Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
LATE QUATERNARY LAHARS FROM MOUNT RUapeHU
IN THE WHANGAeHU RIVER VALLEY,
NORTH ISLAND, NEW ZEALAND

A thesis presented in partial fulfilment of
the requirements for the degree of
Doctor of Philosophy in Soil Science
at Massey University

Katherine Anne Hodgson
1993
ACKNOWLEDGEMENTS

The completion of the thesis presented here realises a vision that has sustained me through the ups and downs of what has been an intense learning experience; a vision which may not have been fulfilled without the encouragement from my chief supervisor, Associate Professor V. E. Neall. For this I am truly grateful.

I would also like to acknowledge Dr A. S. Palmer for his valuable discussions and suggestions which helped to iron out the grittiest of problems. Dr R. B. Stewart tried to keep me on the straight and narrow.

The study was funded by the Vice Chancellors’s Study Award, for which the author is appreciative. The Department of Conservation and Ministry of Civil Defence provided funding for the field based research central to this project.

During summer fieldwork I had the good fortune to be able to abuse the hospitality of the following households:

1989-90        Kandy Barrett and Craig Mott, Jeremy and Jenna, of Oruakukura Road.
1990-1992      Pam, Ginnie and Merv Matthews of Waipunga, Whangaehu Valley Road.
1992          Margaret, Tim, Anne and John Matthews of Mangatipona Road.

I thank you all, especially Pam, Ginnie and Merv, for putting up with all my aberrations. I shall never forget the time I spent in the Whangaehu Valley, neither the hospitality of the local people nor their amused interest in my activities. Pam and Anne are also acknowledged for their conscientious barometer reading.

I would like to thank Steve Morris, Planning and Development, Massey University for both his patience and his ingenuity which helped create the Versacad plots depicted in Chapter 7.
I would also like to acknowledge Malcolm Boag and Mike Bretherton, both Department of Soil Science, Massey University; the former for his tolerance of all the various demands I made of him during my study, and the latter for helping to sort out those niggly computer problems.

I have met so many new people, several of them through the Department of Soil Science, most of whom supplied the essential element of friendship to my new life in New Zealand. It was a particular delight to meet so many other International students. I cannot name everyone here but, for old times sake, I would like to thank Aravind (a compatriot from the very beginning), Lee and Mike - all fellow members of the alternative teaclub. I left my old home, the United Kingdom, five years ago, and my gratitude goes to friends there, and all over the globe, who kept writing, helping to keep me in touch.

Finally, my heartfelt thanks go to my family in New Zealand, and in the United Kingdom. There was no easy way to make it through the past few years; I am indebted to you for your confidence and reassurance, and for waiting (patiently?) for me to rejoin you all on the other side.
ABSTRACT

The stratigraphic record of lahars in the Whangaehu River reveals that in the past 180,000 years this route has been one of the main conduits for lahars from Mount Ruapehu, the highest active andesitic stratovolcano in the Central North Island of New Zealand. Both debris flows and hyperconcentrated flows have engulfed surfaces up to 160 km distance from the Volcano. Eight episodes of laharc activity are recognized by the distinctive lithology and similar age of their deposits. The newly defined upper Pleistocene Whangaehu Formation provides evidence for the earliest lahar event in the Valley, c. 180,000-140,000 years ago. There is only meagre evidence for laharc activity following this event until the Ohakean and Holocene, although two new informally named deposits - the Mangatipona pumice sand (c. 37,000 years B.P.) and Apitian lahars (c. 32,000-25,500 years B.P.) - are recognized, of minor extent. The formerly defined late Quaternary Te Heuheu (c. 25,500-14,700 years B.P.), Tangatu (c. 14,700-5,370 years B.P.), Manutahi (c. 5,370-3,460 years B.P.) and Mangaio (c. 4,600 years B.P.) and Onetapu (< c. 1,850 years B.P.) Formations are here described and interpreted.

Triggering mechanisms for lahar deposits are distinguished based on lithological criteria.

(a) Bouldery deposits in the Whangaehu Formation are interpreted to have been emplaced by a single highly competent debris flow triggered by a southerly-directed flank collapse at Mount Ruapehu. This debris flow was competent enough to transport boulders up to 2 m in diameter over 140 km from the Volcano. Bouldery deposits are also recognized in the Onetapu Formation, but are restricted to higher gradient surfaces on the Mount Ruapehu ring plain. The Onetapu Formation deposits are interpreted to have been emplaced by lahars resulting from catastrophic drainage of Crater Lake, which occupies the active crater on Mount Ruapehu.

(b) Pebbly and sandy deposits are interpreted to have been emplaced by low competence debris flows and hyperconcentrated flows. These lahar deposits are recognized in all formations described. The lithology in these deposits is
commonly pumice and they are interpreted to have been triggered by eruptions and/or high rainfall events at the Volcano.

