THE REACTION OF CARBONATES WITH AMMONIA

A thesis presented in partial fulfilment
of the degree of Master of Science
in Chemistry at
Massey University

David John Giltrep
1969
ABSTRACT

A feature of typical carbohydrates/ammonia reactions is the formation of complex mixtures of imidazoles (among other products). These imidazole mixtures have proved difficult to separate in many cases. A theory for cation exchange chromatography of bases has been developed in this work and applied to the separation of imidazole mixtures. The technique used appears to be capable of separating mixtures of imidazoles more effectively than other previously used.

D-Glucosone (D-arabo-hexosulose) was prepared by the action of benzaldehyde on glucosazone (D-arabo-hexosphenylosazone) and its reaction with ammonia investigated. It was found that the reaction mixture included a number of imidazoles. These imidazoles were separated by the ion exchange technique developed earlier and a total of sixteen compounds giving a positive reaction with the imidazole-specific. Pauli reagent (diazotised sulphanilic acid) were detected. Fifteen of these compounds were isolated and six were identified by mass spectrometry and/or nuclear magnetic resonance spectrometry.

It was also intended to investigate the reaction of 4-O-methyl-D-glucose and ammonia. It was proposed to prepare this compound by methylation of methyl-2,3,4-tri-O-acetyl-β-D-glucopyranoside with methyl iodide in the presence of silver oxide. Under these conditions an acetyl migration from the 4-O to 6-O position occurs with the methylation to give methyl-2,3,5-tri-O-acetyl-4-O-methyl-β-D-glucopyranoside which may be hydrolysed to give 4-O-methyl-D-glucose. It was intended to prepare the starting material for this reaction (methyl-2,3,4-tri-O-acetyl-β-D-glucopyranoside) from D-glucose by the following steps.

1. Ketohexonolysis of D-glucose catalysed by an H⁺ cation exchange resin to give methyl-β-D-glucopyranoside.
2. Blocking of the 6-O position with triphenylchloromethane.
3. Acetylation with acetic anhydride to give methyl-6-O-triphenylmethyl-2,3,4-tri-O-acetyl-β-D-glucopyranoside.
4. Removal of the triphenylmethyl blocking group to give the required methyl-2,3,4-tri-O-acetyl-β-D-glucopyranoside.

In fact at the time of this writing the first three steps had been accomplished but attempts to remove the triphenylmethyl blocking group while leaving the acetyl groups intact had proved unsuccessful.
The author wishes to thank Dr. E.H. Richards for encouragement and advice.
Table of Contents

Abstract

- Introduction
 - Alkaline Degradation of Sugars 1
 - Aldolisation and Dealdolisation 1
 - Formation of α-Desosysones 3
 - Reactions of the Desosysones 3

(1) Alkaline Mission 3
(2) Saccharinic Acid Formation 3

The Effect of Substitution
 - (1) Non-reducing hexoses 7
 - (2) 1-O-substituted 2-ketohexoses 7
 - (3) 2-O-substituted aldehydemones 7
 - (4) 3-O-substituted hexoses 7
 - (5) 4-O-substituted hexoses 8
 - (6) 6-O-substituted hexoses 8

Formation of Heterocyclic Compounds
 - (1) Imidazoles 8
 - (2) Other Heterocyclic compounds 12

Separation of Imidazoles by Cation Exchange

Chromatography

- Theory of Ion-Exchange Separation of Bases 16
- Criteria for separation 19
- Separation of an Imidazole Mixture 23

The Reaction of D-Glucosone and Ammonia

Experimental

- Chromatography 26
- Preparation of D Glucosone 27
 - D-xylo-hexosephosphorylsozones 27
 - D-xylo-hexosulose (D-Glucosone) 23
 - Separation of Imidazoles 30

D-Glucosone/Ammonia Reaction

- Kinetic Study 32
- Preparative Reaction 32
- Ion exchange separation of bases 35
Results

Compound I 39
Compound IV 39
Compound VI 39
Compound XII 40
Compound XII 40
Compound XIII 40
Compound XV 41

RESULTS AND DISCUSSION

Identification of Products 42

Compound I 2,4(2,5)-bis(tetrahydroxybutyl)imidazole 42
Compound IV 43
Compound VI 4(5)-tetrahydroxybutylimidazole 43
Compound VII 4(5)-(2,3-dihydroxypropyl)imidazole 43
Compound XII 4(5)-(2-hydroxyethyl)imidazole and
XIII 2-hydroxymethyl-4(5)-imidazole 43

Compound XV 4(5)-methylimidazole 44

D-Glucosone/Acetone Reaction 47

SECTION II 4-O-METHYL-D-GLUCOSIDE/AMMONIA 51

Experimental 51

Methyl-4-D-Glucopyranoside 51

Methyl-6-O-triphenylmethyl-2,3,5-tri-O-acetyl-β-D-
glucopyranoside 51.
LIST OF FIGURES AND TABLES

FIGURES

Fig. 1 Lohry de Bruyn-Alberda Van Ekenstein Reactions 2
Fig. 2 Mechanism of the Aldol Condensation 4
Fig. 3 Isomerisation by the aldol Condensation 4
Fig. 4 β-Elimination Mechanism 5
Fig. 5 Alkaline Fission of Disaccharides 6
Fig. 6 Saccharinic Acid Formation from D-Desoxyosones 9
Fig. 7 The Effect of Substitution on Desoxyosone Formation 10
Fig. 8 Formation of Heterocyclic Compounds 13
Fig. 9 Preparation of D-Glucosone 25
Fig. 10 Development of Imidazole Concentration with Time in Glucosone/Ammonia Reaction 31
Fig. 11 Mass Spectra of Identified Imidazoles 45, 46
Fig. 12 Precursors of Imidazoles Identified in D-Glucosone/
Ammonia System 48
Fig. 13 Formation of Imidazoles from D-Glucosone 49
Fig. 14 Degradation of 3-O-Methyl-D-Glucose 52
Fig. 15 4-O-Methylation of 3,6-O-Acetyl- D-
Glucopyranoside 53

TABLES

Table I Results of Separation of Imidazole Mixture 31
Table II Spots located by Paper Chromatography of Glucosone/
Ammonia Reaction Mixture 34
Table III Compounds in Fractions from Ion-Exchange Chromatography 37
Table IV Compounds Isolated from Glucosone/Ammonia Reaction 38
Simple sugars under alkaline conditions undergo a series of reactions known as the Lobry de Bruyn-Alberda Van Ekenstein reaction. The transformation converts aldoses to ketoses and other isomeric aldoses. The general mechanism is as outlined below (fig. 1).

The important features are that the reactions are all reversible and that the asymmetry of carbon 2 in the aldose is destroyed in the enediolate form so that the epimeric aldose—i.e., the aldose with opposite stereochemistry at carbon 2—will also be formed.

In general, the transformation can proceed a step further that is the 3-ketose can form a further enediolate anion which will give rise to a further series of products.

However, this second step will be slower as the enediolate form has two substituents in a cis position. In fact, with hexoses 3-ketoses will not generally be found although inversion of stereochemistry at carbon 3 will occur. This means that a total of 6 sugars will exist in equilibrium along with the ions of three enediols (see fig. 1).

For example, if R = D-erythro-tri-hydroxypropyl then the six sugars will be: D-glucose, D-fructose, D-altrose, D-allose, D-allulose (D-psicose) and D-altrose.

In general monosaccharides will form groups of this type. Each group will consist of two 2-ketoses and four aldoses. Under alkaline conditions all members of these groups will be in equilibrium.

A number of side reactions will generally occur as well as this transformation.

Aldolisation and Dealdolisation.

Under basic conditions an enolate ion may add to an aldehyde to yield an aldol.

The aldol formed is characterised by a carbonyl and a secondary (or primary) alcohol 1,3 to one another. The reaction is reversible and hence any compound of this type may be degraded by this mechanism. The forward reaction is termed aldolisation and the reverse dealdolisation. (see fig. 2).

Most monosaccharides are in fact aldols of this type and will undergo dealdolisation.

An aldohexose would be expected to yield a biose and a tetrose while...
(fig. 1). Lobry de Bruyn – Alberds Van Ekenstein Reaction.

H₂C=O
H₂COH
H₂O
R
Aldose I

H⁺ ± H⁺
H₂C=O
H₂COH
H₂O
R
Aldose II

H₂C=O
H₂COH
H₂O
R
Aldose III

H₂C=O
H₂COH
H₂O
R
Aldose IV

Ions of enediol I

Ions of enediol II

Ions of enediol III
a 2-ketohexose should yield two trioses.

However, since aldoses and 2-ketoses will be in equilibrium by virtue of the Lobry de Bruyn-Alberden Van Ekenstein reaction, both sets of products will be formed. Similarly pentoses will give trioses and bisectos, trioses may eliminate formalddehyde to give a biose, tetroses may give bisectos or trioses and formalddehyde. Alcolisation on the other hand will result in the formation of the larger sugars from the smaller.

The alcolisation reaction in general creates two new assymmetric centres and so the combination of the forward and reverse reaction permits further isomerisation of the sugars (see fig. 3).

Formation of \(\alpha \) -Desoxyosones

If an ionized enol has an alcohol or other suitable leaving group in the \(\beta \) position then \(\beta \) elimination may occur. If the starting compound was in fact on enediol then the product will be the enol of a desoxyosone \(^3\) (see fig. 4). In general a sugar can give rise to three different types of desoxyosone (see fig. 4). Although for a triose type II desoxyosones cannot be formed while types I and III will be equivalent, and for a tetrose types II and III will be equivalent. Substitution may also block (or activate) the formation of some of these types.

Reactions of the Desoxyosones

(i) Alkaline fission.

1,2 dicarbonyl compounds may undergo a hydrolytic cleavage in alkaline solution to yield a carboxylic acid and an aldehyde (fig. 5).

In general an unsymmetrical dicarbonyl will be able to undergo fission to give two sets of products depending on which carbonyl forms the carboxyl function.

(ii) Saccharinic Acid Formation

\(\alpha \)-Dicarbonyls may undergo a "bonic acid rearrangement" (fig. 2). The desoxyosones of types I, II and III will undergo this reaction in the presence of Calcium hydroxide to yield \(\alpha \)-desomesaccharinates,
(Fig. 2.) Mechanism of the aldol Condensation for hexoses.

