Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.
SEED PRODUCTION STUDIES IN RUZI GRASS

(Brachiaria ruziziensis Germain and Everard)

A thesis presented in partial fulfilment of the requirement for the

Degree of Master of Agricultural Science

in Seed Technology, at Massey University, Palmerston North, New Zealand

Narongrit Wongsuwan

1994
ABSTRACT

SEED PRODUCTION STUDIES IN RUZI GRASS

(*Brachiaria ruziziensis* Germain and Everard).

The effect of photoperiod on seed production in Ruzi grass (*Brachiaria ruziziensis*) was investigated in order to gain a better understanding of reproductive behaviour. The experiment was conducted in a controlled temperature glasshouse which provided day and night temperatures of 25°C±5. Plants were raised from seed obtained from Thailand. During the early stage of growth (10 days after germination) Ruzi grass plants were exposed to controlled photoperiods of 14, 13, 12 or 11 hours for a period of 30 days followed by exposure to the decreasing natural daylength occurring in the New Zealand autumn.

The results of this experiment showed there was no "trigger" daylength requirement for reproductive initiation, since Ruzi grass was able to produce flowers in all daylength treatments (14, 13, 12 and 11 h). However, the data did show that the shorter the daylength, the greater the seed yield (i.e. potential seed yield was greatest at 11 h). Accordingly, the results confirm the conclusion of Dirven *et al.*, (1979), that Ruzi grass is a quantitative short-day plant.

The results of this study appear to contradict the reproductive behaviour of Ruzi grass in Thailand, where a critical daylength of approximately 12½ h to trigger reproductive development seems necessary. These results suggest that it is
theoretically possible for Ruzi grass to produce seed over the entire range of
daylengths which occur in Thailand, as recorded in this experiment. The fact that
this does not occur is possibly due to a juvenility problem, as the plants are only 4-6
weeks old after the onset of the rainy season in late April/early May when the
daylength is approximately 13 h, and due to drought conditions which occur in
December under the shortest daylength of approximately 11½ h. However, this
needs to be confirmed, possibly by conducting trials in Thailand under an 11½ h
daylight with irrigation to overcome lack of water.

Daylength strongly affected inflorescence numbers and inflorescence
components. As daylength declined the number of racemes/inflorescence arising
from basal tillers tended to decrease. This was accompanied by a corresponding
increase in aerial tiller numbers. Floret number/raceme was a more important factor
influencing seed yield than raceme number/inflorescence.

Basal reproductive and vegetative tiller numbers were not significantly
affected by daylength, although aerial reproductive tillers did increase as daylength
declined. Total tiller numbers were low, even although they continued to show a
steady increase through to harvest, when approximately 30% were reproductive and
70% vegetative. Ruzi grass produced more inflorescences from aerial tillers than
from basal tillers.

The morphological changes occurring during the changeover from vegetative
to reproductive development were divided into five stages. The time required from
early raceme initiation in the "double ridge" stage to inflorescence exsertion was 22 days.

It appears that Ruzi grass does not have a characteristically prolonged anthesis within an individual inflorescence, as all anthers were exserted within 1-2 weeks. Despite this, approximately 80% of florets within an inflorescence completed anthesis in 7 days. Within individual inflorescences, anthesis began in the middle region of the uppermost raceme and subsequently extended to the upper and lower raceme(s). Ruzi grass exhibited a prolonged head emergence period of about 3 months which was highly variable both within and between individual plants.

Seed development studies suggested that although some variation in the extent and timing of seed shedding may occur between plants, harvesting should not be carried out before 20-25 days after anthesis (maximum viability), and should not be delayed longer than 30 days after anthesis (maximum dry weight).
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to, and gratefully acknowledge, a number of people who have contributed to the completion of this thesis.

Professor Murray J. Hill, my chief supervisor, for his excellent supervision, willing helpfulness in many ways, understanding, and most importantly his encouragement throughout my study. This has been highly appreciated.

Associate Professor John G. Hampton, my co-supervisor, for his patience in discussions, constructive criticism, and especially the time he took to read and correct my manuscript.

Professor B.R. Watkin (Professor Emeritus), whose support and encouragement provided me with an opportunity to study in New Zealand, and for his constructive and helpful comments during the research and writing of my thesis. I owe him a great debt both as a very tough boss when I was working in Thailand, and also as my New Zealand father when I was studying in New Zealand.

