Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Novel polyhydroxyalkanoate beads for use as a vaccine against tuberculosis

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Microbiology

at Massey University, Manawatū,

New Zealand.

Patricia Rubio Reyes

2017
Abstract

Tuberculosis was in 1993 declared as a re-emerging disease by the World Health Organization. The only vaccine currently available, BCG, an attenuated strain of *Mycobacterium bovis*, does not protect adults against the pulmonary disease, which is the form of transmission. New vaccine candidates are being developed to provide protection against tuberculosis. Subunit vaccines offer a safer alternative than whole cell preparations and provide the possibility of utilizing only the components that mediate protective immune responses. This thesis describes the production of bacterially derived polyhydroxyalkanoate (PHA) beads for use as a delivery system for *Mycobacterium tuberculosis* reverse vaccinology antigens and immune modulators.

In the first study, the immunogenicity of beads derived from an endotoxin-free host, *Clear coli*, displaying *M. tuberculosis* antigens Rv1626, Rv2032 and Rv1789 was evaluated in mice. Beads displaying Rv1626 were selected for further studies based on the magnitude and specificity of the immune response elicited. In a final study, the immune modulators Cpe30, CS.T3$_{378-395}$ and Flagellin were co-displayed with Rv1626 antigen on beads and the immunogenicity of these functionalised beads evaluated in mice. Vaccinations with Rv1626 beads and the immune modulators Cpe30 and CS. T3$_{378-395}$ induced a Th1/Th17 skewed immune response. These beads were then assessed for their ability to protect mice against aerosol challenge with *Mycobacterium bovis*. Rv1626 beads reduced the bacterial loads in 0.48 log$_{10}$ compared with the negative control group but the inclusion of immune modulators did not enhance the immunogenicity or protection induced by Rv1626 beads.

This study has demonstrated the potential of PHA beads delivering a single reverse vaccinology antigen for protection against tuberculosis infection in mice. While the co-display of immune modulators did not improve the protection induced by the antigen, further studies are needed to determine optimal doses for delivery of immune modulators to enhance protective immunity.
Acknowledgments

I would like to thank my supervisors for their continued guidance throughout my PhD. Professor Bernd Rehm and his enthusiasm about PHA beads got me interested to come to New Zealand. He kept me motivated with exciting projects and encouraged me to achieve more than I thought was my best. Dr. Neil Wedlock always made me question my knowledge, supported my ideas and made sure I was progressing in the right direction. Dr. Natalie Parlane, her work inspired me to undertake this project and in these years she has become my role model. I thank her for her patience in teaching me and for her support.

I would also like to thank Dr. Bryce Buddle for his help and expertise, and Tania Wilson who alleviated the stress of my last experiment.

I would like to give a special thanks to Armando, Mari and Frank, as I would not be here without them. Thanks for their trust in me and imparting me with their passion for science. It was an honour to be part of their group back in Cuba.

I also thank AgResearch, Massey University and the Institute of Fundamental Sciences for the financial contribution to my project and my PhD scholarship.

Coming to New Zealand meant much more to me than leaving home to do my PhD. I want to thank my friends back home, especially Mayra, Carlos and Fidel for their support to make this dream possible. I could not have kept my sanity without my friends in Palmy. Our multi-national, multi-cultural and multi-interest group made me feel at home. Thanks especially to Thursday Dinners, La Familia Pirulí, the AA team and the Cubanitos, so many laughs will not be forgotten. I also thank the Rehm group and Polybatics team for their support, sharing protocols, solutions and space made us become friends after these years.

And last but definitely not least, le agradezco a mi prima Lynnita, con quien hice mis primeros “experimentos” hace casi 20 años en el portal de mi casa, a mi primo Frank, mis tías Laida y Lynne, mi tío Paco y mis abuelas Adelfa y Noelia. Le agradeceré toda mi vida a mi abuelo Luis, que me enseñó que no hay obstáculos mayores que los autoimpuestos y que para siempre estará en mi corazón y guiará mi manera de actuar. Le agradezco a mi hermano José Luis, mi compañero, por hacermes querer ser la persona que él cree que soy y a mis padres Alina y Luis, por enseñarme a no conformarme con menos de lo que puedo lograr y darme tanto amor, gracias a ellos soy quien soy hoy. Saber que ustedes me apoyan ha sido crucial para alcanzar mis metas.
Preface

This thesis is written according to the Graduate Research School regulations for PhD thesis by publications. The list below presents the publication status of each chapter.

Chapter 1A

Basic concepts in immunology, vaccines and tuberculosis.

This chapter was written by Patricia Rubio Reyes as an introductory section of this thesis and is not intended for publication

Chapter 1B

This review was written by all the authors. Patricia Rubio Reyes made a contribution on the section describing biomedical applications of polyhydroxyalkanoate beads.

Chapter 2

All experiments were carried out by Patricia Rubio Reyes except mice vaccinations and processing of mice samples that were co-carried out with Natalie A. Parlane.

Chapter 3

All experiments were carried out by Patricia Rubio Reyes. Natalie A. Parlane helped with mice vaccinations and processing of mice samples and Bryce Buddle assisted with challenge experiment and lungs histology.