I Aldohexose

\[
\begin{align*}
\text{CHO} & \quad \text{CHO} \\
\text{CH}_2\text{OH} & \quad \text{CH}_2\text{OH}
\end{align*}
\]

\[\text{CHO} \quad \text{CHO} \quad \text{CH}_2\text{OH} \quad \text{CH}_2\text{OH} \]

\[(\text{CHOH})_2 \quad \text{CHOH} \quad \text{CH}_2\text{OH} \quad \text{CH}_2\text{OH} \]

\[\overset{\text{H}^+}{\text{CHO}} \quad \overset{\text{H}^+}{\text{CHOH}} \quad \overset{\text{H}^+}{\text{CH}_2\text{OH}} \quad \overset{\text{H}^+}{\text{CH}_2\text{OH}} \]

II 2-Ketohexose

\[
\begin{align*}
\text{CHOH} & \quad \text{CHOH} \\
\text{CH}_2\text{OH} & \quad \text{CH}_2\text{OH}
\end{align*}
\]

\[\text{CHOH} \quad \text{CHOH} \quad \text{CH}_2\text{OH} \quad \text{CH}_2\text{OH} \]

\[\overset{\text{H}^+}{\text{CHOH}} \quad \overset{\text{H}^+}{\text{CHOH}} \quad \overset{\text{H}^+}{\text{CH}_2\text{OH}} \quad \overset{\text{H}^+}{\text{CH}_2\text{OH}} \]

\[\overset{\text{Dealcoholisation}}{\overset{\text{Alcoholisation}}{\text{CHO}} \quad \text{CHO} \quad \text{CH}_2\text{OH} \quad \text{CH}_2\text{OH}} \]

(Fig. 3) Isomerisation by Aldol Condensation

\[
\begin{align*}
R_1 & \quad \text{CHOH} \\
R_2 & \quad \text{CH}_2\text{OH}
\end{align*}
\]

\[R_1 \quad \text{CHOH} \quad \text{CH}_2\text{OH} \quad R_2 \]
(fig. 4) β-Elimination Mechanism

I. General Reaction

\[
\begin{align*}
\text{ionised enol} &
\end{align*}
\]

\[R_1 \xrightarrow{\text{C-O}} R_2 \]

\[R_3 \xrightarrow{\text{C-H}} R_4 \]

\[\text{R} \]

\[L = \text{OH, OR etc.} \]

II. For Sugar Eneiol ions

\[\text{Type I desoxyosone} \]

\[\text{Type II desoxyosone} \]

\[\text{Type III desoxyosone} \]

III. Different types of α Desoxyosone from Sugars.

Enediolate ion arising

from Lobry de Bruyn Reaction (see fig 1)
(Fig. 5) Alkaline Fission of Dicarbonyls

\[
\begin{align*}
R_1 & \quad C=O \\
R_2 & \quad OH
\end{align*}
\]

\[
\begin{align*}
+OH^- & \rightarrow R_1^-H & \quad +H^+ & \rightarrow R_1^-\text{CHO} \\
R_2 & \quad COO^- & \quad +COOH & \rightarrow R_2^- \quad +CHO \quad \text{OR}
\end{align*}
\]

\[
\begin{align*}
R_1 & \quad COH \\
R_2 & \quad C=O
\end{align*}
\]

\[
\begin{align*}
+10H^- & \rightarrow R_1^-H & \quad +H^+ & \rightarrow R_1^-\text{COOH} \\
R_2 & \quad COO^- & \quad +CH_3 & \rightarrow R_2^- \quad +CHO \quad \text{OR}
\end{align*}
\]
The Effect of Substitution

0-Substituted sugars may be prevented from forming some or all of the desoxyosones types discussed above or alternatively may be activated towards a formation of some particular desoxyosone.

In general substitution of an oxygen will block formation of a carbonyl function on that oxygen but in many cases will activate loss of the substituted oxygen.

For these reasons 1-O or 2-O substituted sugars may also be prevented from undergoing the full range of Lobry de Bruyn-Alberda Van Ekenstein reactions.

The effects of various types of substitution in hexoses is discussed below (see also fig. 7).

(1) **Non-reducing hexoses**

These sugars lack a free carbonyl function and will therefore be unable to form the enediolate ion which is the intermediate in both the Lobry de Bruyn reactions and formation of α desoxyosones.

They will therefore not give rise to hexose desoxyosones or to any compounds arising from them.

(2) **1-O-substituted 2-ketohexoses**

These compounds are blocked from forming aldoses or type I desoxyosones (both require a 1 carbonyl function). Types II or III desoxyosones may be formed but the substitution will favour formation of type III (1 desoxy). For example 1-O-methyl-D-fructose gives D-gluco-saccharinic acid when reacted with Calcium hydroxide.

(3) **2-O-substituted aldohexoses**

All three types of desoxyosones contain a 2 carbonyl function and hence a 2-O-substituted aldohexose should be blocked from forming hexose α desoxyosones.

(4) **3-O-substituted hexoses**

These are blocked from forming desoxyosones of types II or III but are activated towards forming type I desoxyosones. Since the full
range of Lobry de Bruyn reactions as discussed previously may occur it is immaterial whether the starting product is a 2-ketose or an aldose. However all the six hexoses normally in equilibrium under these conditions will give the same desoxyosone, e.g. glucose, fructose, mannose, allose, altrose and allulose would all give D-erythro 3 desoxyhexosulose as the type I desoxyosone. In the presence of calcium hydroxide 3-O-substituted hexoses will form metasaccharinates.6.

(5)

A 3-O-substituted hexose

A 3-O-substituent will not block any of the normal Lobry de Bruyn transformations or desoxyosone formations discussed above. However the substituted oxygen will be activated as a leaving group in the β-elimination reaction and hence formation of type II desoxyosones should be favoured. In fact it is found that 4-O substituted hexoses form iso-saccharinates with calcium hydroxide.6

(6)

5-O- and 6-O-substitution would not be expected to exert any direct effect on the formation of hexose α desoxyosones but it is found that 6-O-substitution tends to activate desaldolisation of a hexose to give two trioses. In the presence of calcium hydroxide these trioses will give rise to lactic acid.

FORMATION OF IMIDAZOLIC COMPOUNDS

Imidazoles

If ammonia is used as the base for degradation of sugars imidazoles are formed. This phenomenon was originally observed by Windaus and Hnoop8 who isolated 4 (5) methylimidazole from a reaction mixture of glucose, zine hydroxide and ammonia.

The mechanism appears to involve an aldehyde an α-dicarbonyl and two molecules of ammonia (fig. 8).

A number of imidazoles have been isolated from sugar/ammonia reactions. A mechanism involving a dicarbonyl compound and an aldehyde should permit the formation of a large number of different imidazoles since a number of aldehydes may be formed (by dealdolisation, possibly
Seccharinic Acid Formation from -Desoxyosones.

Type I Desoxyosone

Type II Desoxyosone

Type III Desoxyosone
(Fig. 7) The effect of Substitution on Desoxyosone Formation

1-O-R - 2-ketohexose

\[
\begin{align*}
\text{CHO} & \quad \text{CHOH} \quad \text{CH}_3\text{OH} \\
\xrightarrow{\text{H}^+} & \quad \xrightarrow{\text{OH}^-} \\
\text{CHO} & \quad \text{CHOH} \quad \text{CH}_3\text{OH}
\end{align*}
\]

1-O-R Type II desoxyosone
(minor pathway)

\[
\begin{align*}
\text{CHO} & \quad \text{CHOH} \quad \text{CH}_3\text{OH} \\
\xrightarrow{\text{H}^+} & \quad \xrightarrow{\text{OH}^-} \\
\text{CHO} & \quad \text{CHOH} \quad \text{CH}_3\text{OH}
\end{align*}
\]

3-O-R hexose

\[
\begin{align*}
\text{CHO} & \quad \text{CHOH} \quad \text{CH}_3\text{OH} \\
\xrightarrow{\text{H}^+} & \quad \xrightarrow{\text{OH}^-} \\
\text{CHO} & \quad \text{CHOH} \quad \text{CH}_3\text{OH}
\end{align*}
\]

Type III desoxyosone
(major pathway)

4-O-R hexose

\[
\begin{align*}
\text{CHO} & \quad \text{CHOH} \quad \text{CH}_3\text{OH} \\
\xrightarrow{\text{H}^+} & \quad \xrightarrow{\text{OH}^-} \\
\text{CHO} & \quad \text{CHOH} \quad \text{CH}_3\text{OH}
\end{align*}
\]

Type I desoxyosone

4-O-R aldohexose

\[
\begin{align*}
\text{CHO} & \quad \text{CHOH} \quad \text{CH}_3\text{OH} \\
\xrightarrow{\text{H}^+} & \quad \xrightarrow{\text{OH}^-} \\
\text{CHO} & \quad \text{CHOH} \quad \text{CH}_3\text{OH}
\end{align*}
\]

4-O-R Type I desoxyosone

Type II desoxyosone
(major pathway)

Type III desoxyosone
followed by epimerisation or by alkaline fission of dicarbonyls), any of the three types of α-desoxyosones may be formed for each group of related sugars (i.e. glucose, mannose, fructose, allose altrose and allulose etc.) and by virtue of desaldolisation and alcoolisation a considerable number of such groups may be present. In principle any combination of an aldehyde and a dicarbonyl should give a distinct imidazole. In most cases the mixtures of imidazoles formed are complex although substitution of the starting material may reduce the number of imidazoles formed in significant amounts.

3-O-substituted hexoses can give rise only to type I hexose desoxyosones although desaldolisation permits formation of other desoxyosones from the fragments. Formaldehyde is generally the most common aldehyde and hence quite good yields of a particular imidazole can sometimes be obtained.

e.g. 3-O-methyl D-glucose gives a good yield of 4(5)-erythro-2,3,4-trihydroxybutyl)imidazole as the major basic product.

2-O-methyl aldohexoses will be unable to form hexose desoxyosones and the only imidazoles formed will be derived from desaldolisation fragments.

The complexity of the mixtures formed in most cases, however, has meant that many of the imidazoles formed have not yet been identified.