My sincere thanks are also extended to:

Dr. Peter Coolbear, for his helpful advice and criticism, especially during the proposal presentation and seminars.

Mrs. Karen Hill, for her valuable advice in plant dissection and laboratory techniques.

Mr. Craig McGill, for his advice in the use of statistical analysis and his computer knowledge.

Mr. Robert Southward, for his technical help in the glasshouse.
Mrs. Colette Gwynne, for provision of facilities and assistance in so many ways.

Mr. Doug Hopcroft, of the Hort Research CRI, for provision of facilities and technical assistance in the preparation of SEM photographs.

My Thai friends and all post-graduate students at the Seed Technology Centre, for their friendship, humour, help and for making my stay in New Zealand a pleasant one.

The New Zealand Ministry of External Relations and Trade for financing my study in New Zealand.

The Dairy Farming Promotion Organisation of Thailand, for giving me an opportunity to study in New Zealand.

Finally, I would like to express my gratitude to my parents, brothers, sisters and also to my girlfriend for their love, understanding and encouragement. To them, I dedicate this thesis.

New Zealand, April 1994
Mr. Narongrit Wongsuwan
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiii</td>
</tr>
<tr>
<td>GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>GENERAL DESCRIPTION OF THE SPECIES</td>
<td>2</td>
</tr>
<tr>
<td>CHAPTER ONE</td>
<td>8</td>
</tr>
<tr>
<td>EFFECT OF PHOTOPERIOD ON SEED PRODUCTION IN RUZI GRASS</td>
<td>8</td>
</tr>
<tr>
<td>1.1. INTRODUCTION</td>
<td>8</td>
</tr>
<tr>
<td>1.2. LITERATURE REVIEW</td>
<td>10</td>
</tr>
<tr>
<td>1.3. MATERIALS AND METHODS</td>
<td>15</td>
</tr>
<tr>
<td>1.4. RESULTS</td>
<td>22</td>
</tr>
<tr>
<td>1.4.1. Time to floral initiation and onset of anthesis</td>
<td>22</td>
</tr>
<tr>
<td>1.4.2. Tiller numbers</td>
<td>24</td>
</tr>
</tbody>
</table>
1.4.3. Raceme number per inflorescence

and floret number per raceme 27

1.4.4. Potential seed yield 27

1.5. DISCUSSION . 31

CHAPTER TWO REPRODUCTIVE MORPHOLOGICAL CHANGES IN
RUZI GRASS 36

2.1. INTRODUCTION 36

2.2. LITERATURE REVIEW 36

2.3. MATERIALS AND METHODS 40

2.4. RESULTS . 40

2.5. DISCUSSION . 54

CHAPTER THREE FLOWERING PATTERN, FLORET FERTILITY
AND SEED SHEDDING IN RUZI GRASS 56

3.1. INTRODUCTION 56

3.2. LITERATURE REVIEW 56

3.3. MATERIALS AND METHODS 59

3.4. RESULTS 61

3.4.1. The pattern of first anthesis 61

3.4.2. Anthesis pattern . 61

3.4.3. The duration of flowering 61

3.4.4. Fertile florets, sterile florets

and florets shed . 66
3.5. DISCUSSION 70

CHAPTER FOUR SEED DEVELOPMENT IN RUZI GRASS 75

4.1. INTRODUCTION 75
4.2. LITERATURE REVIEW 76
4.3. MATERIALS AND METHODS 81
4.4. RESULTS 83
 4.4.1. Seed fresh weight, dry weight
 and moisture content 83
 4.4.2. Viability 83
 4.4.3. Germination 83
4.5. DISCUSSION 86

