial 13)
.. 184
Figure 6-22: Comparison of predicted and measured air and refrigerant
temperatures and air RH for simulation 4 (experimental trial 6) 186
Figure 6-23: Comparison of predicted and measured refrigerant pressure and
temperature for the low pressure side for simulation 4 (experimental trial 6).
.. 188
Figure 6-24: Comparison of predicted and measured refrigerant pressure and
temperature for the high pressure side for simulation 4 (experimental trial 6).
.. 189
Figure 6-25: Comparison of predicted and measured temperature and RH for simulation 5 (experimental trial 14) ... 193
Figure 6-26: Comparison of predicted and measured refrigerant temperature and pressure for the low pressure side for simulation 5 (experimental trial 14) 196
Figure 6-27: Comparison of predicted and measured refrigerant temperature and pressure for the high pressure side for simulation 5 (experimental trial 14) .. 197
Figure 6-28: Comparison of predicted and measured temperature and RH for simulation 6 (experimental trial 15) .. 199
Figure 6-29: Comparison of predicted and measured refrigerant temperature and pressure for the low pressure side for simulation trial 6 (experimental trial 15). .. 205
Figure 6-30: Comparison of predicted and measured refrigerant temperature and pressure for the high pressure side for simulation 6 (experimental trial 15). .. 206
Figure 6-31: Comparison of predicted and measured temperature and RH for simulation 7 (experimental trial 15) .. 209
Figure 6-32: Comparison of predicted and measured temperature and RH for simulation 7 (experimental trial 16) before and after defrosting 210
Figure 6-33: Comparison of predicted and measured refrigerant temperature and pressure for the low pressure side for simulation 7 (experimental trial 16). .. 212
Figure 6-34: Comparison of predicted and measured refrigerant temperature and pressure for the low pressure side for simulation 7 (experiment trial 16) before and after defrosting. ... 213
Figure 6-35: Comparison of predicted and measured refrigerant temperature and pressure for the high pressure side for simulation 7 (experimental trial 16). .. 215
Figure 6-36: Comparison of predicted and measured refrigerant temperature and pressure for the high pressure side for simulation 7 (experimental trial 16) before and after defrosting. ... 216
Figure 6-37: Comparison of predicted and measured temperature and RH with an air thermal buffering factor \((F_{a\text{buffer}}) \) of 4.5, 6.5 and 8.5 for simulation 1. ... 218

Figure 6-38: Comparison of predicted and measured temperature and pressure for the low pressure side with an air thermal buffering factor \((F_{a\text{buffer}}) \) of 4.5, 6.5 and 8.5 for simulation 1. ... 219

Figure 6-39: Comparison of predicted and measured temperature and pressure for the high pressure side with an air thermal buffering factor \((F_{a\text{buffer}}) \) of 4.5, 6.5 and 8.5 for simulation 1. ... 220

Figure 6-40: Comparison of predicted and measured temperature and RH with correction factor for heat transfer value for the evaporator \((F_{UA\text{Evap}}) \) of 0.7, 0.85 and 1.0 for simulation 3. ... 222

Figure 6-41: Comparison of predicted and measured temperature and pressure for the low side with correction factor for heat transfer value for the evaporator \((F_{UA\text{Evap}}) \) of 0.7, 0.85 and 1.0 for simulation 3. ... 223

Figure 6-42: Comparison of predicted and measured temperature and pressure for the high side with correction factor for heat transfer value for the evaporator \((F_{UA\text{Evap}}) \) of 0.7, 0.85 and 1.0 for simulation 3. ... 224

Figure 6-43: Comparison of predicted and measured temperature and RH with overall to refrigerant side heat transfer coefficient ratio for the evaporator \((Ra) \) of 0.3, 0.4 and 0.5 for simulation 3. ... 226

Figure 6-44: Comparison of predicted and measured temperature and pressure for the low pressure side with overall to refrigerant side heat transfer coefficient ratio for the evaporator \((Ra) \) of 0.3, 0.4 and 0.5 for simulation 3. ... 227

Figure 6-45: Comparison of predicted and measured temperature and pressure for the high pressure side with overall to refrigerant side heat transfer coefficient ratio for the evaporator \((Ra) \) of 0.3, 0.4 and 0.5 for simulation 3. ... 228
Figure 6-46: Comparison of predicted and measured temperature and RH with 110%, 100% and 90% of electric heater loads (room lights plus electric heaters) for simulation 3.