Separation of the imidazoles from one another and from other bases has been a major problem.

Cellulose and alumina column chromatography have been used with some success but a number of imidazoles, particularly those with longer polyhydroxyalkyl sidechains, have proved to be slow moving and hence difficult to separate by these means.

The system D-glucose/ammonia was the first investigated and has been examined by a number of workers under a variety of conditions. However in 1965, sixty years after Windaus and Knoop's original discovery of the formation of 4(5)-methylimidazole only nine
Imidazoles had been found in the system. Of these only two (2-hydroxymethyl-4(5)-methyl-imidazole and 2,4(2,5) dinitroimidazole) were substituted in the 2 position and these were also the only disubstituted imidazoles found. Only two compounds (4(5)(2,3,4-trihydroxybutyl) imidazole and 4(5) (2-azo-bis-terahydroxybutyl) imidazole) of six carbons or larger were conclusively identified. It seems highly probable that a considerable number of the imidazoles formed in this system have yet to be isolated.

Separation of imidazoles by ion exchange chromatography has been employed in this work. Using this technique it appears possible to separate complex mixtures of imidazoles (including polyhydroxyalkyl imidazoles). This technique was applied to the reaction mixture of D-glucosamine (D-arabinohexosamine) and ammonia. Fifteen imidazoles were isolated from this system and five of these were identified by mass spectrometry and nuclear magnetic resonance spectrometry.

OTHER HETEROCYCLIC COMPOUNDS

In addition to imidazoles hyrazines and azepines have been found in sugar/ammonia reaction mixtures. The probable mechanism of pyrazine formation involves the actual sugars as starting materials (fig 8).
Imidazoles

\[R_1\text{C} = \text{O}_1 + 2\text{NH}_3 + \text{CHO} \rightarrow R_3 \]

- Dicarbonyl
- aldehyde

\[R_2\text{C} = \text{O}_2 \]

Pyrazines

\[\text{H}_2\text{CO}_1 \text{H}_2 \text{O}_1 + \text{HC} = \text{R}_2 \]

\[\uparrow + 2\text{NH}_3 + \]

\[\text{CH}_2\text{OH} \quad \text{O} = \text{C} \]

\[\rightarrow \]

\[\text{H} \quad \text{C} = \text{N} = \text{C} \quad \text{R}_2 \]

\[\text{C} = \text{N} \quad \text{C} \quad \text{H} \]

\[+ 4\text{H}_2\text{O} \]

OR

\[\text{H}_2\text{CO}_1 \text{H}_2 \text{O}_1 + 2\text{NH}_3 + \text{CH}_2 \]

\[\uparrow + \text{R}_1 \quad \text{OH} \quad \text{O} = \text{C} \]

\[\rightarrow \]

\[\text{H}_2\text{CO}_1 \text{H}_2 \text{O}_1 \quad \text{R}_1 \quad \text{C} = \text{N} = \text{C} \quad \text{R}_2 \]

\[+ 4\text{H}_2\text{O} \]

Pyrazine
The reaction of reducing sugars with ammonium forms a complex mixture which includes, as well as neutral and acidic compounds, imidazoles and, to a lesser extent, pyrazines and pyridines.

The bases may be separated from the neutral and acidic compounds on a cation exchange resin in the H form. The bases will form positively charged conjugate acids which will be retained on the resin while the neutrals and acids may be washed off. The bases may then be removed from the resin by eluting with ammonia.

The individual bases have previously been separated from this mixture by cellulose or alumina column chromatography with various solvents. These methods, and also most paper and thin layer systems, all appear to depend largely on the overall polar or non-polar character of the whole molecule and a strong correlation appears among the \(R_f \) values in all these systems. In particular a number of imidazoles arising from sugar/ammonium reactions have low \(R_f \) values in all these systems and bases are difficult to separate. Further, since the \(R_f \) values depend largely on the same molecular properties for all the above systems, the use of two such methods in succession merely gives a much better separation than that obtained with a single system.

Ion exchange chromatography was considered as a means of providing a more general basis of separation. In principle the rate of elution of an imidazole in this system should depend principally on the basicity of the imidazole nucleus, and for any base, it should be possible to devise a set of conditions to give any desired rate of elution. The rate of elution of a base in any given set of conditions would be characteristic of that base.

Further since ion-exchange chromatography depends on different molecular properties to the techniques mentioned earlier it should be possible to combine it with one of them (e.g. thick paper chromatography or T.L.C.) to form an effective two dimensional system.
However, in ion-exchange work the rates of elution will depend on a number of parameters which will vary over a wide range, so that it is highly desirable to be able to predict the elution rate of any compound under any set of conditions.

The following simple theory appears to give good qualitative agreement with experiment and appears to be adequate for the prediction of the ability of a given system to separate a given mixture of bases.
THEORY OF ION-EXCHANGE SEPARATION OF BASES

Consider a solution in equilibrium with a cation-exchange resin (single function) and let the cation exchange capacity of the resin be \(C_0 \) milliequivalents per ml. of solution in equilibrium with the resin.

Let the solution contain \(n \) cationic species \(X_i \) \((i = 1, \ldots, n)\) and \(m \) anionic species \(X^-_i \) \((i = 1, \ldots, m)\).

Let \(Z_i \) = the\ charge\ of\ \(X_i \);

\(C_i \) = moles/litre = the concentration of \(X_i \) in the solution.

Let \(f_i \) = the fraction of the resin capacity utilised by \(X_i \) \((i < 0 \Rightarrow f_i = 0)\)

\[\text{let } C_i^R = f_i C_R \]

\[\sum_{i=1}^{n} f_i = 1 \quad \text{(by definition } f_i) \quad (1) \]

\[\sum_{i=1}^{n} Z_i C_i + \sum_{i=1}^{m} Z^-_i C^-_i = 0 \quad \text{(since solution (2)} \]

\[\text{is electrically neutral)} \]

\[\text{let } C_S = \sum_{i=1}^{n} Z_i C_i = -\sum_{i=1}^{m} Z^-_i C^-_i \quad (3) \]

If \(X_i \) is a positively charged Brønsted acid let \(B_i \) be its conjugate base and let \(C_i' \) mole/litre = concentration of \(B_i \) in the solution. If \(X_i \) is not a positively charged Brønsted acid let \(C_i' = 0 \).

\[\text{let } X_i = H_3O^+ \]

and \(\forall \ i : 2 \leq i \leq n \)

\[\text{let } K_i = \frac{C_i'}{C_i} \quad (4) \]

(i.e. \(K_i \) = acid dissociation constant of \(X_i \))

\[\text{let } C_i = C_i' + C_i \quad (5) \]

\[\text{then } C_i = C_i' (K_i + C_i) \quad \text{(from} (4) \text{and } (5)) \quad (6) \]

Consider the special case where

\[Z_i = 1 \quad \forall \ i : 1 \leq i \leq n \]

and assume that in this case

\[\frac{C_i'}{C_i} = \lambda_i \quad \forall \ i : 1 \leq i \leq n \quad (7) \]
then \(C_i^x = \lambda_i f_i (K_i + C)\) (from (7) \& (8))
and \(C_i^y = C_i f_i \) (definition)
let \(P_i = C_i f_i\)
then \(P_i = \lambda_i (K_i + C)\) \(f_i \) \(C_i\)

also from (7)
\[
\sum_{i=1}^{m} \lambda_i f_i = \frac{f_i}{C_i} = \frac{C_i}{C_1}
\]
let \(\sum_{i=1}^{m} \lambda_i f_i = \lambda \)
then \(\lambda = \frac{f_i}{C_i} C_1\)

and from (8)
\[
P_i = \lambda_i \frac{C_i (K_i + C)}{C_i \lambda} \frac{C_i}{C_i} \frac{C_i}{C_i}
\]

The function \(P_i\) determines the elution rate of \(X_i\) on an ion-exchange column. The only functions of \(X_i\) on which \(P_i\) depends are \(\lambda_i\) and \(K_i\). In fact, \(\lambda_i\) will not differ very greatly for related compounds and the separation depends largely on \(K_i\). But \(P_i \propto (K_i + C)\) and therefore if \(C_i \gg K_i\), \(P_i\) is virtually independent of \(K_i\) and \(P_i\) is fully sensitive to changes in \(K_i\) only if \(K_i \gg C_i\)

Assume that \(\lambda_i\) is constant for \(i=2, \ldots, n\) and assume further that for these values
\[
\lambda_n = \lambda_2 = \cdots = \lambda_2 = \lambda_2 = \frac{K_R + 1}{K_R}
\]
where \(K_R\) is the acid dissociation constant of the cation exchange functional group. (e.g. for a polystyrene-sulphonic acid resin such as Dowex 50 W \(K_R = 0.2\)
\[
\therefore \lambda_n = \cdots = \lambda_2 = \frac{K_R + 1}{K_R}
\]
let \(\lambda_2 = \frac{K_R + 1}{K_R}\)
but \(\lambda_2 = \sum_{i=1}^{m} \lambda_i f_i = \frac{f_i}{C_i} \sum_{i=1}^{m} f_i \frac{K_R + 1}{K_R}\)
\[
= \frac{K_R f_i}{f_i} + (K_R + 1)(1 - f_i)
\]
\[
= \frac{K_R f_i}{f_i} + (K_R + 1)(1 - f_i)
\]
hence \(\lambda = \frac{K_R f_i}{f_i} + (K_R + 1)(1 - f_i)\)
and from (9)
\[V_i \leq 2 \leq n \quad p_i = \frac{C_s (K_i + C_i)}{C_R C_1} \]
(11)
also if \(K_R \gg 1 \) or if \(f_i < 1 \)

and then
\[V_i : 2 \leq i \leq n \]
\[p_i = \frac{C_s (K_i + C_i)}{C_R C_1} \]
(12)

If the solution is being run down a column of ion exchange resin then if the peak of the compound \(X_i \) has run a volume \(V_i \) while a total volume \(V \) has been run through the resin,

then
\[\frac{dV_i}{dV} = \frac{p_i - 1}{p_i + 1} \]

where \(p_i \) is calculated

for the conditions actually occurring at Volume \(V_i \). The sharpness of the peak may be enhanced by an increasing gradient in \(f_i \) running down the column. However this will only occur if the actual values of \(f_i \) are reasonably high.