CHAPTER FIVE GENERAL DISCUSSION, LIMITATIONS AND
CONCLUSIONS 90

5.1. GENERAL DISCUSSION 90
5.2. LIMITATIONS OF THIS STUDY 97
5.3. CONCLUSIONS 99

REFERENCES 102

APPENDICES 114
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Timing to control daylength exposure of Ruzi grass plants as required in each treatment for 30 days before exposure to natural photoperiod (Wellington NZ. 1992 with times corrected for daylight saving)</td>
</tr>
<tr>
<td>1.2.</td>
<td>Effect of daylength on days from sowing to floral initiation and date of first anthesis in Ruzi grass</td>
</tr>
<tr>
<td>1.3.</td>
<td>The effect of daylength on the number of vegetative and reproductive (basal) tillers produced per plant at final harvest (60 days after anthesis)</td>
</tr>
<tr>
<td>1.4.</td>
<td>Tillers per plant every 30 days from sowing to harvest in Ruzi grass grown under different daylengths</td>
</tr>
<tr>
<td>1.5.</td>
<td>The effect of daylength on raceme numbers per inflorescence, and floret numbers per raceme at final harvest (60 days after anthesis)</td>
</tr>
<tr>
<td>1.6.</td>
<td>Effects of daylength on Ruzi grass seed yield and its components at final harvest (60 days after anthesis)</td>
</tr>
<tr>
<td>3.1.</td>
<td>Days from first anthesis until all anthers per raceme were exserted over all inflorescence types (1-5 racemes per inflorescence)</td>
</tr>
<tr>
<td>3.2.</td>
<td>Number of days from first anthesis in the first raceme to first anthesis in the second and subsequent racemes on individual inflorescences</td>
</tr>
<tr>
<td>3.3.</td>
<td>Floret numbers, percentage fertile florets, percentage sterile florets and percentage florets shed at harvest 30 days after first anthesis in inflorescences bearing different numbers of racemes</td>
</tr>
<tr>
<td>4.1.</td>
<td>Fresh and dry seed weights, seed moisture content, seed viability and seed germination in Ruzi grass, 10, 15, 20, 25, 30 and 40 days after first anthesis</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Mean daylength range in Thailand</td>
<td>9</td>
</tr>
<tr>
<td>1.2. The dates of exposure of Ruzi grass plants to natural photoperiod (Wellington NZ, 1992)</td>
<td>17</td>
</tr>
<tr>
<td>2.1. Floral biology of Ruzi grass (a) single floret closed; (b) single floret open; (c) floral parts; (d) spikelet; (e) diagram of spikelet</td>
<td>55</td>
</tr>
<tr>
<td>3.1. The position of the first spikelet which exerted anthers on the first raceme in different types of inflorescences (a) 1 raceme, (b) 2 racemes, (c) 3 racemes, (d) 4 racemes and (e) 5 racemes; (Line at 50 indicates half way between the uppermost and lowermost raceme)</td>
<td>62</td>
</tr>
<tr>
<td>3.2. The position of first anthesis on the first raceme over all inflorescence types (1-5 racemes per inflorescence)</td>
<td>63</td>
</tr>
<tr>
<td>3.3. The percentage of spikelets with anthers exerted from first anthesis until all anthers per raceme were exerted in inflorescences containing different numbers of racemes (a) 1 raceme, (b) 2 racemes, (c) 3 racemes, (d) 4 racemes (e) 5 racemes</td>
<td>65</td>
</tr>
<tr>
<td>4.1. Fresh weight and dry weight of Ruzi grass seed during development from 10-40 days after first anthesis (--- estimated seed weight before data recorded)</td>
<td>85</td>
</tr>
<tr>
<td>PLATE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>1.1.</td>
<td>Tiller origin (a) Basal tillers, and (b) Aerial tillers</td>
</tr>
<tr>
<td>2.1.</td>
<td>Vegetative apex with leaf primordia, stage 1, SEM x 650</td>
</tr>
<tr>
<td>2.2.</td>
<td>The transition from a vegetative to a floral apex showing the double ridge at the base and early raceme initiation, stage 2, SEM x 250</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Floret initiation (FI), stage 3, (a) and (b) early floret initiation</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Floret initiation (FI), stage 3, (a), (b) and (c) advanced floret initiation</td>
</tr>
<tr>
<td>2.4.</td>
<td>Floret differentiation (FD), stage 4, 5 racemes, SEM x 50</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Floret differentiation (FD), stage 4, (a), (b) and (c) early floret differentiation (close-up of floret with glumes)</td>
</tr>
<tr>
<td>2.4.1. (cont.)</td>
<td>Floret differentiation (FD), stage 4, (d), (e) and (f) early floret differentiation (close-up of floret with glumes and lemma (l) development)</td>
</tr>
<tr>
<td>2.4.2.</td>
<td>Floret differentiation (FD), stage 4, advanced floret differentiation, 8 racemes, SEM x 16</td>
</tr>
<tr>
<td>2.4.2.1.</td>
<td>Floret differentiation (FD), stage 4, (a), (b) and (c) advanced floret differentiation showing (a) palea (P), upper floret (UP) and lower floret (LF), (b) ovary (O) and stamens (ST)</td>
</tr>
<tr>
<td>2.5.</td>
<td>Brachiaria ruziziensis Inflorescence Exsertion (IE), stage 5</td>
</tr>
</tbody>
</table>
3.1. First anthesis in the middle region of the raceme, for (a) 1 raceme type, (b) 2 raceme type .. 64