Formations, and individual members within Formations, were dated by radiocarbon dating of organic material found below, within or above lahar deposits, or by coverbed stratigraphy. Both rhyolitic and andesitic tephras provided recognizable time planes in the late Quaternary coverbeds overlying lahar deposits. In this study quantitative analysis of quartz abundance, which is shown to vary between loesses and palaeosols, is used as an indirect means of establishing a surrogate for past climate changes which have been correlated to the deep sea oxygen isotope curve. A minimum age for the newly defined Whangaehu Formation is established by this method.

The accumulation rate for lahars in the Whangaehu River has accelerated from 1 km³ every c. 23,000 years in the past c. 160,000 years to 1 km³ in 589 years in the past c. 2,000 years. This acceleration probably results from the increased frequency of lahars in the River following the development of Crater Lake c. 2,000 years B.P. According to this pattern an estimated 0.17 km³ volume of lahars could be anticipated over the next 100 years. If the 2,000 year accumulation rate were to be met over the next 100 years there would be 170 lahars of $10^6$ m³ in this time interval, or 17 lahars of $10^7$ m³ (or 1.7 lahars of $10^8$ m³). The largest reported volume for an historic lahar is $10^6$ m³ and these have occurred on average once every 30 years. The accumulation rate for historic lahars is 0.0054 km³ in 100 years. Therefore, although the accumulation rate appears to have slowed down, further large lahars with magnitudes 10 or 100 times greater than those witnessed could be expected.
# TABLE OF CONTENTS

## VOLUME ONE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontispiece</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xix</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>xxiii</td>
</tr>
<tr>
<td>List of Plates</td>
<td>xxiv</td>
</tr>
<tr>
<td>List of Maps</td>
<td>xxvii</td>
</tr>
</tbody>
</table>
CHAPTER 1

LATE QUATERNARY LAHARS FROM MOUNT RUAPEHU

1.1 INTRODUCTION ........................................... 1
1.2 OBJECTIVES ............................................... 1
1.3 METHODS .................................................. 3
1.4 THE WHANGAEHU RIVER .................................... 3
  1.4.1 THE WHANGAEHU RIVER CATCHMENT ...................... 4
  1.4.2 SOILS, CLIMATE AND AGRICULTURE .................... 7
  1.4.3 INFRASTRUCTURE AND LANDUSE ......................... 8

CHAPTER 2

THE WHANGAEHU RIVER AND ITS GEOLOGICAL SETTING

2.1 INTRODUCTION ........................................... 12
2.2 THE VOLCANIC SETTING .................................... 14
  2.2.1 MOUNT RUAPEHU VOLCANIC CONE STRATIGRAPHY .......... 14
  2.2.2 MOUNT RUAPEHU VOLCANIC RING
        PLAIN STRATIGRAPHY .................................... 15
        2.2.2.1 The Waimarino and Murimotu Lahars .......... 16
        2.2.2.2 Lahar deposits on the Southeast Mount
               Ruapehu ring plain ................................ 16
        2.2.2.4 Holocene lahar deposits on the Northwest
               Mount Ruapehu ring plain ......................... 20
  2.2.3 LAHAR DEPOSITS IN THE RIVER VALLEYS THAT
        DRAIN MOUNT RUAPEHU ................................ 20
  2.3 QUATERNARY TEPHROSTRATIGRAPHY ......................... 23
  2.4 THE QUARTZOFELDSPATHIC SETTING ....................... 24
        2.4.1 QUATERNARY CLIMATE CHANGE ...................... 25
### 2.4.2 THE QUATERNARY OF NEW ZEALAND

2.4.2.1 Defining the late Quaternary
2.4.2.2 Late Quaternary loess stratigraphy

2.4.3 REGIONAL LANDSCAPE DEVELOPMENT DURING THE LATE QUATERNARY

### CHAPTER 3

**LAHARS: DEFINITION AND TERMINOLOGY**

3.1 INTRODUCTION

3.1.1 DEFINITION OF THE TERM "LAHAR"

3.2 LAHARS: THEIR CAUSE, BEHAVIOUR AND EFFECTS

3.2.1 SPECIFIC CASE STUDIES OF LAHARS

3.2.1.1 Lahars following the 1963 eruptions of Irazu Volcano, Costa Rica
3.2.1.2 Lahars following the 1980 and 1982 eruptions of Mount St. Helens, Northwest U.S.A.
3.2.1.3 Eruption and post-eruption lahars from Mayon Volcano, the Philippines
3.2.1.4 Catastrophic lahars following the 1985 eruption of Nevado del Ruiz, Colombia
3.2.1.5 Recent lahars following the 1991 eruption of Mt. Pinatubo, the Philippines