For imidazoles \(K_i \) is typically \(10^{-6} \) to \(10^{-8} \) hence for reasonable separation pH cannot be less than about 6 and it can be this low only for the more acidic imidazoles. (\(C_1 \gg K_i \Rightarrow \)

poor separation). Assume \(C_1 = 10^{-6} \) but from (7)
\[f_1 = C_1 \sum_{i=1}^{\infty} \frac{d_i f_i}{C_s} \]
if Dowex 50W used as resin then \(\lambda_1 = 1, \lambda_2 = \ldots = \lambda_n = \frac{1}{6} \)

hence
\[f_1, C_s < 6 \times 10^{-6} \]
(13)
also
\[K_i + C_i \leq 2 \]

hence
\[C_R \leq 0.7 \]
for typical imidazoles

\[C_R \approx 0.7 \]
for Dowex 50W

\[C_s \geq \frac{p_i \times 0.7}{2 \lambda} \]

assume
\[f_1 \lambda < 1.2 \]

then
\[\lambda = 1 \]
but for satisfactory rate we may require $p_i > 10^{-2}$
then $C_5 > \frac{1}{3} \times 10^{-2}$
\[f_1 < 1.8 \times 10^{-3} \quad \text{(from (13))} \]
this justifies assumption that $f_1 << 1.2$ also since f_1 is small at all times when elution is occurring at a reasonable rate there will be no point in starting with $f_1 = 1$ and so developing a gradient in f_1
For separation of imidazoles on a Dowex 50 resin time may be saved by starting with the resin more or less in equilibrium with the resin (Further under these conditions $f_1 << 1 + |K R| \cdot a = 1$ and equation (12) holds.

CRITERIA FOR SEPARATION

In general for a set of eluting conditions the peak of any compound X_i will be eluted from a column of ion-exchange resin after a total volume V_i ml. has been run. This value V_i will be characteristic of the compound for any given conditions. V_i will depend on K_i. The compounds X_i and Y_j will be separated if $\left| V_i - V_j \right| \geq \ell$ where ℓ is some arbitrary limit depending on the degree of separation required, the rate at which the column is run, the size of fractions collected etc. V_i is a monotone decreasing function of K_i (that is if $K_j \geq K_i$ then $V_j \geq V_i$ \& a. or the more acidic compound is always eluted first). If we require
\[|V_i - V_j| \geq \ell \]
then \[|V_i(K_i) - V_j(K_j)| \geq \ell \]
We may require that separation to the extent of $|V_i - V_j| \geq \ell$
occur whenever:
\[|K_i - K_j| \geq d \]
\in particular if:
\[K_i - K_j = d \]
\[V_j - V_i \geq \ell \]
This is satisfied if:
\[-\left(\frac{dV_i}{dK_i} \right) \geq \frac{\ell}{d} \]
then \[\Delta \geq - \frac{dV}{dK_i} \]

and the quantity \(-\frac{dV}{dK_i}\)

is the lower limit of the difference in \(K_i\) for separation.

now \(V_c\) and \(K_i\) are related by the equation

\[\int_0^{V_c} \frac{p_i}{1 + p_i} dV = V_R \quad (14) \]

where \(V_R\) = volume of the column.

but from (12)

\[p_i = \frac{Cs(K_i + C_i)}{C_R C_i} \]

if \(Y_s = \frac{Cs}{C_R C_i}\)

and \(p_0 = \frac{Cs}{C_R}\)

then \(p_i = Y_s K_i + p_0\)

\[\frac{p_i}{1 + p_i} = \frac{Y_s K_i + p_0}{1 + Y_s K_i + p_0} \]

but in practice \(p_0 <\ll 1\) and therefore either \(Y_s K_i <\ll 1\)

or \(p_0 <\ll Y_s K_i\)

\[\frac{p_i}{1 + p_i} = \frac{Y_s K_i}{1 + Y_s K_i} + p_0 \quad (15) \]

then substituting in (14)

\[\int_0^{V_c} \frac{Y_s K_i}{1 + Y_s K_i} dV + \int_0^{V_i} p_0 dV = V_R \]

or

\[\int_0^{V_i} \int_0^{V_c} \frac{Y_s K_i}{1 + Y_s K_i} dV = V_R - \int_0^{V_i} p_c dV \quad (16) \]

differentiating (16)

\[\frac{V_c}{dK_i} - \frac{dV_c}{dK_i} \left(\frac{Y_s K_i}{1 + Y_s K_i} + p_0 \right) = 0 \]

but \(p_0 <\ll 1\) \(\therefore\) either \(Y_s K_i <\ll 1\) or \(p_0 <\ll \frac{Y_s K_i}{1 + Y_s K_i}\)
As an index of separation take

\[\sigma = \frac{d'}{d} \]

that is

\[\sigma = \frac{d'}{d} \]

where \(d' \) is the least difference in \(K_i \) for satisfactory separation

then

\[\sigma = \frac{d'}{d} \]

\[\sigma \geq \sigma' = \frac{d'}{d} \]

(If \(V_s \) is a monotone increasing function of \(V \))

then

\[\sigma' = \frac{d'}{d} \]

where

\[\int \left(\frac{\delta K_i}{1 + \delta K_i} + p_0 \right) dV = \frac{V_R}{K_i} \]

Provided that the column is run at a sufficiently low loading the peak will be narrow and two compounds will be resolved by a minimum volume \(\lambda \) if the proportional difference in \(K_i \) for these compounds is greater than \(\frac{1}{\sigma} \)

In the special case where \(V_s, P_0 \) are constant,

then

\[\frac{V_s K_i}{1 + \delta K_i} + p_0 = \frac{V_R}{K_i} \]

or when \(P_0 \ll 1 \)

\[\frac{V_s K_i + p_0}{1 + \delta K_i} = \frac{V_R}{K_i} \]

\[\Rightarrow \frac{V_i V_s K_i + p_0 V_i}{V_i - \frac{V_R}{K_i}} = \frac{V_R}{K_i} - \frac{p_0 V_i}{K_i} \]
The upper limit of volume for resolution occurs by virtue of
the $\int_0^\infty \chi_S(v) dv$ term in ξ and in all cases this may be
expressed by the condition.

$$Q V_R > \int_0^\infty \chi_S(v) dv$$

where $0 < \alpha < 1$

Then in general it will be adequate to require

$$\frac{1}{Q} \int_0^\infty \chi_S(v) dv \leq V_R < \frac{1}{Q} \int_0^\infty \chi_S(v) dv \cdot \chi_S(v)$$

(21)

to ensure reasonable separation of compounds of reasonably different
K_C values. However if it is desired to calculate conditions for
a specific minimum degree of separation equation (18) should be used.

SEPARATION OF AN IDAZOLE MIXTURE

The ion-exchange technique described above was tested on a
mixture of imidazoles made up for this purpose. The mixture
nominally contained four components but the purity of some of these
was highly questionable and in fact ten products were separated.

The mixture was separated on an NH_4^+ form polystyrenesulphonate
resin eluting with ammonium bicarbonate buffers with χ_S ranging
from 10^6 to 10^9 and pH ranging from 8.0 to 9.2.

Fractions were collected and examined by paper
chromatography. A total of ten compounds were detected by this
procedure and these compounds were largely separated by the ion
exchange procedure.
THE REACTION OF D-GLUCOSONE AND AMMONIA

D-Glucosone was prepared from D-glucose in two steps. Glucose was first converted to the phenylasazone by the action of phenylhydrazine, and the phenylasazone was then converted to D-glucose with benzaldehyde 13 (see fig. 9).

The glucosone prepared was then reacted with ammonia and the bases from the reaction mixture were investigated by a combination of ion-exchange chromatography and paper chromatography.

Glucosone is a 1,2 dicarbonyl compound and is rather reactive, so that it might be expected to form a range of products with ammonia readily. Further, there are no blocking groups on the molecule and so glucosone would be expected to undergo the full range of Lobry-de-Bruijn transformations and the various side reactions discussed in the introduction. It would be expected that a number of the products formed would be imidazoles since a number of 1,2 dicarbonyls (including the starting material) would be expected to occur in the reaction mixture.

A complex mixture of imidazoles was in fact found in this reaction mixture. A total of fifteen basic compounds which gave positive tests with the imidazole-specific diazotised sulphonic acid reagent were isolated and five of these compounds which were identified all proved to be imidazoles.
I. Preparation of D-Arabo-Hexosephenylosazone

\[
\begin{align*}
\ce{CHO} & + 3 \ce{NH_2\cdot\text{H}2} \rightarrow \ce{C=NH\cdot\text{H}2} \\
\ce{HO\cdot\text{CH}} & + \ce{CH_2\cdot\text{OH}}
\end{align*}
\]

D-glucose phenylhydrazine D-arabo-hexosephenylosazone

II. Preparation of D-Glucosone

\[
\begin{align*}
\ce{H\cdot\text{C}=N\cdot\text{H}} & + 2 \ce{CHO} \rightarrow \ce{HO\cdot\text{CH}} + 2 \ce{C=NH\cdot\text{H}2} \\
\ce{H\cdot\text{CO\cdot\text{H}}} & + \ce{CH_2\cdot\text{OH}}
\end{align*}
\]

D-arabo-hexosephenyllosezone D-glucozone
Chromatography

Solvents

Solvent A
n-Butanol (400 ml.) was mixed with glacial acetic acid (100 ml.) and water (100 ml.).

Solvent B
Ethyl acetate (300 ml.) was shaken with glacial acetic acid (100 ml.) and water (300 ml.) in a 1 litre separating funnel. Two phases separated on standing. The lower phase was rejected and the upper phase used as the solvent.

Spray Reagents

Ammonial Silver Nitrate
Silver nitrate (10 gr.) was dissolved in water (c. 70 ml.), aqueous ammonia was added until the precipitate originally formed was completely dissolved and the solution was made up to 100 ml. The reagent was sprayed onto the dried paper chromatogram which was then heated. Polyhydroxylalkyl compounds (or other suitable reducing agents) gave dark spots.