3.2. Example of inflorescence with (a) 3 racemes/inflorescence, and (b) 5 racemes/inflorescence 71

4.1. Florets containing a caryopsis (seed) (light brown); florets without a caryopsis (green) 87
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Mean temperature at Massey University (1971-1980) and solar radiation at Ohakea (1940-1980)</td>
<td>114</td>
</tr>
<tr>
<td>1.2. Total monthly rainfall in Thailand (1979-1980)</td>
<td>115</td>
</tr>
<tr>
<td>3.1. The number of florets with anthers exserted per day for inflorescences with 2 racemes</td>
<td>116</td>
</tr>
<tr>
<td>3.2. The number of florets with anthers exserted per day for inflorescences with 3 racemes</td>
<td>117</td>
</tr>
<tr>
<td>3.3. The number of florets with anthers exserted per day for inflorescences with 4 racemes</td>
<td>118</td>
</tr>
<tr>
<td>3.4. The number of florets with anthers exserted per day for inflorescences with 5 racemes</td>
<td>119</td>
</tr>
<tr>
<td>3.5. Floret numbers, percentage fertile florets, percentage sterile florets and percentage florets shed at harvest 30 days after first anthesis in inflorescences bearing 1 raceme</td>
<td>120</td>
</tr>
<tr>
<td>3.6. Floret numbers, percentage fertile florets, percentage sterile florets and percentage florets shed at harvest 30 days after first anthesis in inflorescences bearing 2 racemes</td>
<td>121</td>
</tr>
<tr>
<td>3.7. Floret numbers, percentage fertile florets, percentage sterile florets and percentage florets shed at harvest 30 days after first anthesis in inflorescences bearing 3 racemes</td>
<td>122</td>
</tr>
<tr>
<td>3.8. Floret numbers, percentage fertile florets, percentage sterile florets and percentage florets shed at harvest 30 days after first anthesis in inflorescences bearing 4 racemes</td>
<td>123</td>
</tr>
<tr>
<td>3.9. Floret numbers, percentage fertile florets, percentage sterile florets and percentage florets shed at harvest 30 days after first anthesis in inflorescences bearing 5 racemes</td>
<td>124</td>
</tr>
</tbody>
</table>
Ruzi grass (*Brachiaria ruziziensis*) is now the dominant pasture grass used in Thailand for beef, and especially for dairy production. The area sown has increased rapidly over the past decade, due to its ease of establishment, its high quality forage and its relatively high seed yield. However, although seed production has increased from 18 tonnes in 1983 to 466 tonnes in 1991 (Phaikeaw *et al.*, 1993), demand continues to outstrip supply, and it is therefore important to promote and encourage Thai farmers to produce adequate quantities of high quality seed. Currently, around 2700 farmers are involved in seed production programmes under government schemes with each contracted to grow 0.32 ha of Ruzi grass for seed at a guaranteed price of US$ 2/kg (Phaikaew *et al.*, 1993). Accordingly, it is essential that growers improve their understanding of this species in terms of development, crop management, environmental response, and factors affecting seed yield, in order to increase and improve the yield and quality of Ruzi seed in the future.