3.3 THE RHEOLOGICAL AND SEDIMENTOLOGICAL CHARACTERISTICS OF LAHARS AND THEIR DEPOSITS

3.3.1 DEBRIS FLOWS

3.3.1.1 Debris flow rheology
3.3.1.2 Debris flow sedimentology

3.3.2 HYPERCONCENTRATED FLOWS

3.3.2.1 Hyperconcentrated flow rheology
3.3.2.2 Hyperconcentrated flow origins and sedimentology
CHAPTER 4

THE WHANGAEHU FORMATION

4.1 INTRODUCTION ........................................ 48

4.2 TYPE LOCALITY AND DEFINITION OF THE
WHANGAEHU FORMATION .................................... 49

4.3 DESCRIPTION OF SEDIMENTS .............................. 51

4.3.1 LITHOFACIES DESCRIPTION .......................... 52

4.3.1.1 Bouldery diamictites .......................... 52

4.3.1.2 Pebbly diamictites .......................... 53

4.3.1.3 Sandy diamictites .......................... 54

4.3.2 LITHOFACIES INTERPRETATION ...................... 55

4.3.2.1 Subfacies 1a-c ................................ 56

4.3.2.2 Subfacies 2a-c ................................ 57

4.3.2.3 Subfacies 3a-c ................................ 59

4.3.2.4 Subfacies 4a-b and 5a-b ...................... 59

4.3.3 LITHOFACIES ARCHITECTURE ...................... 60

4.3.4 WAS EMPLACEMENT OF WHANGAEHU
FORMATION LAHARS ASSOCIATED WITH
ERUPTIVE ACTIVITY? ................................... 64

4.4 AGE OF THE WHANGAEHU FORMATION .................. 67

4.4.1 COVERBED STRATIGRAPHY: QUANTITATIVE XRD
AS AN INDIRECT DATING TECHNIQUE .................... 68

4.4.2 DETERMINING TOTAL QUARTZ IN TEPHRIC
COVERBED SEQUENCES: METHODOLOGY .................. 69

4.4.2.1 Stratigraphy of sample sites ................. 70

Site WF5 .............................................. 70

Site WF6 .............................................. 71

4.4.2.2 Tephrostratigraphy of cover beds at WF5
and WF6 ............................................. 71

4.4.2.3 Quantitative quartz analysis of
covered sequences .................................... 73

Preparation of a standard curve ....................... 74

Analysis of unknown samples .......................... 76

4.4.2.4 Variations in total quartz content at
Sites WF5 and WF6 .................................. 76
4.4.2.5 Palaeoclimatic inferences from variations in total quartz content of coverbeds overlying the Whangaehu Formation ............... 79

4.5 DEPOSITS OF THE WHANGAEHU FORMATION IN THE MANGAWHERO AND HAUTAPU RIVER CATCHMENTS ........................................... 82

CHAPTER 5

DEPOSITS FROM POST-WHANGAEHU FORMATION LATE PLEISTOCENE LAHARS

5.1 INTRODUCTION ........................................ 83

5.2 THE MANGATIPONA PUMICE SAND ......................... 83

5.3 APITIAN LAHARS ......................................... 85

5.4 THE TE HEUHEU FORMATION ................................ 87

5.5 VOLCANICLASTIC AGGRADATION BETWEEN 140,000 AND 25,500 YEARS AGO .................................................. 90

CHAPTER 6

THE TANGATU FORMATION

6.1 INTRODUCTION ........................................ 92

6.2 PREVIOUS DESCRIPTIONS .................................. 92

6.3 AGE .................................................. 93

6.4 DISTRIBUTION ........................................ 95
CHAPTER 6

LITHOFACIES DESCRIPTION ........................................ 98
6.5.1 GRAVELLY DIAMICTONS ..................................... 98
6.5.2 SANDY DIAMICTONS .................................... 99
6.5.3 LITHOFACIES INTERPRETATION ......................... 100
   6.5.3.1 Subfacies 1a-c .................................. 101
   6.5.3.2 Subfacies 2a-b .................................. 103
   6.5.3.3 Subfacies 3a-b .................................. 104
6.5.4 VOLUME AND EXTENT OF TANGATU FORMATION ........ 104

6.6 WAS EMLACMENT OF THE TANGATU FORMATION ASSOCIATED WITH Eruptive Activity? 105
   6.6.1 MODERN DAY ANALOGUES OF TANGATU FORMATION LAHARS ..................................... 106

6.7 LAHARS FOLLOWING EMLACMENT OF THE TANGATU FORMATION ........................................ 107
   6.7.1 THE MANUTAH FORMATION ................................ 108
   6.7.2 THE MANGAI FORMATION ................................ 109