Diazotised Sulphanilic Acid
Sulphanilic acid solution (9 g.p.l. in HCl, 20 ml.) was mixed with sodium nitrate solution (25 g.p.l., 20 ml.) 10% sodium carbonate solution (40 ml.) was then added. The reagent was stable for only a short time (c. 10 minutes). Imidazoles gave a red, orange or yellow spot with this reagent.

General Conditions

Descending paper chromatography was used throughout this work. Unless otherwise stated Whatman No. 1 chromatography paper and one of the solvents above were used.
PREPARATION OF D-GLUCOSONE

Reagents

Urea Phosphate Spray Reagent

Orthophosphoric acid (8.5 G. 1.75, 6 ml.) was added to water-saturated n-Butanol (100 ml.). A solution of urea (3 g.) in ethanol (5 ml.) was added. The reagent was sprayed onto the dried chromatogram which was then warmed. Ketoses gave a blue spot.

Nickel Hydroxylamine Spray Reagent

Solution A

Hydroxylamine hydrochloride (50 g.) and sodium acetate (50 g.) were dissolved in water (100 ml.) and the solution was filtered. The clear filtrate constituted the reagent.

Solution B

Nickel nitrate (5 g.) was dissolved in water (100 ml.)

The dried chromatogram was sprayed with solution A, dried at 110°C for 5 minutes and then sprayed with solution B. An α-dicarbonyl compound gave a red or orange spot.

Reactions

D-Arabo-Hexosephenyllosazone

D (+) Glucose (200 g.) was dissolved in water (1.5 l) in a 3 necked 3 litre flask equipped with a mechanical stirrer and a reflux condenser. Phenylhydrazine (450 ml.) and glacial acetic acid (250 ml.) were added. The mixture was then refluxed gently for 30 minutes and allowed to cool overnight.

The reaction mixture was filtered and the precipitate washed with 10% acetic acid (2x500 ml.) and water (4x11). The precipitate was then recrystallised from 50% aqueous pyridine (5 l) the recrystallised product washed with absolute ethanol (3x250 ml.) and diethyl ether (2x250 ml.) and finally dried in a vacuum oven to give D-Arabo-hexosephenyllosazone (250 g.) with a melting point of 199-201°C.

A further recrystallisation from absolute ethanol lowered the yield to 150 g. and raised the m.p. to 204-205°C.
D-Arabo-hexosulose (D-Glucose)

D-Arabo-hexosesulose (D- -Glucono-δ-lactone) was prepared by suspending 20 g. of D-Arabo-hexosephenylazone (N, N'-diacetyl-(1→3)-20 g.) in 3 litre of absolute ethanol (700 ml.) and refluxing for 4 hours. The condenser was then reversed and condensate (c. 600 ml.) was distilled off the reaction mixture. The mixture was then siphoned into a 3 litre beaker and allowed to cool overnight.

The mixture was filtered, the filtrate concentrated to about 400 ml. at 40-45°C and then extracted with diethyl ether (6 x 75 ml.). The aqueous phase was warmed to 60°C to remove dissolved ether and then shaken for 10 minutes with activated charcoal (5 g.). The mixture was filtered and the filtrate concentrated, at 35-40°C, to a thick syrup which was dissolved in 85% ethanol (210 ml.). The solution was filtered and the filtrate concentrated, at 35-40°C, to a thick syrup which was dissolved in water (300 ml.) and then shaken with Amberlite IR 120 H⁺ cation exchange resin (5 g.) and IRA 400 OH⁻ anion exchange resin (2 g.). The mixture was filtered and the filtrate concentrated to a syrup (5 g.) which was dried by repeated evaporation from methanol (5 x).

Paper chromatography with solvent A revealed two spots. The first occurred at Rₜ 0.20 and gave a dark spot with silver nitrate, a brown spot with urea phosphate, an orange-red spot with nickel/ hydroxylamine and a yellow spot with p-aminophenol hydrochloride.

The second occurred at Rₜ 0.5 and gave a dark spot with silver nitrate but appeared to give no reaction with the other reagents.

The final product from three runs as above was combined and dissolved in 75% aqueous ethanol. A solid crystallised out. The mixture was filtered and the filtrate evaporated, at 35-40°C, to a thick syrup (4 g.) which was dried by repeated evaporation from
methanol (5 X).

This product gave only a single spot on paper chromatography. This was the compound running at R$_p$ 0.20 and gave the same colour reactions as before. This product was therefore taken to be pure D-Glucose.
A mixture of histamine dihydrochloride (75 mg.) 4-(2-crythro-2,3,4 trihydroxybutylimidazole (10 mg., doubtful purity), 4 (5) hydroxymethylimidazole (15 mg.) and 2-methylimidazole (10 mg.) was dissolved in a small volume (c. 10 ml.) of water.

AG 50 W/X2 H⁺ cation exchange resin (70 g., wet weight) was washed with 3 N ammonia (100 ml.), distilled water (6 x 500 ml.) and .007M pH 8.0 ammonium carbonate buffer (200 ml.). The resin was slurried with .007M pH 8.0 ammonium carbonate buffer (200 ml.) and poured into a column (20 x 230 mm.).

The imidazole solution was diluted to 100 ml. and a solution of carbon dioxide in acetone was added to adjust the pH to 6.5. The pH was further adjusted to 6.0 with 10% acetic acid. This solution was run through the column and followed by ammonium carbonate buffer solutions of :- 0.007 pH 8.0 (800 ml.), 0.007M pH 9.0 (400 ml.), 0.03 M pH 9.0 (400 ml.), 0.3M pH 9.2 (400 ml.) and 0.7 M pH 9.2 (400 ml.).

10 ml. fractions were collected and examined by paper chromatography using solvent A. The imidazoles were located by spraying with diazotised sulphanilic acid. A total of ten compounds were located (see table I) and in most cases the ion exchange procedure provided complete separation.
TABLE I
RESULTS OF SEPARATION OF IMIDAZOLE MIXTURE

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>Fractions located in</th>
<th>Rf (Solvent A)</th>
<th>Colour of Probable Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spot (Diazotised Sulph. Acid)</td>
</tr>
<tr>
<td>1</td>
<td>7-11/₂</td>
<td>0.12</td>
<td>Yellow</td>
</tr>
<tr>
<td>2</td>
<td>26-35</td>
<td>0.32</td>
<td>Orange</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1(5)hydroxymethyl imidazole</td>
</tr>
<tr>
<td>3</td>
<td>42-56</td>
<td>0.20</td>
<td>Red</td>
</tr>
<tr>
<td>4</td>
<td>80-118</td>
<td>0.15</td>
<td>Red</td>
</tr>
<tr>
<td>5</td>
<td>116-135</td>
<td>0.02</td>
<td>Yellow</td>
</tr>
<tr>
<td>6</td>
<td>145-155</td>
<td>0.12</td>
<td>Red</td>
</tr>
<tr>
<td>7</td>
<td>140-155</td>
<td>0.06</td>
<td>Red</td>
</tr>
<tr>
<td>8</td>
<td>180-200</td>
<td>0.53</td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-Methylimidazole</td>
</tr>
<tr>
<td>9</td>
<td>220-250</td>
<td>0.31</td>
<td>Red</td>
</tr>
<tr>
<td>10</td>
<td>220-250</td>
<td>0.07</td>
<td>Red</td>
</tr>
</tbody>
</table>
D-Glucocone/Ammonia Reaction

DIAZOTISED SULFAMIDIC ACID REAGENT FOR IMIDAZOLE DETECTION

Sulphanilic acid solution (8 g.p.l. in DI H2O, 0.75 ml.) was mixed with aqueous sodium nitrate (25 g.p.l. 0.75 ml.) at 0°C for 5 minutes in a 25 ml. volumetric flask.

A further quantity of the sodium nitrate solution (3 ml.) was added and the mixture allowed to stand for 5 minutes. The solution was made up to volume with cold distilled water and allowed to stand in an ice bath for at least 30 minutes before use. A fresh batch of the reagent was made up every day.

KINETIC STUDY OF THE REACTION

D-Glucocone (70 mg.) was dissolved in 25% aqueous ammonia (7 ml.) and placed in a water bath at 37°C. From time to time samples (0.1 ml.) were taken and the imidazole level determined as below.

IMIDAZOLE DETERMINATION

Diazotised sulphanilic acid reagent (0.3 ml.) was mixed for 30 seconds with 10% aqueous sodium carbonate (2.0 ml.) in a stoppered test tube. Distilled water (0.5 ml.) and the sample (0.1 ml.) were added and the optical density at 590 nm. in a 1 cm. glass cell, was determined using a Unicam SP500 Spectrophotometer. A blank, using distilled water, was freshly prepared for each determination.

RESULTS (See Fig. 10)

From the graph it can be seen that the imidazole level is more or less constant at a maximum level between 20 hours and 70 hours. Hence the reaction time of 24 hours used in the main reaction should ensure maximum imidazole formation.

PREPARATIVE REACTION

D-Glucocone (4 g.) was dissolved in 25% aqueous ammonia (400 ml.) in a 1 litre stoppered flask. The flask was kept in a water bath at 37°C for 24 hours. The mixture was then evaporated to dryness. Distilled water (3x100 ml.) was added with evaporation to dryness after each addition. After the final evaporation the mixture was dissolved in distilled water (200 ml.) and passed through a column of Amberlite
IR 120 H⁺ cation exchange resin. The column was washed with water (2.5 l.) until the washings were colourless. The combined washings were evaporated to dryness to give the neutral and acidic non-volatile reaction products (2.5 g.).

The column was then eluted with 25% aqueous ammonia (1 l.) until the effluent was colourless and gave no reaction with diazotised sulphanilic acid. The eluate was evaporated to dryness and distilled water (3x400 ml.) added with evaporation to dryness after each addition to give the non-volatile basic compounds (1.0 g.)