The present study on Ruzi grass was divided into four sections, as follows:

1. The effect of photoperiod on seed production
2. Morphological changes from the vegetative to the reproductive stage
3. Flowering pattern, floret fertility and seed shedding
4. Seed development
GENERAL DESCRIPTION OF THE SPECIES

Brachiaria ruziziensis Germain and Everard is synonymous with *Brachiaria eminii* Mez (Skerman and Riveros, 1990) and has been renamed *Brachiaria decumbens* var. ruziziensis comb. nov. by Ndabaneze (1989). However, *Brachiaria ruziziensis* is still the most widely used botanical name.

The species is known under various common names depending on the countries in which it is grown. These include: Kennedy ruzi grass (Australia), Congo Signal grass (Africa), prostrate Signal grass (Kenya), and Ruzi grass (Thailand). The names 'Ruzi grass' and *Brachiaria ruziziensis* are used in this study.

Ruzi grass originated from the Lake Edward and Lake Kivu districts of Rwanda, Burundi and the Ruzizi plains in Zaire but is now widely distributed throughout the tropics (Skerman and Riveros, 1990). It is regarded as a pioneer species of cleared rain forests in Africa, providing an important grazing species in the wetter tropics (Skerman and Riveros, 1990).

Descriptions of the morphological features of Ruzi grass have been made by Bogdan (1977), Whiteman (1980) and Skerman and Riveros (1990). It is a spreading perennial with short rhizomes, similar in habit to Para grass (*Brachiaria mutica* (Fork.) Stapf). The inflorescence consists of dense and spike-like racemes. The spikelets are all sessile and close together, the rachis of the racemes winged, broad and over 3 mm wide. The lower glume is under half the length of the spikelet.
which is hairy (Harker and Napper, 1960). It has softer leaves than *Brachiaria brizantha* and is leafier than *Setaria sphacelata* (Schum) Stapf and Hubbard (Deinum and Dirven, 1976).

Many characteristics of Ruzi grass are similar to *B. decumbens* (Humphreys and Riveros, 1986). However, one of the obvious differences between the two species is the mode of reproduction, *B. decumbens* being tetraploid and an obligate apomictic (Humphreys and Riveros, 1986) while *B. ruziziensis* is a diploid with 18 chromosomes and cross-fertilization occurs at a very high frequency under conditions of natural open pollination (Ferguson and Crowder, 1974). Seed-set averages 21 and 0.4% for open-pollination and self-pollination respectively, suggesting the operation of a self-incompatibility mechanism. Similarly, CIAT (1972) reports that *B. ruziziensis* clones when cross-pollinated, averaged 30% of spikelets with a caryopsis, but only 0.5% when selfed. Skerman and Riveros (1990) and Bogdan (1959a, 1965a), state that Ruzi appears to be apomictic.

Being a tropical species, its season of growth is during the rainy season in the so-called summer or warmer period of the year, with an optimum temperature of 33°C day and 28°C night (Deinum and Dirven, 1972). Plant growth is stimulated by increasing temperature which leads to lower protein content and lower digestibility of organic matter in leaves and stems. Temperature also has a direct negative effect on stem digestibility, apart from its effect on stem development (Deinum and Dirven, 1976). Low temperatures, as found by Ludlow (1976), adversely affect the growth rate of this species.
Rattray (1973) reported that Ruzi grew successfully in an altitude range of 1000 - 2000 m above sea level in Kenya and up to 1200 m in Panama. It is most productive under an average annual rainfall of about 1000 mm and can endure hot dry spells (Skerman and Riveros, 1990), and hence is described as drought resistant. It will not, however, withstand flooding or frost.

To achieve high dry matter production Ruzi grass requires a soil of relatively high fertility and good drainage, but performs well on a wide range of soil types. It will tolerate acid soils and also responds well to nitrogen, either from fertiliser or legumes, but has a higher requirement than Guinea grass (Mellor et al., 1973b). Yonken et al., (1986) showed that application of phosphorus did not lead to improved yield of Ruzi grass on feratic soils but suggested that about 50 units of P$_2$O$_5$/ha would seem necessary to maintain production on non-feratic soils. On the Adamawa plateau of the Cameroons, Pamo and Pieper (1989) showed that nitrogen fertilization in combination with phosphorus and potassium increased the productivity of Ruzi grass and recommended that a fertilizer rate of between 60 and 90 units of nitrogen/ha be applied after each cutting, with a single application of 100 units of triple superphosphate and potassium sulphate/ha at the beginning of each rainy season. This response was obtained under a 30 day cutting frequency.