CHAPTER 7

THE ONETAPU FORMATION

7.1 INTRODUCTION .................................................. 110

7.2 THE DISTRIBUTION OF THE ONETAPU FORMATION .... 111
   7.2.1 ONETAPU FORMATION AT THE TYPE LOCALITY ...... 111

7.3 ONETAPU FORMATION LITHOLOGY ............................ 112
   7.3.1 BOULDERY DIAMICTONS ................................ 112
   7.3.2 PEBBLY DIAMICTONS .................................. 114
   7.3.3 SANDY DIAMICTONS .................................. 115
   7.3.4 LITHOFACIES INTERPRETATION ...................... 117
      7.3.4.1 Subfacies 1a-c ................................. 117
             (Dcn, Dcu, Dcr of Purves, 1990) .................. 117
      7.3.4.2 Subfacies 2a-c .................................. 119
      7.3.4.3 Subfacies 3a-e .................................. 119
      7.3.4.4 Subfacies 4a-b .................................. 121

xii
ONETAPU FORMATION INFORMAL MEMBERS:
CORRELATION AND STRATIGRAPHY ......................... 123

7.4.1 MEMBER Ona ............................................. 123
7.4.2 MEMBERS Onb AND Onc ................................. 125
7.4.3 MEMBER Ond ............................................ 128
7.4.4 MEMBER One ............................................ 130
7.4.5 MEMBER Onf ............................................ 130
7.4.6 MEMBER Ong ............................................ 132
7.4.7 MEMBER Onh ............................................ 134
7.4.8 MEMBER Oni ............................................ 136
7.4.9 MEMBER Onj ............................................ 138
7.4.10 MEMBER Onk .......................................... 140
7.4.11 MEMBER Onl .......................................... 141
7.4.12 MEMBERS Onm, Onn AND Ono .......................... 141

7.5 EVIDENCE FOR FLOW TRANSFORMATION IN
ONETAPU FORMATION DEBRIS FLOW/POSITS ............... 145
7.5.1 LITHOLOGICAL VARIATIONS WITHIN ONETAPU
LAHAR DEPOSITS .............................................. 145
7.5.2 PARTICLE SIZE ANALYSIS OF ONETAPU FORMATION
LAHAR DEPOSITS .............................................. 150
7.5.2.1 Methodology .......................................... 150
7.5.2.2 Results ................................................ 151
7.5.2.3 Discussion ............................................ 154

7.6 POST-DEPOSITIONAL DEFORMATION OF
ONETAPU FORMATION LAHAR DEPOSITS .................... 161
7.6.1 PROBABLE CAUSES OF DEFORMATION .................... 163

7.7 CALCULATED VELOCITY AND DISCHARGES FOR
PREHISTORIC LAHARS ........................................... 164
7.7.1 CALCULATING VELOCITY FROM SUPERELEVATION .... 164
7.7.2 SITE LOCALITIES AND DESCRIPTION .............. 165
7.7.2.1 Site E ................................................. 168
7.7.2.2 Site H ................................................. 168
7.7.2.3 Site L ................................................. 168
7.7.2.4 Site S ................................................. 173
7.7.3 RESULTS ................................................ 173
7.7.4 DISCUSSION .............................................. 182
7.8 PROPOSED MECHANISM OF EMPLACEMENT FOR ONETAPU FORMATION LAHARS ................. 183

7.8.1 ONETAPU FORMATION INFORMAL MEMBERS
Ona, Onb AND Onc ........................................ 183

7.8.2 ONETAPU FORMATION INFORMAL MEMBERS
One AND Onf ............................................. 183

7.8.3 ONETAPU FORMATION INFORMAL MEMBERS
Ong1-3 .................................................... 184

7.8.4 ONETAPU FORMATION INFORMAL MEMBER Onh .. 185

7.8.5 ONETAPU FORMATION INFORMAL MEMBER Onj .. 185

7.8.6 ONETAPU FORMATION INFORMAL MEMBERS
Ond, Oni and Onk-o ....................................... 185

CHAPTER 8

HISTORIC LAHARS

8.1 INTRODUCTION ........................................ 187

8.2 THE HISTORICAL RECORD ............................. 187

8.2.1 THE EARLIEST HISTORIC LAHAR IN THE WHANGAEBHU RIVER ......................... 188

8.3 LAHARS IN THE INTERVAL 1861 TO 1953 ................ 190

8.4 THE 1953 TANGIWAI DISASTER ..................... 193

8.4.1 THE CAUSE OF THE 1953 LAHAR .................. 196

8.4.2 THE NATURE OF THE 1953 LAHAR ................ 197

8.4.3 ARRIVAL TIMES AND ESTIMATED VELOCITY FOR THE 1953 LAHAR ......................... 199

8.4.4 ESTIMATED DISCHARGE FOR THE 1953 LAHAR .... 199

8.4.5 RECOMMENDATIONS OF THE BOARD OF INQUIRY FOLLOWING THE TANGIWAI DISASTER .... 200
CHAPTER 9

THE HAZARDS AND RISKS FROM LAHARS IN THE WHANGAEHU RIVER

9.1 INTRODUCTION AND OBJECTIVES .................................... 210

9.2 LAHAR HAZARD ASSESSMENT: METHODS .......................... 210

9.2.2 MAGNITUDE VERSUS FREQUENCY ................................. 211

9.2.2.1 Chronology and volume of late Quaternary lahar in the Whangaehu River ........................................ 213