Figure 6-47: Comparison of predicted and measured low pressure side temperature and pressure with 110%, 100% and 90% electric heater loads (room lights plus electric heaters) for simulation 3.

Figure 6-48: Comparison of predicted and measured high pressure side temperature and pressure with 110%, 100% and 90% electric heater loads (room lights plus electric heaters) for simulation 3.

Figure 7-1: Measured ambient air, coil air-on, refrigerant evaporation and compressor saturated suction temperatures and air-on RH for the cool room with a 24 hour defrost interval with 5 kW of extra electric heat and 0.41 kg/h of moisture addition.

Figure 7-2: Measured ambient air, coil air-on, refrigerant evaporation and compressor saturated suction temperatures and air-on RH for the cool room with a 16 hour defrost interval with 5 kW of extra electric heat and 0.41 kg/h of moisture addition.

Figure 7-3: Measured ambient air, coil air-on, refrigerant evaporation and compressor saturated suction temperatures and air-on RH for the cool room with a 6 hour defrost interval with 5 kW of extra electric heat and 0.41 kg/h of moisture addition.

Figure 7-4: Measured air-on RH as a function of defrost intervals for frosting case 1 and case2.

Figure 7-5: Measured defrost efficiency and average time per defrost as a function defrost interval for frosting case 1 and case2.

Figure 7-6: Measured defrost efficiency and average time per defrost as functions of frost load at start of defrost.

Figure A 1: RH sensor calibrations.

Figure B 1: Low pressure sensor calibrations.
Figure B 2: High pressure sensor calibrations...272
LIST OF TABLES

Table 4-1: Air flow fractions for fan \((k = 1) \), for the example in Figure 4-7 62
Table 4-2: Air flow fractions for fan \((k = 2) \), for the example in Figure 4-7 62
Table 4-3: List of output data from the programme (files outdata 1 to outdata 6) ... 123
Table 5-1: Details of major refrigeration system components ... 130
Table 5-2: Details of measuring sensors and transducers ... 133
Table 5-3: List of experimental trials .. 139
Table 6-1: Simulation trials .. 140
Table 6-2: Room parameter data ... 141
Table 6-3: Room and ambient air temperature and relative humidity data .. 142
Table 6-4: Air flow fractions between zones, evaporators and fans \((F_{k,i-n}, F_{k,k-j}, F_{k,k-i}, F_{k,j-j}) \) ... 143
Table 6-5: Areas associated with zone partition for natural convection ... 145
Table 6-6: Door, heat generator and humidifier data .. 145
Table 6-7: Operating times for heat generators, humidifier, door and defrosting times for simulation 1 (pull down) ... 146
Table 6-8: Operating times for heat generators, humidifier, door and defrosting times for simulation 2 (6 hour defrost interval) ... 146
Table 6-9: Operating times for heat generators, humidifier, door and defrosting times for simulation 3 (12 hour defrost interval) ... 146
Table 6-10: Operating times for heat generators, humidifier, door and defrosting times for simulation 4 (30 hour defrost interval) ... 147
Table 6-11: Operating times for heat generators, humidifier, door and defrosting times for simulation 5 (dynamic) ... 147
Table 6-12: Operating times for heat generators, humidifier, door and defrosting times for simulation 6 (dynamic) ... 148
Table 6-13: Operating times for heat generators, humidifier, and door and defrosting times for simulation 7 (8 hour defrost interval) ... 149
Table 6-14: Evaporator data (identical for both evaporators) ... 150
Table 6-15: Fan data (identical for four fans) .. 150
Table 6-16: Compressor and condenser data .. 152
Table 6-17: Surface data .. 153
Table 6-18: Floor input data ... 154
Table 6-19: Structure input data .. 155
Table 6-20: Product input data .. 156
Table 6-21: Calibrated parameter values ... 159
Table 6-22: Average measured and predicted air side temperatures, RH and
evaporation temperature for simulation 3 .. 177
Table 6-23: Average measured and predicted air side temperatures, RH and
evaporation temperature for simulation 2 .. 178
Table 6-24: Average measured and predicted low pressure side refrigerant
temperatures and pressures for simulation 3 ... 181
Table 6-25: Average measured and predicted low pressure side refrigerant
temperatures and pressures for simulation 2 ... 181
Table 6-26: Average measured and predicted high pressure side refrigerant
temperatures and pressures for simulation 3 (experiment trial 2) 184
Table 6-27: Average measured and predicted high pressure side refrigerant
temperatures and pressures for simulation 2 (experiment trial 13) 185
Table 6-28: Average measured and predicted air side temperature, RH and
evaporation temperature for simulation 4 (experimental trial 6) 187
Table 6-29: Average measured and predicted low pressure side refrigerant
temperatures and pressures for simulation 4 (experimental trial 6) 190
Table 6-30: Average measured and predicted high pressure side refrigerant
temperatures and pressures for simulation 4 (experimental trial 6) 190
Table 6-31: Comparison of predicted and measured evaporator frost and
measured condensate collected for simulations 2, 3 and 4 (experimental
trials 13, 2 and 6) ... 191
Table 6-32: Average measured and predicted RH for the four periods for
simulation 5 (experimental trial 14) ... 194
Table 6-33: Average measured and predicted air-on, air-off, evaporation, evaporator surface and evaporator outlet temperatures for the four periods for simulation 5 (experimental trial 14) .. 195