Chapter 4

Conclusions

This chapter was written by Patricia Rubio Reyes as conclusions of this thesis and it is not intended for publication

Appendix 4

Patricia Rubio Reyes made a contribution on the preparation of the plasmid pET14:PhaC-SrtA-Rv1626, purification of Rv1626 antigen and in the demonstration of the functionality of PhaC-SrtA-MBP beads and only those parts are submitted for examination. The entire publication is included for a better understanding of the methods used.
Table of contents

Chapter 1: General introduction... 1

Chapter 1A. Basic concepts in immunology, vaccines and tuberculosis. 1

Abbreviations: .. 1

1.1 Host Immune Responses.. 2

1.2 Vaccines .. 4

- Production of recombinant proteins for use as antigens or diagnostics 5
- Types of subunit vaccines ... 7

1.3 Tuberculosis (TB) .. 8

- Pathogenesis .. 9
- Virulence factors ... 10
- Role of the innate immunity in TB .. 12
- Role of the adaptive immunity in TB .. 13
- Prevention and control of TB .. 15
- Development of improved vaccines for TB ... 18
- Animal models in TB vaccine research .. 21
- Challenges in the development of new TB vaccines .. 23

1.4 New approaches to vaccine development ... 24

- Identification of vaccine antigen candidates by reverse vaccinology ... 24
- New adjuvants formulations .. 25
- New vaccine delivery systems ... 27

1.5 References .. 28

Chapter 1B: Self-Assembled Protein-Coated Polyhydroxyalkanoate Beads: Properties and
Biomedical Applications ... 42

1.6 Introduction ... 44
1.7 Pha biosynthesis and self-assembly of PHA Granules ... 47
1.8 Composition and structure of PHA Granules ... 50
1.9 Granule-associated proteins .. 53
1.10 Biomedical applications of PHA-protein Assemblies .. 59
 Protein Production and Purification .. 59
 Diagnostic Applications of Engineered PHA Beads .. 62
 Vaccines for Infectious Diseases .. 65
1.11 Conclusions .. 67
1.12 References ... 69

Thesis Scope ... 78

 Problem statement and approach ... 78
 Aims of the study ... 78
 Specific objectives .. 78

Chapter 2: Immunogenicity of antigens from Mycobacterium tuberculosis self-assembled as particulate vaccines ... 80

2.1 Introduction ... 82
 Generation of plasmids for production of beads displaying Rv antigens 83
 Bacterial strains and growth conditions .. 85
 Bead isolation ... 85
 Bead characterization ... 85
 Vaccine preparation and mice immunization ... 86
 Preparation of mice samples and immunological assays 86
 Statistical analysis ... 87
2.3 Results .. 88
 Construction of plasmids containing mycobacterial rv genes and their ability to mediate polyester bead production in Clear colli .. 88
Chapter 3: Immunological properties and protective efficacy of a single particulate mycobacterial antigen displayed on polyhydroxybutyrate beads

3.1 Introduction

3.2 Materials and Methods

3.3 Results and Discussion

3.4 References
Chapter 4: General discussion ... 128

4.3 References .. 133

Appendix 1: ... 135

Appendix 2: ... 147

Appendix 3: ... 148

Appendix 4: .. 151

Statement of contribution to doctoral thesis containing publications 170
List of Figures

Chapter 1

Figure 1.1 Estimated TB incidence rates in the world in 2015...9
Figure 1.2. A ,PHA inclusions; B, Schematic of PHA granule..44
Figure 1.3. Representative constituents of PHAs...45
Figure 1.4. Biosynthesis and genetics of PHB production...47
Figure 1.5. Schematic of self-assembly of PHA granules...48
Figure 1.6. Proposed covalent catalysis mechanism for PHA synthesis.................................54
Figure 1.7. Topological model and engineering of PHA synthase (Ralstonia eutropha)........49
Figure 1.8. Diagnostic applications of engineered PHA beads...62
Figure 1.9. Development of a new veterinary TB skin test reagent based on TB-antigen displaying PHA beads...65
Figure 1.10. PHA beads displaying vaccine candidate antigens are immunogenic and show properties suitable for applications as particulate subunit vaccines.................................66

Chapter 2

Figure 2.1. SDS-PAGE and Western Blot analysis of proteins attached to various polyester beads isolated from Clear coli..88
Figure 2.2. SEM of various PHA beads..90
Figure 2.3. Cytokine responses of mice splenocytes upon stimulation with PPDB and analysed by cytometric bead array..92
Figure 2.4. IgG1 and IgG2c titers expressed in EC50 values in response to various beads and PPDB analysed by ELISA for each immunized group...94
Chapter 3

Figure 3.1. SDS-PAGE analysis of proteins attached to various polyester beads isolated from *Clear coli* ...115

Figure 3.2. IgG1 and IgG2c titres expressed in EC50 values in response to Rv1626 of mice vaccinated with doses of Rv1626 displayed on beads and Wt beads analysed by ELISA..116

Figure 3.3. Serum IgG1 and IgG2c titres expressed in EC50 values in response to Rv1626 from mice vaccinated with different immune modulators.................................117

Figure 3.4. Cytokine responses of mice splenocytes upon stimulation with soluble recombinant Rv1626 (recRv1626) and analysed by cytometry bead array.......................118

Figure 3.5. IgG1 and IgG2c titres expressed in EC50 values in response to Rv1626 of mice vaccinated with BCG, recRv1626, Rv1626 beads, Cpe30-Rv1626 beads, CS.T3-Rv1626 beads and DDA analysed by ELISA..119

Figure 3.6. Cytokine responses of mice splenocytes upon stimulation with recRv1626 or PPDB..121

Figure 3.7. Histological appearance of lungs from mice after *M. bovis* challenge. Lungs sections were stained with H&E...124
List of tables

Chapter 1
Table 1.1 TB vaccine candidates in clinical stage in the global pipeline..........................19
Table 1.2. Summary of recent developments in PHA-bead-based biomedical applications..59

Chapter 2
Table 2.1. Strains, plasmids and oligonucleotides used...83
Table 2.2. Concentration of proteins in beads...89
Table 2.3 Size distribution of beads in vaccine formulations (μm) as measured by laser scattering...90

Chapter 3
Table 3.1. Strains, plasmids and oligonucleotides used...110
Table 3.2. Vaccine induced protection in lung or spleen after M. bovis aerosol infection...123