The Whangaehu Formation .............................................. 213

The Mangatipona pumice sand and Apitian lahar .................................................. 213

Te Heuheu Formation .................................................. 214

Tangatu Formation .................................................. 214

Manutahi and Mangaio Formations ........................................ 214

Prehistoric Onetapu Formation ........................................ 215

Historic lahars .................................................. 216

9.2.2 RECURRENCE INTERVALS FOR EVENTS OF
MAGNITUDES $10^3$ TO $10^6$ $M^3$ ......................................... 217

9.2.3 ACCUMULATION RATES FOR LAHARS IN THE
WHANGAEHU RIVER .................................................. 220

9.2.4 LAHAR HAZARD ZONES ............................................. 222

9.2.5 DISCUSSION .................................................. 224
The risk from lahars in the Whangaehu Valley

9.3.1 The Whangaehu Valley

Chapter 10

Conclusions

10.1 Synopsis

10.2 Late Quaternary lahars in the Whangaehu River: A reconstruction

10.3 Sedimentology of lahar deposits

10.4 The temporal pattern of lahar accumulation in the Whangaehu River, and predicted future activity

10.5 Envoi

10.6 Future work

References
LIST OF TABLES

CHAPTER 4

Table 4.1 Bouldery lithofacies within Whangaehu Formation diamictites ... 53

4.2 Pebbly lithofacies within Whangaehu Formation diamictites ....... 54

4.3 Sandy lithofacies within Whangaehu Formation diamictites ....... 55

4.4 Lithofacies identified within Whangaehu Formation diamictites, interpreted rheological characteristics and interpreted mode of emplacement .................... 58

CHAPTER 6

6.1 Gravelly lithofacies within Tangatu Formation diamictons ....... 59

6.2 Sandy lithofacies within Tangatu Formation diamictons ......... 100

6.3 Sedimentological characteristics of debris flow and hyperconcentrated flow deposits ................................. 100

6.4 Lithofacies identified within Whangaehu Formation diamictites, and correlated lithofacies within Tangatu (TG) Formation diamictons ................................. 102

CHAPTER 7

7.1 Bouldery lithofacies within Onetapu Formation diamictons, including subfacies Dcn, Dcu and Dcr of Purves (1990) ....... 113

7.2 Pebbly lithofacies within Onetapu Formation diamictons ....... 114

7.3 Sandy lithofacies within Onetapu Formation diamictons ......... 116

7.4 Lithofacies identified within Onetapu Formation (On) diamictons, and correlated lithofacies within Whangaehu (WF) Formation diamictites and Tangatu (TG) Formation diamictons ......... 118

7.6 Stratigraphic column of Onetapu Formation lahar deposits. .... 129

7.7 General sedimentological characteristics of Onetapu Formation informal members Ona to Ong, including lithofacies description and inferred flow regime ............................. 137
Table 7.8  General sedimentological characteristics of Onetapu Formation informal members Onh to Ono, including lithofacies description and inferred flow regime .......................... 143

7.9  Extent, mean depth, volume and estimated age of Onetapu Formation informal members Ona to Ono .......................... 144

7.10  Downstream variations in lithology for Onetapu Formation debris flow deposits (members Ona, Onf, Onh and Onj) .......... 146

7.11  Results of grain size analysis of selected Onetapu Formation deposits (members Onf, Ong, Onh and Onj) .......................... 151

7.12  Gauged and estimated velocities (in m s\(^{-1}\)) in the Whangaehu River .......................... 173

7.13  Gauged and estimated discharges (in m\(^3\) s\(^{-1}\)) of historic Onetapu lahars in the Whangaehu River .......................... 177

CHAPTER 8

8.1  Triggering mechanisms, estimated and gauged discharges, and impacts of historic lahars in the Whangaehu River, February 1861 to June 1969 .......................... 208

8.2  Triggering mechanisms, estimated and gauged discharges, and impacts of historic lahars in the Whangaehu River, May 1971 to December 1988 .......................... 209

CHAPTER 9

9.1  The existing and projected volumes for Onetapu Formation members with age details .......................... 216

9.2  Recurrence intervals for lahar events in the time interval c. 160,000 to the present day .......................... 217

9.3  Recurrence intervals for lahar events in the time interval c. 1,850 B.P. to the present day .......................... 218

9.4  Recurrence intervals for lahar events in the time interval 1861 calendar years to the present day .......................... 219

CHAPTER 10

10.1  Occurrence, age, volume and probable cause of lahar events in the Whangaehu River .......................... 236
LIST OF FIGURES

CHAPTER 1

Figure 1.1  The Whangaehu River Catchment ................................. 2

1.2  The source area of the Whangaehu River - the Southeast sector of Mount Ruapehu including Crater Lake, summit glaciers, the upper Whangaehu gorge, and the Whangaehu Fan ......... 5

1.3  Geology of Wanganui and Tongariro Districts, through which the Whangaehu River flows ................................. 6

