Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE REACTION OF CARBONATES WITH AMMONIA

A thesis presented in partial fulfilment of the degree of Master of Science in Chemistry at Massey University

David John Giltrow
1969
A feature of typical carbohydrates/ammonia reactions is the formation of complex mixtures of imidazoles (among other products). These imidazole mixtures have proved difficult to separate in many cases. A theory for cation exchange chromatography of bases has been developed in this work and applied to the separation of imidazole mixtures. The technique used appears to be capable of separating mixtures of imidazoles more effectively than other previously used.

D-Glucosone (D-arabino-hexosulose) was prepared by the action of benzaldehyde on glucosazonel (D-arabino-hexosephylosazone) and its reaction with ammonia investigated. It was found that the reaction mixture included a number of imidazoles. These imidazoles were separated by the ion exchange technique developed earlier and a total of sixteen compounds giving a positive reaction with the imidazole-specific. Pauly reagent (diazotised sulphanilic acid) were detected. Fifteen of these compounds were isolated and six were identified by mass spectrometry and/or nuclear magnetic resonance spectrometry.

It was also intended to investigate the reaction of 4-O-methyl-D-glucose and ammonia. It was proposed to prepare this compound by methylation of methyl-2,3,4-tri-O-acetyl-\(\alpha\)-D-glucopyranoside with methyl iodide in the presence of silver oxide. Under these conditions an acetyl migration from the 4-O to 6-O position occurs with the methylation to give methyl-2,3,5-tri-O-acetyl-4-O-methyl-\(\beta\)-D-glucopyranoside which may be hydrolysed to give 4-O-methyl-D-glucose. It was intended to prepare the starting material for this reaction (methyl-2,3,4-tri-O-acetyl-\(\alpha\)-D-glucopyranoside) from D-glucose by the following steps.

1. Ketohexolysis of D-glucose catalysed by an H\(^+\) cation exchange resin to give methyl-\(\beta\)-D-glucopyranoside.
2. Blocking of the 6-O position with triphenylchloromethane.
3. Acetylation with acetic anhydride to give methyl-6-O-triphenylmethyl-2,3,4-tri-O-acetyl-\(\alpha\)-D-glucopyranoside.
4. Removal of the triphenylmethyl blocking group to give the required methyl-2,3,4-tri-O-acetyl-\(\beta\)-D-glucopyranoside.

In fact at the time of this writing the first three steps had been accomplished but attempts to remove the triphenylmethyl blocking group while leaving the acetyl groups intact had proved unsuccessful.
ACKNOWLEDGEMENT

The author wishes to thank Dr. E.H. Richards
for encouragement and advice.
TABLE OF CONTENTS

ABSTRACT

INTRODUCTION

Alkaline Degradation of Sugars 1
Aldolisation and Desalodisation 1
Formation of \(\alpha \) -Desoxyosones 3
Reactions of the Desoxyosones 3

(1) Alkaline Mission 3

(2) Saccharinic Acid Formation 3

The Effect of Substitution 7

(1) Non-reducing hexoses 7

(2) 1-O-substituted 2-ketohexoses 7

(3) 2-O-substituted aldehexoses 7

(4) 3-O-substituted hexoses 7

(5) 4-O-substituted hexoses 8

(6) 6-O-substituted hexoses 8

Formation of Heterocyclic Compounds 8

(1) Imidazoles 8

(2) Other Heterocyclic compounds 12

SEPARATION OF IMIDAZOLES BY CATION EXCHANGE

CHROMATOGRAPHY 14

Theory of Ion-Exchange Separation of Bases 16
Criteria for separation 19
Separation of an Imidazole mixture 23

THE REACTION OF D-GLUCOSONE AND AMMONIA 24

EXPERIMENTAL

Chromatography 26

Preparation of D Glucosone 27
D-erbo-hexosephenylosazone 27
D-arbo-hexosulose (D-Glucosone) 23
Separation of Imidazoles 30

D-Glucosone/Ammonia Reaction 32

Kinetic Study 32
Preparative Reaction 32

Ion exchange separation of bases 35
Results

Compound I 39
Compound IV 39
Compound VI 39
Compound XII 40
Compound XIII 40
Compound XV 41

RESULTS AND DISCUSSION

Identification of Products

Compound I 2,4(2,5)-bis(tetrahydroxybutyl)imidazole 42
Compound IV 43
Compound VI 4(5)-tetrahydroxybutylimidazole 43
Compound XV 4(5)-(2,3-dihydroxypropyl)imidazole 43

Compound's XIII 4(5)-(2-hydroxyethyl)imidazole and
XIII 2-hydroxymethyl-4(5)-methylimidazole 43

Compound XV 4(5)-methylimidazole 44

D-Glucose/Ammonia Reaction 47

SECTION II 4-O-METHYL-D-GLUCOSE/AMMONIA 51

Experimental

Methyl-β-D-Glucopyranoside 54

Methyl-6-O-triphenylmethyl-2,3,6-tri-O-acetyl-β-D-
glucopyranoside 54
LIST OF FIGURES AND TABLES

FIGURES

Fig.1 Lobry de Bruyn-Alberda Van Ekenstein Reactions 2
Fig.2 Mechanism of the Aldol Condensation 4
Fig.3 Isomerisation by the aldol Condensation 4
Fig.4 β-Elimination Mechanism 5
Fig.5 Alkaline Fission of Diacarbonyls 6
Fig.6 Saccharinic Acid Formation from D-Desoxynorones 9
Fig.7 The Effect of Substitution on Desoxynorone Formation 10
Fig.8 Formation of Heterocyclic Compounds 13
Fig.9 Preparation of D-Glucosone 25
Fig.10 Development of Imidazole Concentration with Time in Glucosone/Amine Reaction 34
Fig.11 Mass Spectra of Identified Imidazoles 45, 46
Fig.12 Precursors of Imidazoles Identified in D-Glucosone/

Amine System 48
Fig.13 Formation of Imidazoles from D-Glucosone 49
Fig.14 Degradation of 3-0-Methyl-D-Glucosone 52
Fig.15 4'-0-Methylation of 4-0-Trimethyl-2,3,5-tri-0-acetyl-

D-glucopyranoside 53

TABLES

Table I Results of Separation of Imidazole Mixture 31
Table II Spots located by Paper Chromatography of Glucosone/

Amine Reaction Mixture 34
Table III Compounds in Fractions from Ion-Exchange

Chromatography 37
Table IV Compounds Isolated from Glucosone/Amine Reaction 38