Biofilm formation by *B. licheniformis* isolated from whey protein concentrate 80 powder as a potential source of product contamination

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Food Technology

at Massey University, Palmerston North
New Zealand

Siti Norbaizura binti Md Zain

2018
ABSTRACT

This study aimed to examine biofilm formation of *Bacillus licheniformis* isolated from whey protein concentrate 80 (WPC80) as a potential source of contamination in the manufacture of WPC.

Six WPC80 powder samples from one whey processing plant in New Zealand were used in this study. Six *Bacillus* species including (percentage of isolates in brackets) *B. licheniformis* (66%), *Bacillus cereus/Bacillus thuringiensis* (18%), *Bacillus subtilis* (4%), *Bacillus pumilus* (4%), *Paenibacillus glucanolyticus* (2%) and *Lactobacillus plantarum* (6%) were identified using colony morphologies, biochemical tests, species specific PCR and 16S ribosomal DNA gene sequencing and subsequent analysis using the BLAST and Seqmatch databases.

Preliminary screening for biofilm formation by the predominant contaminant, *B. licheniformis* using a microtitre plate assay with the bacteria grown in laboratory medium tryptic soy broth (TSB) at three different temperatures (30°C, 37°C and 55°C) showed most biofilm formation at 37°C with 9/33 isolates forming strong biofilm. In total 13/33 isolates formed strong biofilm at three different temperatures on the polystyrene microtitre plate surface.

Subsequent tests for biofilm formation on stainless steel (SS) showed an increased frequency of biofilm formation with 32/33 strains forming strong biofilm in TSB at 37°C. This demonstrates the limitation of the microtitre plate assay for screening for biofilm formation and suggests that biofilm growth of *B. licheniformis* favours a SS surface.

The attachment and biofilm formation was further investigated using SS coupons and reconstituted whey medium at different concentrations (1%, 5%, and 20%). The best medium for *B. licheniformis* isolates to form biofilm on SS at its best growth temperature (37°C) was 1% reconstituted WPC80. Interestingly, when 1% reconstituted WPC80 was supplemented with lactose and minerals (mainly calcium and magnesium)
to replicate the composition of Mozzarella cheese whey before ultrafiltration (UF), the
B. licheniformis biofilm counts increased at least by one log.

The production of protease enzyme, extracellular polymeric substances (EPS) and nitrate reduction by *B. licheniformis* showed the potential of *B. licheniformis* to influence the quality of dairy products. Biosurfactant production by *B. licheniformis* identified as lichenysin consisting of lipopeptide was detected and this may influence biofilm formation on SS. The inability of the *B. licheniformis* isolates to ferment lactose as their major carbon source was confirmed by lactose fermentation tests and shows that *B. licheniformis* is not ideally suited to a dairy environment. The *B. licheniformis* vegetative cells were found to be heat resistant with a \(< \log_{10}\) reduction at the three temperatures tested; 72°C, 75°C and 80°C during 15 s, 30 s and 60 s heating intervals.

In order to thrive in a dairy system, synergistic interactions with other microflora were investigated as a possible mechanism to use lactose that has been broken down by other microflora. *Lactobacillus plantarum* (*L. plantarum*), another isolate from the WPC80 samples, has the ability to produce glucose and galactose from lactose. This was grown with each of two *B. licheniformis* isolates (E30C11 and F30C02) with different abilities to form biofilm. Interestingly this did not enhance the growth of *B. licheniformis* suggesting that another carbon source, most likely whey protein, must provide the energy source for this bacterium in a whey environment.

A review of the WPC80 processing plant showed the UF membranes had the largest surface area (3500 – 7500 m²), providing most potential for biofilm growth. However, UF was run at 10°C, too low for the growth of *B. licheniformis* which has a minimum growth temperature of 20°C. The hypothesis that sections of the processing plant before the UF step are the sites for *B. licheniformis* biofilm growth was supported by analysing several samples from the raw whey balance tank, clarifier, thermaliser and separator where 7 *B. licheniformis* strains were isolated. This shows that *B. licheniformis* is present at several early stages of WPC processing, with the most likely areas for growth being the certain sections of the clarifier, thermaliser and the separator where temperatures are close to the best growth temperature for this bacterium (37°C).
Preventing *B. licheniformis* contamination of WPC needs to focus on adjusting the conditions in these sections of the processing plant to limit biofilm growth.