1.4  Infrastructure in the Wanganui and Tongariro Districts .......... 9

CHAPTER 2

2.1  The Tongariro Volcanic Centre ........................................ 13

2.2  Lithostratigraphy of the Mount Ruapehu volcanic edifice ...... 14

2.3  Lithostratigraphy of the Southeast Mount Ruapehu volcanic ring plain ......................................................... 18

2.4  Map showing major rivers and streams that drain Mount Ruapehu 22

2.5  The Taupo volcanic Zone with associated volcanic centres, and Egmont Volcanic District ................................. 23

2.6  Late Quaternary litho- and chronostratigraphy, from Pillans (1990) ............................................................... 27

CHAPTER 3

3.1  Flow curves for (a) Newtonian fluids, and (b) Bingham plastics .. 42

3.2  Correlation of maximum clast size and bed thickness in (a) cohesive and (b) cohesionless debris flows ......................... 43

CHAPTER 4

4.1  Map showing locality of the Whangaehu Formation type locality, reference sections, and observation sites ......................... 49

4.2  Lithofacies assemblages within the Whangaehu Formation ....... 62
Figure 4.3 Results of XRD analysis, and standard curve, for quartz standard replicates .......................... 75

4.4 Stratigraphy, percentage of rhyolite glass and quartz in coverbeds at Site WF5 .......................... 77

4.5 Stratigraphy, percentage of rhyolite glass and quartz in coverbeds at Site WF6 .......................... 78

CHAPTER 5

5.1 Map showing locality of Mangatipona pumice sand, Apitian lahars, and Te Heuheu Formation reference sections and observation sites .................................................. 84

5.2 Percentage of rhyolite glass in coverbeds overlying Te Heuheu Formation in a road cutting beside the Whangaehu Valley Road .................................................. 88

5.3 Cumulative volume of laharic debris from emplacement of the Whangaehu Formation, c. 160,000 years ago to the present day .................................................. 90

CHAPTER 6

6.1 Map showing locality of the Tangatū Formation reference sections, and observation sites .................................................. 94

CHAPTER 7

7.1 The Type Locality for Onetapu Formation lahars, from Donoghue (1991) .................................................. 112

7.2 Map showing locality of the Onetapu Formation Type Locality, T.L., (Donoghue, 1991) and reference sections. Numerical sections identified on the Whangaehu Fan are from Purves (1990) .................................................. 112

7.3 Map showing the distribution of Onetapu Members Ona-c, on the edge of the Mount Ruapehu ring plain .................................................. 131

7.4 Map showing the distribution of Onetapu Members Ond-f, on the edge of the Mount Ruapehu ring plain .................................................. 131

7.5 Map showing the distribution of Onetapu Members Ong1-3, on the edge of the Mount Ruapehu ring plain .................................................. 133
Figure 7.6  Map showing the distribution of Onetapu Members Onh-i, on the edge of the Mount Ruapehu ring plain ... 135

7.7 Map showing the distribution of Onetapu Members Onj-k, on the edge of the Mount Ruapehu ring plain ... 139

7.8 Downstream variations in maximum clast size for Onetapu Formation members (a) Onj, (b) Onh, (c) Onf and (d) Ona ... 147

7.9 Downstream variations in modal clast size for Onetapu Formation members (a) Onj, (b) Onh, (c) Onf and (d) Ona ... 148

7.10 Downstream variations in sedimentological characteristics for samples of Onetapu Formation members Onj, Onh, Ong and Onf ... 152

7.11 Ternary diagram showing ratio between gravel, sand and mud for samples of Onetapu Formation members Onj, Onh, Ong and Onf ... 154

7.12 Probability curves for cumulative percentage of particle size ranges for samples of Onetapu Formation members Onj, Onh, Ong, and Onf ... 155

7.13 Probability curves for cumulative percentage of particle size ranges for samples of Onetapu Formation members Onj, Onh, Ong, and Onf ... 156

7.14 Histograms of weight percentage of particle size ranges for samples of Onetapu Formation members Onj, Onh, Ong, and Onf 157

7.15 Histograms of weight percentage of particle size ranges for samples of Onetapu Formation members Onj, Onh, Ong and Onf 158

7.16 Histograms of weight percentage of particle size ranges for samples of Onetapu Formation members Onj, Onh, Ong and Onf 159

7.17 Map showing localities of sites where velocity for prehistoric Onetapu lahars was calculated and localities where velocities for historic lahars were gauged or estimated ... 167

7.18 Surveyed cross-section including Onetapu Formation stratigraphy at Site E ... 169

7.19 Surveyed cross-section including Onetapu Formation stratigraphy at Site H ... 170

7.20 Surveyed cross-section including Onetapu Formation stratigraphy at Site L ... 171
Figure 7.21 Surveyed cross-section including Onetapu Formation stratigraphy at Site S ........................................... 172