Associations with legumes such as Centrosemaphaceata (Mellor et al., 1973a), Stylosanthes humilis (Falvey, 1976), C. pubescens and Macroptilium atropurpureum (Nitis et al., 1976) have all proved successful. However, Ruzi was grouped into the least shade-tolerant species along with Setaria spachelata.
cv. Kazungula, *B. decumbens* cv. Transvala. These compare with *P. maximum* cv. Common, *P. maximum* cv. Tanganyika, *Digitaria setivalva* and *B. decumbens* which are regarded as more shade-tolerant grasses (Wong et al., 1985).

Seed dormancy is generally high in freshly harvested seed, because of an impermeable seed coat (Davidson, 1966; McLean and Grof, 1968). The period of seed dormancy is normally 4 to 6 months, but can extend to 18 months if the seed is stored at low temperature (Devahuti and Sirisomparn, 1985). Seed dormancy can be broken by treating the seed with concentrated sulphuric acid for 15 minutes (Barnard, 1969) which can increase germination from 17 to 40% (Mclean and Grof, 1968), or by mechanical scarification (Jones, 1973).

Ruzi grass is the most widely used grass species grown in Thailand because of its ease of establishment and its relatively good forage quality (Phaikaew and Pholsen, 1993) and is normally sown at 15-25 kg/ha. Bogdan (1964) recommended that the seed be sown at a depth of 2 cm and in rows 60 cm apart, but it can be broadcast over the land after scarification of the soil with a disc harrow or brushcutter, without burning the native pastures (Risopoulos, 1966). However a well prepared seed bed is highly recommended for best results (Skerman and Riveros, 1990).

Ruzi grass is suitable not only as a green forage but also as hay and silage, and is very palatable to stock. In Thailand, Ruzi grass is commonly used for both forage and seed production, with the success of seed production being dependent on
the cessation of grazing and closing of the pasture for seed production at the correct
time, normally towards the end of August (Phaikaew, et al., 1985).

Dry matter production of Ruzi grass can vary considerably, depending on
rainfall, fertility conditions and management. In Tanzania, dry matter yields of
21,159 kg/ha have been recorded (Naveh and Anderson, 1967), and at South
Johnstone, (North Queensland) Grof and Harding (1970) recorded dry matter yields
of 19,500 kg/ha under a six week cutting interval and an input of 220
kgN/ha/annum. In Sri Lanka dry matter yields of 16,807, 22,031 and 25,585
kg/ha/year were obtained with nitrogen applications of 112, 224 and 366 kg N/ha
(Appadurai, 1975).

For seed production, farmer yields of 400 kg/ha are commonly achieved in
Thailand where repeated hand harvesting is practised (Phaikaew, et al., 1993),
compared with a yield of 125 kg/ha in Queensland and 200 kg/ha in Zaire
(Risopoulos, 1966) where harvesting is a single machine operation. Like other
tropical grasses, Ruzi exhibits a prolonged flowering period with uneven ripening
of seed on individual inflorescences and quick shedding of seed when ripe
(Boonman, 1971a; Hare and Waranyuwat, 1980; Phaikaew and Pholsen, 1993).

In Thailand, Devahuti et al., (1986) showed that the flowering period of Ruzi
grass occurred from October to November, with peak flowering near the end of
October. At 10 days after flowering, about 5% of seed was shed and this had
increased to 60% when the seed reached physiological maturity, approximately 3
weeks after flowering.

As shown in work on harvesting times by Phaikaew et al., (1986), 15-20 days after 50% of seedheads had emerged was the best compromise to achieve both high seed yield and good quality. Seed can be harvested either by hand shaking for small scale production or cutting of seedheads for large scale production (Phaikaew, 1989). In Queensland, a tractor-mounted buffel type seed harvester is often used but yields are lower than by hand harvesting (Davidson, 1966).

Phaikaew et al., (1987) found that a single cut of seedheads followed by 2-3 days "sweating" produced lower quality seed, compared with the daily shaking of seedheads.

In Queensland, Australia 15% germinable seed and 40% purity are required for commercial sale (Skerman and Riveros, 1990).

Ruzi grass is relatively free of disease and pest problems (Skerman and Riveros, 1990).