Samples of the total reaction mixture and the two fractions obtained above were examined by paper chromatography with solvent A. Ammoniacal silver nitrate and diazotised sulphanilic acid were used as locating reagents. A total of seven spots were observed (see table II).
Development of Imidazole Concentration with time in Glucosone/Ammonia Reaction

no further change in optical density after 70 hours

*Optical density of imidazole/diazotised sulphonilic acid dye (see p. 32)

TABLE II

<table>
<thead>
<tr>
<th>P of Compound</th>
<th>Fraction found in</th>
<th>AgNO₃ Reaction</th>
<th>Diazotised Sulph. Acid Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>Basic</td>
<td>Black Spot</td>
<td>Red Spot</td>
</tr>
<tr>
<td>0.14</td>
<td>Basic</td>
<td>Black Spot</td>
<td>Red Spot</td>
</tr>
<tr>
<td>0.18</td>
<td>Non-Basic</td>
<td>Black Spot</td>
<td>Red Spot</td>
</tr>
<tr>
<td>0.24</td>
<td>Basic</td>
<td>Black Spot</td>
<td>Red Spot</td>
</tr>
<tr>
<td>0.35</td>
<td>Basic</td>
<td>Nil</td>
<td>Feint red spot</td>
</tr>
<tr>
<td>0.40</td>
<td>Non-Basic</td>
<td>Black spot</td>
<td>Nil</td>
</tr>
<tr>
<td>0.53</td>
<td>Basic</td>
<td>Nil</td>
<td>Feint red spot</td>
</tr>
</tbody>
</table>
ION EXCHANGE SEPARATION OF BASES

A column (20x250 mm.) of Bio-Rad AG50W/2 Cl− ion exchange resin was prepared as previously (p. 30). A saturated solution of carbon dioxide in acetone (50 ml.) was added to a solution of the bases in water (150 ml.).

The acetone and excess carbon dioxide were removed by distillation at 20°C. The pH was lowered to 6.5 with a small further quantity of the carbon dioxide in acetone and to 5.0 with 10− acetic acid. The total volume was made up to 200 ml. with distilled water and an aliquot (60 ml.) was run through the column. The column was eluted with ammonium carbonate buffers of: 0.007 M, pH 7.5 (450 ml.); 0.007 M, pH 8.0 (500 ml.); 0.02 M, pH 9.0 (500 ml.); 0.06 M, pH 9.0 (400 ml.) and 1.0 M, pH 9.0 (350 ml.). 10 ml. fractions were collected.

The column was then regenerated by washing with 4N ammonium acetate (500 ml.) and distilled water (2 l.).

A sample (c. 1 ml.) of every second (or fifth after the first 50 fractions) fraction was concentrated (c 10X) and examined by paper chromatography with solvent A using diazotised sulphanilic acid as a locating reagent. A total of sixteen imidazolic compounds were detected (see table III).

The following groups of fractions were then combined: 41-89, 90-130, 131-139, 140-150, 161-174, 175-188, 189-200, 201-210, 211-250 and 251-300. Each of the combined groups were concentrated to a small volume (c. 5 ml.).

The 41-89 group was dissolved in water (50 ml.) and carbon dioxide in acetone (30 ml.). The acetone and excess carbon dioxide were removed by evaporation at 20°C. The pH was lowered to 8.0 with carbon dioxide in acetone and 5.0 with 10− acetic acid. The solution was run through the column and followed by ammonium carbonate buffers of: 0.007 M, pH 7.7 (500 ml.); 0.007 M, pH 8.0 (500 ml.); 0.007 M, pH 8.5 (500 ml.); 0.007 M, pH 9.0 (450 ml.). 10 ml. fractions were collected.
and examined by paper chromatography as before.

Compounds I, II, III and IV were detected in fractions 20-65, 40-55, 55-65 and 65-70 respectively.

The groups of fractions 15-50, 51-60 and 61-70 were recombined and concentrated to c. 5 ml. each.

The thirteen concentrated solutions, \(S_1 \), (fractions 16-50 from 2nd run), \(S_2 \) (fractions 51-60 from 2nd run), \(S_3 \) (fractions 61-70 from 2nd run), \(S_4 \) (fractions 90-120 from 1st run), \(S_5 \) (fractions 121-130 from 1st run), \(S_6 \) (fractions 131-139 from 1st run), \(S_7 \) (fractions 140-160 from 1st run), \(S_8 \) (fractions 161-174 from 1st run), \(S_9 \) (fractions 175-188 from 1st run), \(S_{10} \) (fractions 199-200 from 1st run), \(S_{11} \) (fractions 201-210 from 1st run) \(S_{12} \) (fractions 211-260 from 1st run), and \(S_{13} \) (fractions 261-300 from 1st run) were each separated by descending thick paper chromatography on Whatman No. 55 papers with solvent A. Marker spots were run on either side of the bend containing the mixture and these were sprayed with diazotised sulphanilic acid to locate the compounds. The strips containing each compound were then cut out and eluted with water. The isolated compounds were examined by paper chromatography with solvents A and B. Fifteen of the sixteen compounds were isolated by this means (see table IV).

Compounds I, IV, VI, XI, XII, XIII and XIV were examined by mass spectrometry and I, IV and VI by nuclear magnetic resonance spectrometry. The results obtained were as given below.
TABLE III: COUPLING DETECTED IN FRACTIONS FROM IC-EXCHANGE CHROMATOGRAPHY

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>Fractions detected in</th>
<th>%Rf</th>
<th>Colour with Diazotised Sulphamic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>40-90</td>
<td>0.16</td>
<td>red</td>
</tr>
<tr>
<td>II</td>
<td>50-65</td>
<td>0.60</td>
<td>red</td>
</tr>
<tr>
<td>III</td>
<td>70-90</td>
<td>0.72</td>
<td>red</td>
</tr>
<tr>
<td>IV</td>
<td>50-130</td>
<td>0.3%</td>
<td>red</td>
</tr>
<tr>
<td>V</td>
<td>90-105</td>
<td>1.15</td>
<td>red</td>
</tr>
<tr>
<td>VI</td>
<td>100-130</td>
<td>0.88</td>
<td>red</td>
</tr>
<tr>
<td>VII</td>
<td>120-135</td>
<td>1.00</td>
<td>red</td>
</tr>
<tr>
<td>VIII</td>
<td>135-140</td>
<td>1.30</td>
<td>red</td>
</tr>
<tr>
<td>IX</td>
<td>140-155</td>
<td>0.51</td>
<td>red</td>
</tr>
<tr>
<td>X</td>
<td>140-160</td>
<td>1.40</td>
<td>red</td>
</tr>
<tr>
<td>XI</td>
<td>140-135</td>
<td>0.75</td>
<td>red</td>
</tr>
<tr>
<td>XII</td>
<td>150-180</td>
<td>1.01</td>
<td>red</td>
</tr>
<tr>
<td>XIII</td>
<td>170-195</td>
<td>1.60</td>
<td>red</td>
</tr>
<tr>
<td>XIV</td>
<td>190-220</td>
<td>0.20</td>
<td>orange yellow</td>
</tr>
<tr>
<td>XV</td>
<td>215-245</td>
<td>1.50</td>
<td>red</td>
</tr>
<tr>
<td>XVI</td>
<td>240-260</td>
<td>0.29</td>
<td>red</td>
</tr>
</tbody>
</table>

* * see overleaf
<table>
<thead>
<tr>
<th>Compound No.</th>
<th>Concentrated solutions isolated from.</th>
<th>Total Yield (mg)</th>
<th>$R_{f,m}$ Solvent A</th>
<th>$R_{f,m}$ Solvent B</th>
<th>Colour with Diluted Sulphenilic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$s_1, s_2, s_3,$</td>
<td>20</td>
<td>0.13</td>
<td>0.00</td>
<td>red</td>
</tr>
<tr>
<td>II</td>
<td>$s_1, s_2,$</td>
<td>6</td>
<td>0.22</td>
<td>0.27</td>
<td>red</td>
</tr>
<tr>
<td>III</td>
<td>$s_2, s_3,$</td>
<td>3</td>
<td>0.72</td>
<td>0.52</td>
<td>red</td>
</tr>
<tr>
<td>IV</td>
<td>$s_2, s_3, s_4, s_5,$</td>
<td>25</td>
<td>0.26</td>
<td>0.10</td>
<td>red</td>
</tr>
<tr>
<td>V</td>
<td>$s_6,$</td>
<td>21</td>
<td>0.67</td>
<td>0.65</td>
<td>red</td>
</tr>
<tr>
<td>VI</td>
<td>$s_4, s_5,$</td>
<td>22</td>
<td>0.67</td>
<td>0.60</td>
<td>red</td>
</tr>
<tr>
<td>VII</td>
<td>$s_0, s_6,$</td>
<td>6</td>
<td>0.86</td>
<td>0.76</td>
<td>red</td>
</tr>
<tr>
<td>VIII</td>
<td>$s_0,$</td>
<td>2</td>
<td>1.17</td>
<td>0.95</td>
<td>red</td>
</tr>
<tr>
<td>IX</td>
<td>$s_7,$</td>
<td>6</td>
<td>0.96</td>
<td>0.83</td>
<td>red</td>
</tr>
<tr>
<td>XI</td>
<td>$s_6, s_7, s_8,$</td>
<td>13</td>
<td>0.76</td>
<td>0.84</td>
<td>red</td>
</tr>
<tr>
<td>XII</td>
<td>$s_6, s_7, s_8, s_{10},$</td>
<td>14</td>
<td>1.02</td>
<td>0.91</td>
<td>red</td>
</tr>
<tr>
<td>XIII</td>
<td>$s_6, s_7, s_{10},$</td>
<td>10</td>
<td>1.34</td>
<td>1.23</td>
<td>red</td>
</tr>
<tr>
<td>XLIV</td>
<td>$s_{10}, s_{11},$</td>
<td>5</td>
<td>0.11</td>
<td>0.03</td>
<td>orange</td>
</tr>
<tr>
<td>XV</td>
<td>$s_{12},$</td>
<td>9</td>
<td>1.36</td>
<td>1.29</td>
<td>red</td>
</tr>
<tr>
<td>XVI</td>
<td>s_{12}, s_{13}</td>
<td>7</td>
<td>0.22</td>
<td>0.15</td>
<td>red</td>
</tr>
</tbody>
</table>

$R_{f,m}$ is the ratio of the distance run by a compound to the distance run by imidazole under the same conditions.
RESULTS

Compound I

Mass Spectrometry

Peaks at 272, 213, 199, 139, 153, 97

Notable peaks were found for:

\[272 \rightarrow 213, 272 \rightarrow 199, 242 \rightarrow 213, 213 \rightarrow 195, 213 \rightarrow 153 \]

\[181 \rightarrow 153, 181 \rightarrow 139 \]

NMR indicated a ratio of tertiary to secondary protons of 3:2.