7.22 Calculated velocities (in m s\(^{-1}\)) for Onetapu Formation members Onf, Ong, Onh and Onj at Sites E, H, L and S .... 174

7.23 Downstream variation in calculated velocity (in m s\(^{-1}\)) for Onetapu Formation members (a) Onj, (b) Onh, (c) Ong and (d) Onf .......................... 175

7.24 Downstream variations in velocity for historic (a) 1975 and (b) 1953 Onetapu lahars ........................................... 176

7.25 Calculated discharges (in m\(^3\) s\(^{-1}\)) for Onetapu Formation members Onf, Ong, Onh and Onj at Sites E, H, L, and S. Discharge calculated using Equation 7.1 ......................... 178

7.26 Calculated discharges (in m\(^3\) s\(^{-1}\)) for Onetapu Formation members Onf, Ong, Onh and Onj at Sites E, H, L, and S. Discharge calculated using Equation 7.2 ......................... 178

7.27 Downstream variation in calculated discharge for Onetapu Formation members (a) Onj, (b) Onh, (c) Ong and (d) Onf. Discharge calculated using Equation 7.1 ......................... 179

7.28 Downstream variation in calculated discharge for Onetapu Formation members (a) Onj, (b) Onh, (c) Ong and (d) Onf. Discharge calculated using Equation 7.2 ......................... 180

7.29 Downstream variation in discharge for the historic 1975 Onetapu lahar ...................................................... 181

CHAPTER 8

8.1 Map showing the scene at Tangiwai, Christmas 1953, following the disastrous lahar ................................. 194

CHAPTER 9

9.1 Lahar accumulation rate from c. 160,000 years ago to the present day ...................................................... 220

9.2 Lahar accumulation rate for (a) prehistoric and historic lahars combined, and (b) historic lahars ......................... 221
# LIST OF APPENDICES (VOLUME 2)

## Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Radiocarbon dates used in this thesis</td>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
<td>Results of quantitative analysis of coverbeds at WF5, 0-2.5 m</td>
<td>A2</td>
</tr>
<tr>
<td>A3</td>
<td>Results of quantitative analysis of coverbeds at WF5, 2.5-3.55 m</td>
<td>A3</td>
</tr>
<tr>
<td>A4</td>
<td>Results of quantitative analysis of coverbeds at WF5, 3.55-5.7 m</td>
<td>A4</td>
</tr>
<tr>
<td>A5</td>
<td>Results of quantitative analysis of coverbeds at WF6, 0-2.48 m</td>
<td>A5</td>
</tr>
<tr>
<td>A6</td>
<td>Results of quantitative analysis of coverbeds at WF6, 2.48-3.95 m</td>
<td>A6</td>
</tr>
<tr>
<td>A7</td>
<td>Results of quantitative analysis of coverbeds at TE1 and TG1</td>
<td>A7</td>
</tr>
<tr>
<td>A8</td>
<td>Results of field-based particle size analysis of Onetapu Formation informal members Onf, Ong, Onh and Onj</td>
<td>A8</td>
</tr>
<tr>
<td>A9</td>
<td>Results of laboratory-based particle size analysis of Onetapu Formation informal members Onf, Ong, Onh and Onj</td>
<td>A9</td>
</tr>
<tr>
<td>A10</td>
<td>Channel and deposit geometry measurements for Onetapu members Onj, Onh, Ong and Onf at Sites E, H, L and S</td>
<td>A10</td>
</tr>
<tr>
<td>A11</td>
<td>Measured cross-sectional areas for Onetapu members Onj, Onh, Ong and Onf at Sites E, H, L and S</td>
<td>A10</td>
</tr>
</tbody>
</table>

## Section descriptions

- **Chapter 4:** The Type Locality for the Whangaehu Formation  A11
- **Chapter 4:** Reference section descriptions  A12
- **Chapter 5:** Reference section descriptions  A23
- **Chapter 6:** Reference section descriptions  A31
- **Chapter 7:** Reference section descriptions  A38

## Figures

- **A.1** Stratigraphic columns of Onetapu Formation informal members
LIST OF PLATES (VOLUME 2)

CHAPTER 1

Plate 1.1 The upper Catchment of the Whangaehu River, including the upper Whangaehu gorge, the Whangaehu Fan, and the Whangaehu escarpment .................. A89
1.2 The middle Catchment of the Whangaehu River ............ A89
1.3 The lower Catchment of the Whangaehu River ............ A90
1.4 The coastal reach of the Whangaehu River .............. A90