Keywords: dairy, *Bacillus* species, *L. plantarum*, lichenysin, stainless steel, membrane processing plant.
FRONTISPIECE Biofilm of *Bacillus licheniformis* embedded in extracellular polymeric substances on 304 grade stainless steel after 24 h incubation.
LIST OF PUBLICATIONS

This work has been published in part in the following publications:

LIST OF PRESENTATIONS

This work has been presented in part in the following presentations:

Oral Presentations:

1. **Siti Norbaizura Md Zain**, *The role of biofilm development on ultrafiltration membranes in the contamination of whey products*. IFNHH Food Division Symposium, Massey University, Palmerston North, New Zealand, 15 November 2013.

2. **Siti Norbaizura Md Zain**, *Identification of bacteria isolated from whey powder*. IFNHH Food Division Symposium, Massey University, Palmerston North, New Zealand, 14 November 2014.

Poster Presentations:

2. **Siti Norbaizura Md Zain**, Mandy Kee and Steve Flint. *Isolation and identification of Paenibacillus species from New Zealand dairy product.* The New Zealand Institute of Food Science and Technology Conference, Rotorua, 4 - 7 July 2016.
ACKNOWLEDGEMENTS

I am indebted to my chief supervisor, Professor Steve Flint who was also my supervisor during my Master’s study at Massey University in 2008. He was a mentor, role model and counsellor for me during my 4 years of PhD study. His encouragement and guidance have become the backbone of my persistence to excel in my study. My second supervisor, Mr. Rod Bennett was willing to sacrifice his time and thought in this once in a life time process. His expertise in cheese making and whey processing technologies enabled me to understand the process and resolve the questions that arose during this study. I would like to thank my third supervisor, Dr. Tay Hong Soon, for contributing his expertise in microbiology in order to improve the content of this study.

Special thanks to Mr. Eddie Smolinski, Microbiologist at Fonterra, Clandeboye for providing me with the samples, being my industrial mentor and sharing his dairy industrial/process knowledge.

I am grateful to the Universiti Teknologi MARA (UiTM) Malaysia and Ministry of Higher Education (MOHE) of Government Malaysia for providing the scholarship to enable to study at Massey University.

I wish to thank Anne Marie Jackson, Julia Good, Kylie Evans, John Edwards and John Sykes from SEAT for providing the materials that I needed and equipment in the Micro suite lab and also for providing the facilities which enabled this study.

Special thanks to Jordan Taylor and Niki Murray from Manawatu Microscopy Imaging Centre who provided their skills and expertise in taking images using Scanning electron and Transmission electron microscopy. With their help, one of my TEM photos (Paenibacillus glucanolyticus spore) was selected as the “Photo of the Day” by American Society for Microbiology (ASM) on their Facebook page on 7th March 2015.

Thanks to Shampa De, Human Nutrition Lab for helping me with the Nanodrop 100 Spectrophotometer instrument.
I am blessed with the companionship of my biofilms research team mates; Elham Khanipour, Haoran Wang, Michael Dixon, Jessica Nowak, Shuyan Wu, Dong Zhang and Emmanuel Kyere who made this journey fun and not a lonely path for me.

To my office mates, Nikhila Mary Vijay and Marina Marinae, thank you so much for your encouragement and company during my ups and down.

Not to forget my family, my husband Mohamed Ridzuan, my children; Rifqi, Ariq, Mya and Luqman who were always encouraging me to strive through this tough and meaningful journey. Last but not least, to my mum, Norhayati Hamid, my brother Mohd Nor Azrin bin Md Zain and sister, Siti Nurul Ashikin binti Md Zain for encouraging me to complete my PhD journey. This study would not have succeeded without their understanding and support.
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>5</td>
</tr>
<tr>
<td>LIST OF PRESENTATIONS</td>
<td>6</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>8</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>10</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>15</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>17</td>
</tr>
</tbody>
</table>

CHAPTER ONE

1.0 INTRODUCTION | 19 |
1.1 BACKGROUND | 20 |
1.2 RESEARCH QUESTIONS | 20 |
1.3 HYPOTHESES | 21 |
1.4 OBJECTIVES OF THE STUDY | 21 |
1.5 SIGNIFICANCE OF RESEARCH | 22 |

CHAPTER TWO

2.0 LITERATURE REVIEW | 23 |
2.1 MICROORGANISMS IN THE DAIRY INDUSTRY | 24 |
 2.1.1 Thermophilic, mesophilic and psychophilic bacteria | 24 |
2.2 BIOFILM | 29 |
 2.2.1 Factors affecting biofilm formation | 30 |
 2.2.2 Controlling biofilm formation | 35 |
2.3 WHEY | 38 |
 2.3.1 Whey manufacturing process | 41 |
CHAPTER THREE

