Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Iminophosphine ligands and their metal binding properties

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

In

Chemistry

At Massey University, Palmerston North
New Zealand

Kurt Allen McBeth
2003
Abstract

This work focuses on the complexes of two iminophosphine ligands, N-(2-diphenylphosphinobenzylidine)-aniline (NP) and N-(2-diphenylphosphinobenzylidine)-4'-(benzo-15-crown-5) (O₅NP), and their complexes with Cu(I), Ag(I), Au(I), Cr(0), Mo(0) and W(0). The cation binding properties of the complexes of O₅NP have been investigated.

Chapter One describes the aims of this work and also provides a brief introduction to ligands containing phosphorus and nitrogen donor atoms as well as crown ethers and their inclusion in transition metal complexes. The analytical technique of electrospray mass spectroscopy (ESMS) is introduced and its use in the study of cation binding to crown ethers and cryptands discussed.

Chapter Two looks at the Cu(I), Ag(I) and Au(I) complexes of NP and O₅NP, such as [M(L)₂][PF₆] (M = Cu, Ag, Au; L = NP, O₅NP), [M(NP)X]₂, [M(O₅NP)Cl]₂ (M = Cu, Ag), Au(NP)X and Au(O₅NP)Cl (X = Cl, Br, I). Reported in this chapter are the X-ray structural analyses of O₅NP, [Cu(NP)₂][PF₆], [Ag(NP)₂][PF₆], [Au(NP)₂][PF₆], [Cu(NP)Br]₂, Au(NP)Cl and Au(NP)Br. Far and Near IR, ¹H and ³¹P NMR and ESMS were used to investigate the nature of the complexes. The [M(L)₂][PF₆] complexes displayed a clear trend in which the number of coordinated imines decreased as the soft nature of the metal centre increased. Both the Far IR and crystal structure analyses showed the Cu(I) and Ag(I) halo complexes to be dimeric with bridging halides and the
Au(I) halo complexes to be monomeric with terminal halides. The 31P NMR signal was found to be dependent on the mass of the metal centre.

In Chapter Three the Cr(0), Mo(0) and W(0) carbonyl complexes of NP and O$_5$NP are discussed. To characterise the complexes, IR, ESMS and 1H, 31P and 13C NMR techniques were employed. X-ray structural analyses of Mo(CO)$_4$(NP) and Mo(CO)$_4$(O$_5$NP) were also used. It was found that the metal centres had an octahedral geometry with the ligands being bidentate via the P and N atoms and having a cis conformation. Upon coordination, the 1H NMR signal of the imine proton moves to lower frequencies, whereas the 31P NMR signal moves to higher frequencies. It was also demonstrated that the presence of the crown ether has no significant effect on the structure of the metal centre.

Cation binding to the complexes of O$_5$NP, the free ligand, and starting material, 4'-aminobenzo-15-crown-5 (O$_5$NH$_2$), is discussed in Chapter Four. Electrospray mass spectroscopy (ESMS) was used as a qualitative measure of the relative cation binding strengths. The X-ray structural analyses of the inclusion complexes W(CO)$_4$(O$_5$NP)Na(PF$_6$) and [Cu(O$_5$NP)$_2$]K[PF$_6$]$_2$ were determined, and provided information on the coordination of alkali cations by these complexes. W(CO)$_4$(O$_5$NP) binds Na$^+$ within the cavity of the benzo-15-crown-5 moiety which experiences significant change to its conformation. [Cu(O$_5$NP)$_2$][PF$_6$] binds K$^+$ in a sandwich formation suggesting that rotation of the ligands occurs about the Cu(I) centre. The starting material, O$_5$NH$_2$, and free ligand, O$_5$NP, were selective towards K$^+$, forming a 1:1 species. The complexes M(CO)$_4$(O$_5$NP) (M = Cr, Mo, W) and [M(O$_5$NP)$_2$][PF$_6$] (M = Cu, Ag, Au) were selective towards Na$^+$ and K$^+$ respectively with a 1:1 formation. The halide complexes, [Cu(O$_5$NP)Cl]$_2$, [Ag(O$_5$NP)Cl]$_2$ and Au(O$_5$NP)Cl, displayed different selectivities from each other. Both [Cu(O$_5$NP)Cl]$_2$ and [Ag(O$_5$NP)Cl]$_2$ dissociated in solution to give the monomers which selectively bound Li$^+$ and K$^+$ respectively in a 1:1 species. The Au(O$_5$NP)Cl complex was selective towards Na$^+$.
Acknowledgements

Associate Professor Eric Ainscough and Professor Andrew Brodie are the first to be thanked. They have been a constant help and I deeply respect them both. Eric always has a reassuring comment and interesting pieces of information to entertain with. Andrew has been a constant source of motivation for me while being an accessible and knowledgeable source of advice.

Dr. Andreas Derwahl is greatly deserving of thanks both for the huge amount of effort that he put into the crystal structures within this work and for the help that he gave me in every day survival.