Compound IV

The mass spectrum gave two series of peaks:

Series I Series II

200 C_8 H_4 N_2 O_4 170 C_7 H_6 N_2 O_3
191 C_8 H_5 N_2 O_2 87 C_6 H_5 N_2 O
127 C_7 H_7 N_2 O_2 69 C_5 H_5 N_2
111 C_7 H_7 N_2 O 109 C_5 H_5 N_2 O

Notable peaks were also found for:

\[170 \rightarrow 87, 97 \rightarrow 89, 200 \rightarrow 127, 127 \rightarrow 109 \]

The NMR spectrum was inconclusive and gave a probable ratio of secondary to tertiary protons of 2:1.

Compound VI

The mass spectrum gave peaks at:

\[170 \quad C_7 H_{10} N_2 O_3 \]
\[111 \quad C_6 H_7 N_2 O \]
\[97 \quad C_4 H_5 N_2 O \]
Compound VI (cont'd.)

\[\begin{align*}
82 & \quad C_4H_6N_2 \\
81 & \quad C_4H_5N_2 \\
69 & \quad C_3H_5N_2 \\
\end{align*} \]

Metastable peaks were found for the transitions

\[170 \rightarrow 97, \quad 97 \rightarrow 69, \quad 111 \rightarrow 82, \quad 82 \rightarrow 81. \]

No meaningful data could be obtained from NMR spectrum.

Compound XI

The mass spectrum gave peaks at:

\[\begin{align*}
142 & \quad C_5H_{10}N_2O_2 \\
124 & \quad C_6H_6N_2O \\
112 & \quad C_5H_7N_2O \\
111 & \quad C_5H_7N_2 \\
95 & \quad C_5H_7N_2 \\
82 & \quad C_4H_5N_2 \\
81 & \quad C_4H_5N_2 \\
\end{align*} \]

Metastable peaks were found for 124 \rightarrow 95 and 112 \rightarrow 95

Compound XII

The mass spectrum gave peaks at:

\[\begin{align*}
112 & \quad C_5H_8N_2O \\
111 & \quad C_5H_7N_2O \\
82 & \quad C_4H_6N_2 \\
81 & \quad C_4H_6N_2 \\
\end{align*} \]

The ratio of the intensities of 112 : 82 was about 1 : 3.

Compound XIII

The mass spectrum gave the peaks for:

\[\begin{align*}
112 & \quad C_5H_8N_2O \\
111 & \quad C_5H_7N_2O \\
82 & \quad C_4H_6N_2 \\
81 & \quad C_4H_6N_2 \\
\end{align*} \]

The ratio of intensities of 112 : 82 was about 1 : 0.9
Compound XV

Molecular ion at \(m/z \) = 64, \(\text{C}_8\text{H}_8\text{N}_2 \)

and spectrum identified to a known spectrum for methyl imidazole.
RESULTS AND DISCUSSION

IDENTIFICATION OF PRODUCTS

Compound I 2,4(2,5)-bis(tetrahydroxybutyl)imidazole.

The formula C₁₁H₁₆N₂O₈ contains five double bond equivalents. An imidazole ring contains three double bond equivalents and would also contain both Ns and 3 C's. This leaves sidechains containing in total 8 C's, 6 O's and 2 double bond equivalents. This would probably mean that the sidechains were originally saturated and contained 8 C's (i.e. fully hydroxylated) but had undergone a double deuteration to give the peak found. (This behaviour is normal for imidazoles with reasonably large polyhydroxyalkyl sidechains and indeed molecular ions are rarely found with such compounds or with carbohydrates in general.)

Losses of up to 3-carbon fragments in single steps
(272 \(\rightarrow\) 199, 213 \(\rightarrow\) 150) but no losses of fragments larger than this were observed.

This probably indicated that no sidechain was longer than 4 carbons.

Also the NMR spectrum indicated a ratio of secondary : tertiary protons of 2: 3. If there were a total of \(n\) sidechains then there would be \(n-\text{CH}_2\text{CH}\) groups and \(8-n\) \(\text{CHOH}\) groups giving \(2n\) secondary protons and \(8-n\) tertiary protons. The ratio
\[
2n : 8-n = 2:3 \quad \text{implied} \quad n = 2
\]
and hence there were two sidechains. But since neither sidechain was longer than 4 carbons and since the two sidechains totalled 8 carbons both sidechains must have contained 4 carbons and since there was a 1:1 ratio between sidechain carbons and oxygens each must in fact have been a tetrahydroxybutyl group. Hence compound I was a bis (tetrahydroxybutyl) imidazole. Of the two possible compounds
2,4(2,5)-bis (tetrahydroxybutyl)imidazole and 4,5-bis (tetrahydroxybutyl) imidazole, the latter would require a 10 carbon precursor and so may be assumed to be highly unlikely to have been formed. Hence I was
assumed to be 2,4(2,5)-bis (tetrahydroxybutyl) imidazole.

The detailed mass spectrum was explained as in fig. 11.

Compound IV

This was probably a mixture of two compounds as the two series of peaks appeared to be unrelated. As a result, with the small quantities of compound available it was not possible to satisfactorily determine the structure.

Compound VI 4(5) - (tetrahydroxybutyl) imidazole

The mass spectrum indicated an imidazole of formula

\[C_7 H_{10} N_2 O_4 \]

which would give rise to the peak at 170 by dehydration.

Single step loss of fragments of up to 3 carbons in length occurred without appearing to break down the imidazole nucleus. This indicated that the imidazole contained a 4 carbon sidechains and hence there was only one sidechain which would be a tetrahydroxybutyl group. Compound VI was therefore identified as 4(5) tetrahydroxybutylimidazole.

The detailed mass spectrum was explained as in fig. 11.

Compound XI 4(5) - (2,3-dihydroxypropyl) imidazole.

The mass spectrum peak at 162 (C_5 H_9 N_2 O_2) corresponds to an imidazole with saturated sidechains totalling 3 carbons and 2 oxygens.

The single step loss of 2 carbons and 2 oxygens (162 \rightarrow 82) implied that the compound had a 5 - carbon sidechain and that the 2 oxygens were located on the 2 carbons furthest from the imidazole nucleus.

Compound XI was therefore identified as 4(5) - (2,3-dihydroxypropyl) imidazole. The detailed mass spectrum was explained as in fig. 11.

Compounds XII 4(5)-(2-hydroxyethyl) imidazole and XIII 2-hydroxyethyl - 4(5)-methyylimidazole.

Both these compounds gave molecular ions at 112 (C_7 H_{10} N_2 O) and similar fragmentation patterns. However compound XII gave a much higher ratio of peak intensities at 82:112 than did XIII indicating that the loss of formaldehyde (112 - 82) occurred much more readily for XII than XIII.
The formula C$_5$H$_9$N$_2$O could represent a (1-hydroxyethyl) imidazole, a (2-hydroxyethyl) imidazole or a hydroxymethyl-methylimidazole. However, a (1-hydroxyethyl) imidazole could not lose formaldehyde while a (2-hydroxyethyl) imidazole would be expected to lose formaldehyde more readily than a hydroxymethyl-methylimidazole.

In fact the chromatographic data would indicate that XII was probably 4(5)-(2 hydroxyethyl) imidazole (expected R_{LL}'s in solvents A & B 0.99 & 0.80, found 1.02 and 0.91) while XIII was probably 2-hydroxymethyl-4(5) methylimidazole (expected R_{LL}'s 1.37 & 1.11, found 1.44 and 1.28).

The mass spectra were explained as in fig. 11.

Compound XV 4(5)-methylimidazole

The molecular ion at m/z 82 C$_5$H$_9$N$_2$O must have been a methylimidazole of the two possible methylimidazoles, 2-methylimidazole gives a yellow spot with diazotised sulphuric acid at R_{LL}'s of 1.44 and 1.11 while Solvents A and B respectively while 4(5)-methylimidazole gives a red spot at R_{LL}'s of 1.35 and 1.12.

Compound XV gave a red spot at R_{LL}'s of 1.35 and 1.22 and so was identified as 4(5)-methylimidazole.
Fig. 11 Mass Spectra of Identified Imidazoles

I 2,4(2,5)-bis (tetrahydroxybutyl) imidazole

2,4(2,5)-bis (tetrahydroxybutyl) imidazole

VI 4(5)-tetrahydroxybutylimidazole

* indicates that a metastable peak was found for the transition.
Fig. 11 continued

XI 4(5)-(2,3-dihydroxypropyl) imidazole

XII 4(5)-(2-hydroxyethyl)imidazole XIII 2-hydroxymethyl-4(5)-methylimidazole

*indicates that a metastable peak was found for the transition
D-GLUCOSONE/ARABINIA REACTION

The six compounds identified from the reaction mixture are shown in fig. 12 along with their probable precursors in the reaction mixture. The most common aldehyde appears to be formaldehyde and this would arise from a variety of reactions including alkaline fission of D-Glucosone itself and of any other \(\alpha \)-keto-aldehydes formed in the reaction mixture. Arabinose could arise from alkaline fission of D-Glucosone and this is a precursor of compound I. Glycolaldehyde (precursor of compound XIII) may be formed by dealdolisation of arabinose or by alkaline cleavage of hydroxypyruvaldehyde which would be formed by dealdolisation of glucosone.

The dicarbonyl precursors of the imidazoles identified include glucosone itself (compounds I and VI), 3-desoxypentulosate (compound XI), 3-desoxytetrosulose (compound XII) and pyruvaldehyde (compounds XIII and XV). The 3-desoxyosones could arise by the \(\gamma \)-elimination mechanism (see introduction) on pentoses, tetrooses and trioses respectively these sugars being formed by aldolisation/dealdolisation reactions. The full mechanism for imidazole formation in the glucosone/amonia reaction would be expected to include the pathways shown in fig. 13.
Precursors of Imidazoles Identified in D-Glucosone/Ammonia System.