3.0 ISOLATION AND IDENTIFICATION OF MICROORGANISMS FROM WPC80 POWDER

3.1 INTRODUCTION

3.2 MATERIALS AND METHODS

3.2.1 Source of samples

3.2.2 Isolation of bacteria

3.2.3 Phenotypic characterisation of isolates

3.2.4 Identification by PCR

3.2.5 Partial 16S rDNA gene sequencing

3.3 RESULTS

3.3.1 Isolation of bacteria

3.3.2 Phenotypic characterisation of isolates

3.3.3 Identification by PCR

3.3.4 Partial 16S rDNA gene sequencing

3.4 DISCUSSION

3.5 CONCLUSIONS

CHAPTER FOUR

4.0 ATTACHMENT AND BIOFILM FORMATION BY B. licheniformis

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS

4.2.1 Source of strains

4.2.2 Attachment and biofilm screening
4.2.3 Biofilm formation on SS using three different concentrations of reconstituted whey

4.2.4 Biofilm formation on SS using three different media

4.2.5 Biofilm formation on SS with effects of individual cations

4.2.6 Statistical analysis

4.3 RESULTS

4.3.1 Attachment and biofilm study of B. licheniformis isolates

4.4 DISCUSSION

4.5 CONCLUSIONS

CHAPTER FIVE

5.0 CHARACTERISATION OF B. licheniformis

5.1 INTRODUCTION

5.2 MATERIALS AND METHODS

5.2.1 Growth at 10°C

5.2.2 Lactose fermentation

5.2.3 Protease and lipase enzyme production

5.2.4 Nitrate conversion

5.2.5 Haemolysis on Columbia sheep blood agar

5.2.6 Lichenysin synthetase gene (Lch AA)

5.2.7 Pellicle formation and Congo red binding assay

5.2.8 Heat resistance study at 72°C, 75°C and 80°C

5.3 RESULTS

5.3.1 Lactose fermentation, protease, lipase, nitrate conversion, Columbia sheep blood agar haemolysis and lichenysin synthetase gene A
5.3.2 Pellicle formation and Congo red binding assay 100
5.3.3 Heat resistance study at 72°C, 75°C and 80°C 102

5.4 DISCUSSION 103
5.5 CONCLUSIONS 107

CHAPTER SIX

6.0 BIOFILM AND SPORE FORMATION BY B. licheniformis IN SINGLE AND CO-CULTURE WITH L. plantarum IN 1% RWPC80 WITH LACTOSE AND MINERALS 108

6.1 INTRODUCTION 109

6.2 MATERIALS AND METHODS 110

6.2.1 Source of the isolates 110

6.2.2 B. licheniformis E30C11 and F30C02 biofilm formation at 1,2,4,8, 12 and 24 h in 1% RWPC80 with lactose and minerals at 37°C 110

6.2.3 Co-culture study between B. licheniformis (E30C11 and F30C02) with L. plantarum biofilm growth at 4, 8, 12 and 24 h in 1% RWPC80 with lactose and minerals 111

6.2.4 Spore formation by B. licheniformis within biofilm in single and co-culture population 111

6.3 RESULTS 112

6.3.1 B. licheniformis E30C11 and F30C02 biofilm growth at 1, 2, 4, 8, 12 and 24 h in 1% RWPC80 with lactose and minerals at 37°C 112

6.3.2 Biofilm of co-culture (B. licheniformis and L. plantarum) at 4, 8, 12 and 24 h in 1% RWPC80 with lactose and minerals at 37°C 113

6.3.3 Spore formation within a co-culture population in a biofilm 115

6.4 DISCUSSION 116

6.5 CONCLUSIONS 118
CHAPTER SEVEN
7.0 THE POTENTIAL SOURCE OF B. licheniformis CONTAMINATION DURING MOZZARELLA WPC80 MANUFACTURE 119
7.1 INTRODUCTION 120
7.2 MATERIALS AND METHODS 121
 7.2.1 Source of strains 121
 7.2.2 Liquid whey samples from pre-UF sites 121
 7.2.3 Isolation, identification, characterisation and biofilm formation of B. licheniformis isolates from pre-UF liquid whey samples 121
7.3 RESULTS 122
 7.3.1 Isolation, identification and characterisation of B. licheniformis from pre-UF liquid whey samples 122
 7.3.2 Biofilm formation by pre-UF B. licheniformis isolates on plastic and SS 125
7.4 DISCUSSION 128
7.5 CONCLUSIONS 130