Table 6-34: Average measured and predicted refrigerant pressures and temperatures for the low pressure and high pressure side and compressor pressure ratios for the four periods for simulation 5 (experimental trial 14) 198

Table 6-35: Average measured and predicted RH for the eight periods for simulation 6 (experimental trial 15) .. 200

Table 6-36: Average measured and predicted air-on, air-off, evaporation, evaporator surface and evaporator outlet temperatures for the eight periods for simulation 6 (experimental trial 15) ... 201

Table 6-37: Average measured and predicted refrigerant pressures and temperatures for the low pressure and high pressure side and compressor pressure ratios for the eight periods for simulation 6 (experimental trial 15). ... 207

Table 6-38: Average measured and predicted air side temperatures, RH and evaporation temperature for simulation 7 (experimental trial 16) 211

Table 6-39: Average measured and predicted low side refrigerant temperatures and pressures for simulation 7 (experimental trial 16) 214

Table 6-40: Average measured and predicted high side refrigerant temperatures and pressures for simulation 7 (experimental trial 16) 217

Table 7-1: The effect of defrost frequency on cool store operating conditions with air temperature set-point of 1.6°C .. 236

Table 8-1: Average measured and predicted RH for simulations 2 to 4 and 7 .. 241

Table 8-2: Average measured and predicted air-on, air-off, evaporation, evaporator surface and evaporator outlet temperatures for simulations 2 to 4 and 7. ... 243

Table 8-3: Average measured and predicted refrigerant temperature and pressure for simulations 2 to 4 and 7 ... 244
1 INTRODUCTION

Refrigeration is a widely accepted technology worldwide; historically it played an important role in the food industry as a preservation technology. The other areas of interest include comfort air-conditioning, industrial processes and heat pump technology with air-conditioning being the leading area of application due to demand for improved quality of living worldwide. Food refrigeration processes include chilling and freezing under controlled conditions and cool (>0°C) and cold (<-10°C) storage. There are alternative preservation technologies in the food industry but these technologies tend to change the product characteristics so refrigeration is likely to remain a key technology for a long time.

Temperature control has the highest priority in the operation of a food storage facility but increasingly improved control of air relative humidity (RH) and free moisture is being demanded. In particular, relative humidity affects the rate of evaporative water loss from unpackaged foods, and the strength of paper base packaging. Free moisture (condensation or ice) in an integrated facility is a concern from quality, food safety and operational safety perspectives. Air RH also influences the performance of evaporators due to frosting and the need for defrosting.

The overall objective of this research is to quantify the mechanisms for moisture transport in refrigerated facilities as the first stage of optimum design and control of facilities from an air RH perspective. The main focus will be refrigerated storage facilities (cool stores and cold stores) using air as the heat transfer medium.