Imidazole

I

\[
\begin{array}{c}
\text{Imidazole} \\
\text{I} \\
\text{II} \\
\text{III} \\
\text{IV} \\
\text{V} \\
\text{VI} \\
\text{VII} \\
\text{VIII} \\
\text{IX} \\
\text{X} \\
\text{XI} \\
\text{XII} \\
\text{XIII} \\
\text{XIV} \\
\text{XV}
\end{array}
\]

Precursors

- D-glucosone
- D-arabinose
- Formaldehyde
- 3-Desoxypentosulose
- Pyruvaldehyde
- Glycolaldehyde
- Formaldehyde

1, 4(2, 3, 5)-bis (tetrahydroxybutyl) imidazole

4(5)-(tetrahydroxybutyl)imidazole

μ(5)-(2, 3-dihydroxypropyl) imidazole

4(5)-(2-hydroxyethyl)imidazole

2-hydroxymethyl-4(5)-methylimidazole

4(5)-methylimidazole
Formation of Imidazoles from D-Glucosone
(Partial reaction scheme)

\[\text{CHO} + \text{HCHO} \rightarrow \text{CHO} + \text{CO} + \text{CH}_2 \text{OH} \]

\[\text{CHO} + \text{H}_2 \text{O} \rightarrow \text{CHO} + \text{CO} + \text{CH}_2 \text{OH} \]

\[\text{CHO} + \text{HCHO} \rightarrow \text{CHO} + \text{CO} + \text{CH}_2 \text{OH} \]

\[\text{CHO} + \text{H}_2 \text{O} \rightarrow \text{CHO} + \text{CO} + \text{CH}_2 \text{OH} \]

I = 2,4(2,5)-Me\,(tetrahydroxybutylimidazole)

XI = 4(5)-(2,3-dihydroxypropylimidazole)

XII = 4(5)-(2-hydroxyethylimidazole)

XIII = 2-hydroxymethyl-4(5)-methyimidazole

XIV = 4(5)-methyimidazole
The compounds identified here have all been found in glucose/ammonia systems with or without aeration of the mixture\(^{10}\). In fact although D-Glucosone may undergo some reactions more readily than D-Glucose and other sugars there is no real reason to suppose that the majority of the fifteen compounds isolated in this work would not also be formed in significant quantities in such systems as D-Glucose/ammonia. It may well be, therefore, that the application of the ion exchange technique used here to the reaction mixtures from such systems could yield considerable new information about the composition of these mixtures.

No attempt was made in this work to investigate the non-imidazolic products in the reaction mixture. However the total yields of the isolated imidazoles is less than half the weight of the basic fraction which was investigated. (The total weight of bases was 1 g. and in the aliquot which was investigated the weight was 400 mg. The total yield of isolated imidazoles was 150 mg.). While the recovery of these compounds may not have been absolutely quantitative, losses in recovery could account for only a small portion of this difference in weights. The bulk of this difference must then represent bases which were not detected by the diazotised sulphanilic acid reagent. In fact a considerable quantity of dark coloured material which gave no reaction with diazotised sulphanilic acid was eluted in the first 40 fractions during the ion exchange separation of the base mixture. These were presumably non-imidazolic bases less basic than imidazoles. While no attempt was made to investigate this fraction it was noted that it had been effectively separated from the imidazoles. Investigation of the non-imidazolic bases formed in this and in other systems would appear to be a further possibility for future work.
It has been observed that substitution affects the mode of alkaline degradation of carbohydrates. 3-0-substituted glucoses have been observed to give quite high yields of \(\beta \)-\(\text{D-erythro-2,3,4-trihydroxybutyl} \)imidazole. This was consistent with the fact that 3-0-substituted sugars give metasaccharinates with calcium hydroxide since in both cases the 3-deoxy-2-ketosaldehyde would be required as an intermediate (see fig. 14).

It was proposed to study the reaction of ammonia and 4-0-methyl-\(\text{D-glucose} \) prepared by the method of Bouwong, Lindbergh and Theander. This method utilizes the migration of an acetetyl group from the 4-0- to 6-0-position when methyl-2,3,4-tri-0-acetyl-\(\text{D-glucopyranoside} \) is methylated with methyl iodide and silver oxide in dimethylformamide (see fig. 15). The product from this reaction (4-0-methyl-2,3,6-tri-0-acetyl-1,4-0-methyl-\(\beta \)-\(\text{D-glucopyranoside} \)) yields 4-0-methyl-\(\text{D-glucose} \) on hydrolysis.

It was proposed to prepare the starting material (4-0-methyl-2,3,4-tri-0-acetyl-\(\beta \)-\(\text{D-glucopyranoside} \)) from \(\text{D-glucose} \), forming the \(\beta \)-methyl-\(\text{glucose} \) by acid catalysed methanalysis, blocking the 6-0-position with trityl chloride acetyllating and removing the trityl group. In fact all steps up to the detritylation were successfully carried out. However, attempts to detritylate the 4-0-methyl-2,3,4-tri-0-acetyl-6-0-trityl-\(\beta \)-\(\text{D-glucopyranoside} \) with hydrogen bromide in acetic acid appeared to cause deacetylation as well as detritylation. Because of this the products were generally water soluble and when isolated and subjected to an O-acetyl analysis (by saponification) proved to have only about 10-20% of the expected O-acetyl value for 4-0-methyl-2,3,4-tri-0-acetyl-\(\beta \)-\(\text{D-glucopyranoside} \).
Degradation of 3-O-Methyl-D-glucosa

\[
\begin{align*}
\text{CHO} & \quad \text{CH-O} \\
\text{H-CO}H & \quad \text{CH-O} \\
\text{MeOCH} & \quad \text{H-CO}H \\
\text{H-CO}H & \quad \text{CH}_2\text{OH} \\
\end{align*}
\]

\[
\text{CHO} \quad \text{CO}H
\]

\[
\text{CO}_2\text{H}
\]
4-O-Methylation of Methyl-2,3,4-tri-O-acetyl-β-D-glucopyranoside

Methyl-2,3,4-tri-O-acetyl-β-D-glucopyranoside

\[(\text{Me}_2\text{O}) \downarrow -\text{H}^+\]

Methyl-2,3,6-tri-O-acetyl-4-O-methyl-β-D-glucopyranoside

\[\downarrow \text{MeI}\]

\[\downarrow -\text{I}^-\]
EXPERIMENTAL

\(\beta\)-METHYL-D-GLUCOPYRANOSIDE

\(D(+)\) Glucose (500 g.), Dowex 50W \(H^+\) cation exchange resin (130 g., methanol washed) and methanol (1200 ml.) were placed in a 2 litre flask equipped with a reflux condenser and stirrer. The mixture was refluxed for 24 hours. The reaction mixture was filtered to remove the resin which was washed with methanol (3x100 ml.). The combined filtrate and washings were concentrated to c. 750 ml., allowed to cool overnight and then filtered. The residue (400 g.) which consisted of a mixture of \(\alpha\) and \(\beta\) methyl glucosides was slurried in methanol (60 ml.) at 10°C, and then filtered to give \(\alpha\) methyl-D-glucoside (95 g.) as the residue. This was recrystallised from ethanol (1000 ml.). The recrystallised product had a melting point of 165-7°C and \([\alpha]_D^{20} = +151^\circ\).

The combined mother liquors were then concentrated to a thick syrup (c. 200 ml.). This was dissolved in hot ethanol (500 ml.) and a solution of potassium acetate (200 g.) in hot ethanol (1000 ml.) was added. The mixture was cooled overnight in a refrigerator. The \(\beta\)-methyl-D-glucoside/potassium acetate complex (195 g.) crystallised out and was removed by filtration and washed with ethanol and acetone.

The complex was dissolved in hot methanol (600 ml.) and a solution of D-tartaric acid (110 g.) in hot ethanol (600 ml.) was added. After 1 hour the mixture was filtered through celite 501 to remove the precipitated potassium acid tartrate and the filtrate was concentrated to a thin syrup (c. 150 ml.) and cooled. \(\beta\)-methyl-D-glucopyranoside (60 g.) crystallised out and this was recrystallised from ethanol to give a product (50 g.) of m.p. 108-111°C and \([\alpha]_D^{20} = -34.8\).

\(\beta\)-METHYL-6,6,6-TRIPHENYL-3,4-TRI-O-ACETYL-D-GLUCOPYRANOSIDE

\(\beta\)-Methylglucopyranoside (55 g.) was dissolved in pyridine (200 ml. distilled over \(P_2O_5\)) and triphenylchloromethane (53 g.) was added. The mixture was allowed to stand for 48 hours and then dry pyridine (300 ml.) and acetic anhydride (300 ml.) were added.
After a further 72 hours the mixture was poured onto a mixture of ice and water (7000 ml.) and allowed to attain room temperature. The aqueous phase was removed and washed with diethyl ether (6×750 ml.) The combined ethereal phases were added to the solid material from the reaction mixture which dissolved. The ethereal solution was washed with saturated aqueous sodium bisulphate (3×20 ml.), saturated aqueous sodium bicarbonate (4×20 ml.) and water (1×20 ml.) and then dried over anhydrous sodium sulphate before being evaporated to a syrup which was taken up in methanol (200 ml.).

A precipitate (100 g.) formed which was removed and washed with a small amount of methanol. The solid material was recrystallised from absolute ethanol to give needles (45 g.) of the product m.p. 134-8°C

\[\alpha \] \(^\circ \) = +21.5° (in chloroform).

A sample (0.50 g.) of the material was dissolved in ethanol (20 ml.) and 1.0 M sodium hydroxide (5 ml.).

The solution was heated to boiling point, cooled and titrated with c. 0.1 M hydrochloric acid. A blank was treated similarly. The blank took 43.2 ml. of acid while the sample required 20.4 ml. thence the sample contained 5.3 mol E of ester groups per g. compared with a theoretical value of 5.41 mol E/g.
REFERENCES

1. C.A. Lobry de Bruyn and W. Alberda Van Ekenstein
 Rec. Trav. Chem. 11, 203, (1895)
2. C.A. Lobry de Bruyn and W. Alberda Van Ekenstein
 Rec. Trav. Chem. 16, 262, (1897)
3. J.U. Ref, Ann. 357, 214 (1807)
15. R.L. Whistler and J.R. Beiller, J. A.C.S. 82, 3703 (1960)