CHAPTER EIGHT
8.0 FINAL DISCUSSION AND RECOMMENDATIONS 131
8.1 DISCUSSION 132
8.2 CONCLUSIONS 138
8.3 HIGHLIGHTS OF THE STUDY 138
8.4 FUTURE RECOMMENDATIONS 139

REFERENCES 140
APPENDICES 152
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Image of SS on contact with whey for 24 h</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Standard whey content before UF process</td>
<td>39</td>
</tr>
<tr>
<td>2.3</td>
<td>The use of whey protein in the food industry</td>
<td>40</td>
</tr>
<tr>
<td>2.4</td>
<td>Flowchart of WPC80 manufacture</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Morphologies of B. licheniformis cells</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>B. licheniformis colony morphology on MPCA</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>SEM image of B. licheniformis cell</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>SEM image of P. glucanolyticus cell</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>TEM image of P. glucanolyticus spore</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>B. licheniformis attachment at 30°C</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>B. licheniformis attachment at 55°C</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>B. licheniformis attachment at 30°C, 37°C and 55°C</td>
<td>79</td>
</tr>
<tr>
<td>4.4</td>
<td>Graph of 3 different concentrations of RWPC80</td>
<td>81</td>
</tr>
<tr>
<td>4.5</td>
<td>Biofilm formation of 33 B. licheniformis on SS</td>
<td>82</td>
</tr>
<tr>
<td>4.6</td>
<td>B. licheniformis biofilm formation with cations effect (Ca$^{2+}$ and Mg$^{2+}$)</td>
<td>84</td>
</tr>
</tbody>
</table>
5.1 Pellicles formation of *B. licheniformis* in TSB broth

5.2 The percentage of Congo red bound for EPS production

5.3 The heat resistance of *B. licheniformis* vegetative cells at 72°C

5.4 The heat resistance of *B. licheniformis* vegetative cells at 75°C

5.5 The heat resistance of *B. licheniformis* vegetative cells at 80°C

6.1 Biofilm formation of individual *B. licheniformis* strain of E30C11 and F30C02

6.2 Biofilm formation of co-culture *B. licheniformis* and *L. plantarum* on MPCA

6.3 Biofilm formation of *L. plantarum* on MRSA

7.1 Phenotypic characterisation of pre-UF *B. licheniformis* isolates

7.2 Biofilm formation of 7 pre-UF *B. licheniformis* isolates based on microtitre plate assay

7.3 Biofilm formations of 7 pre-UF *B. licheniformis* isolates on SS using 3 different media

7.4 The diagram of WPC80 processing by one dairy manufacturing plant in NZ
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 The effects of substratum</td>
<td>35</td>
</tr>
<tr>
<td>2.2 Description of biosurfactant</td>
<td>37</td>
</tr>
<tr>
<td>2.3 Different type of filtration process</td>
<td>43</td>
</tr>
<tr>
<td>3.1 Six Mozzarella WPC80 powder samples</td>
<td>50</td>
</tr>
<tr>
<td>3.2 Biochemical tests on Bacillus species</td>
<td>51</td>
</tr>
<tr>
<td>3.3 Microbial load at 30°C</td>
<td>53</td>
</tr>
<tr>
<td>3.4 Microbial load at 55°C</td>
<td>54</td>
</tr>
<tr>
<td>3.5 Mesophilic spore counts</td>
<td>54</td>
</tr>
<tr>
<td>3.6 List of entire bacteria isolated from each 6 of WPC80 samples</td>
<td>55</td>
</tr>
<tr>
<td>3.7 Biochemical test results</td>
<td>59</td>
</tr>
<tr>
<td>3.8 API 50CHB test results</td>
<td>60</td>
</tr>
<tr>
<td>3.9 Summary of isolates from WPC80 powder samples</td>
<td>62</td>
</tr>
<tr>
<td>4.1 Mineral contents of the artificial whey permeate</td>
<td>74</td>
</tr>
<tr>
<td>4.2 Biofilm categories determined by O.D absorbance at 570 nm</td>
<td>80</td>
</tr>
<tr>
<td>4.3 Summary of frequency of B. licheniformis biofilm</td>
<td>80</td>
</tr>
</tbody>
</table>
5.1 Results for *B. licheniformis* characterisation 99

6.1 Summary of two isolated *B. licheniformis* strains 110

7.1 Liquid whey samples from pre-UF 121

7.2 Summary of *B. licheniformis* characteristics 124