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SUMMARY 

STRESS AND FAILURE ANALYSIS OF 
GLASS/POLYESTER 

WOVEN ROVINGS COMPOSITE MATERIALS 

A micro-mechanistic approach was performed with three-dimensional finite element 
analysis of stress and failure of glass/polyester woven roving mat composites. In this 
study the pre- and post-processor software MYSTRO and the finite element analysis 
software LUSAS were utilised. 

The effects of a crimp ( curvature ), weft fibre, and the matrix volume fraction on 
the stress distribution and failure of a single short fibre, with 10 µm diameter and 50 
mm length, subject to a tensile load, were studied. With the assumption of a perfect 
fibre-matrix interface the following were concluded: 

A) Any curvature along the length of the fibre causes a big internal stress 
concentration which depends on the radius of the curvature. 

B) With an increase of the matrix volume fraction, the stress concentration factor 
(S.~.F.) decreases . 

I 

C) Any direct contact between the interlaced fibres in the cross cover region can 
cause the fibre failure mode to occur before the other failure modes. 

D) The composite failure initiates at the crimped area and propagates along the 
length of the fibre as a debonding phenomenon. This is followed by matrix failure 
mode and finally the composite will collapse by the fibre fracture mode. 
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