CHAPTER 4

4.1 The Type Locality for the Whangaehu Formation ............ A91
4.2 Thick bouldery diamictites of the Whangaehu Formation from Old Fields Track .................. A91
4.3 The Whangaehu Formation from Ruatangata Road ......... A92
4.4 Rip-up clasts of Tertiary sandstone and siltstone at the Whangaehu Formation Type Locality .................. A92
4.5 Thick bouldery Whangaehu Formation diamictites in the cliffs of the lower Whangaehu Gorge .................. A93
4.6 Distal lithofacies of the Whangaehu Formation, showing the lower pale dacite pumice-rich bed .................. A94
4.7 Coverbeds overlying the Whangaehu Formation at WF5 .... A94
4.8 Kawakawa Tephra at WF5 .......................... A95
4.9 Coverbeds overlying the Whangaehu Formation at WF7 .... A95
4.10 The Kaitieke and Mangawherawhera tephras at WF7 .... A96
4.11 Coverbeds at WF8 in the Mangawhero Valley, including the Mangawherawhera tephra .................. A96

CHAPTER 5

5.1 The Mangatipona pumice sand at MA1 .................. A97
5.2 Apitian lahars at AP3 in the Mangaehuehu Catchment ........ A97
CHAPTER 6

Plate 6.1 Buried tree stump in growth position at TG1 .......... A98
6.2 Tangatu Formation at TG3, upper Whangaehu Catchment .... A98
6.3 Tangatu Formation at TG4, upper Whangaehu Catchment .. A99
6.4 Tangatu Formation at TG8, upper Whangaehu Catchment .... A99
6.5 Tangatu Formation at TG10, lower Whangaehu Catchment ... A100

CHAPTER 7

7.1 The remains of a tree stump at Mangamahu (S1) ............ A101
7.2 Onetapu Formation, Taupo Ignimbrite and Tangatu Formation at section I ........ A102
7.3 Onetapu Formation members Ona, Ond, Onf, Ong1, 2 & 3, and Onh at L1 .......... A103
7.4 The youngest Onetapu Formation members at G6 .......... A103
7.5 An example of an undeformed hyperconcentrated flow deposit in the Manutahi Formation ............ A104
7.6 An example of a sand pillar in a hyperconcentrated flow deposit in the Manutahi Formation ............. A104
7.7 Exaggerated dish and pillar structures in Onetapu Formation member Ong at J1 ........ A105
7.8 An example of dish and pillar structures in Ong3 at L1 ..... A106
7.9 An example of water escape pipes in Ong3 at L1 .......... A106
7.10 An example of a sand volcano at L1 .................... A107
7.11 Deformation structures, including dish and pillars, in a Whangaehu Formation hyperconcentrated flow deposit ... A107
7.12 Site E, where velocities and discharges are calculated for Onetapu Formation members Ong, Onh and Onj .......... A108
7.13 The bridging point of the Whangaehu Valley Road over the Whangaehu River at Tirorangi Marae. Velocity and discharge are calculated here for Onetapu Formation members Ong and Onh .......... A108
CHAPTER 8

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Tangiwai railway bridge with Mount Ruapehu in the background, April 1990</td>
<td>A109</td>
</tr>
<tr>
<td>8.2</td>
<td>The scene at Tangiwai following the Christmas 1953 Tangiwai Disaster</td>
<td>A109</td>
</tr>
<tr>
<td>8.3</td>
<td>Tangiwai, December 1953, looking upstream towards the railway bridge</td>
<td>A110</td>
</tr>
<tr>
<td>8.4</td>
<td>Crater Lake in December 1953, following the Tangiwai Disaster, showing the hole in the ice and tephra barrier through which lake water drained catastrophically triggering the 1953 lahar</td>
<td>A111</td>
</tr>
<tr>
<td>8.5</td>
<td>The scene at Tangiwai following the 1975 lahar, looking downstream towards the replaced railway bridge</td>
<td>A112</td>
</tr>
<tr>
<td>8.6</td>
<td>Colliers junction, in the middle catchment of the Whangaehu River, during the 1975 lahar</td>
<td>A113</td>
</tr>
<tr>
<td>Map</td>
<td>Title</td>
<td>Scale</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Surficial geology of Whangaehu Catchment: S20/D</td>
<td>1:25,000</td>
</tr>
<tr>
<td>2</td>
<td>Surficial geology of Whangaehu Catchment: S21/B</td>
<td>1:25,000</td>
</tr>
<tr>
<td>3</td>
<td>Surficial geology of Whangaehu Catchment: S21/D</td>
<td>1:25,000</td>
</tr>
<tr>
<td>4</td>
<td>Surficial geology of Whangaehu Catchment: S22/A</td>
<td>1:25,000</td>
</tr>
<tr>
<td>5</td>
<td>Surficial geology of Whangaehu Catchment: S22/B</td>
<td>1:25,000</td>
</tr>
<tr>
<td>6</td>
<td>Surficial geology of Whangaehu Catchment: S22/C</td>
<td>1:25,000</td>
</tr>
<tr>
<td>7</td>
<td>Whangaehu Catchment lahar hazard zones: S21 Kakatahi</td>
<td>1:50,000</td>
</tr>
<tr>
<td>8</td>
<td>Whangaehu River Catchment hazard zones: S22 Whangaehu</td>
<td>1:50,000</td>
</tr>
</tbody>
</table>