Graham Freeman for basically looking after me these past six or so years. He has given good advice when it was needed, brilliant technical assistance and is a good friend. Graham has been a major influence to my studies and is the reason why I am not currently in a marriage of convenience.

Associate Professor C. Rickard, University of Auckland for collection of X-ray structure data sets. Professor Geoff Jameson for his expert assistance with the X-ray structure analyses. Professor G. Bowmaker, University of Auckland for recording of Far IR spectra David Lun for his assistance with the ESMS device. Dr. Pat Edwards for assistance with the NMR spectra and Dr. Steven Kennedy for past work.

Thanks goes to Delwyn Cooke, Gavin Collis, Rachel Williamson, Clair Nelson, Catherine Hardacre, Celia Webby, Amy Bellantyne, Giovanna “G” Moretto, Adrian Jull, Krishanthi Jayasundera, Julie Locke, Carol Taylor (for the coffee), Penny Abercrombie and Barbara Gunn, Engineering Services and Bob Parsons.

I gratefully acknowledge the financial assistance of the David Levine Trust and the IFS Graduate Research Fund.

THANK YOU TO YOU ALL
Kurt McBeth
Thursday, 21 August 2003.
Table of Contents.

Abstract ... ii
Acknowledgements ... iv
Table of Contents .. v
List of Figures ... viii
List of Tables ... x
List of Schemes ... xii
Abbreviations .. xiii

Chapter 1

Introduction ... 1

1.1 Phosphorus and Nitrogen Donor Ligands ... 2
1.2 A Brief History of Crown Ethers ... 7
1.3 Crown Ethers and Transition Metals .. 10
1.4 Electrospray Mass Spectrometry .. 14
1.4.1 Principles of ESMS .. 14
1.4.2 Host-guest Selectivity and ESMS .. 16
1.5 The Present Study ... 19
1.6 References .. 20

Chapter 2

The iminophosphine Complexes of Cu(I), Ag(I), and Au(I) 23

2.1 Introduction ... 24
2.2 Experimental .. 24
2.2.1 Instrumentation .. 24
2.2.2 Materials .. 25
2.2.3 The Ligands ... 25
2.2.4 The Complexes of Copper .. 26
2.2.5 The Complexes of Silver ... 28
2.2.6 The Complexes of Gold .. 30
2.3 Results and Discussion .. 32
2.3.1 Synthesis .. 32
2.3.1.1 Synthesis of the Ligands ... 32
2.3.1.2 Synthesis of the Complexes .. 32
2.3.2 Crystal Structures .. 33
2.3.2.1 The Structure of OsNP ... 33
2.3.2.2 The Structure of [Cu(NP)2][PF6] .. 38
2.3.2.3 The Structure of [Ag(NP)2][PF6] .. 42
2.3.2.4 The Structure of [Au(NP)2][PF6] .. 46
2.3.2.5 The Structure of [Cu(NP)Br]z ... 50
2.3.2.6 The Structure of Au(NP)Cl ... 54
2.3.2.7 The Structure of Au(NP)Br ... 59
2.3.3 Vibrational Spectroscopy .. 63
2.3.3.1 Far IR Spectra .. 63
2.3.3.2 Near IR Spectra ... 64
2.3.4 Nuclear Magnetic Resonance Spectra ... 66
2.3.4.1 The 1H NMR Spectra of the Ligands and Complexes 66
2.3.4.2 The 31P NMR Spectra of the Ligands and Complexes 69
2.3.5 Electrospray Mass Spectroscopy Results ... 72
2.4 Summary .. 74
2.5 References ... 75

Chapter 3

The Iminophosphine Carbonyl Complexes of Cr(0), Mo(0) and W(0) 78
3.1 Introduction ... 79
3.2 Experimental .. 79
3.2.1 Instrumentation ... 79
3.2.2 Materials ... 80
3.2.3 The Carbonyl Complexes of Cr(0), Mo(0) and W(0) 80
3.3 Results and Discussion .. 82
3.3.1 Crystal Structures ... 82
3.3.1.1 The Structure of Mo(CO)4(NP) .. 82
3.3.1.2 The Structure of Mo(CO)4(O5NP) ... 86
3.3.2 Nuclear Magnetic Resonance Spectra ... 90
3.3.2.1 1H and 31P NMR Spectra of the Complexes 90
3.3.2.2 \(^{13}\)C NMR Spectra of the Complexes ... 92
3.3.3 IR Spectra .. 93
3.3.4 Electrospray Mass Spectroscopy Results ... 94
3.4 Summary .. 95
3.5 References .. 96

Chapter 4
Cation binding by the Complexes of O\textsubscript{5}NP ... 97
4.1 Introduction .. 98
4.2 Experimental .. 99
4.2.1 Instrumentation .. 99
4.2.2 Materials ... 99
4.2.3 Cation Binding Studies ... 99
4.3 Results and Discussion .. 101
4.3.1 Cation Binding to O\textsubscript{3}NH\textsubscript{2} and O\textsubscript{5}NP 101
4.3.2 Cation binding to the Cr(0), Mo(0) and W(0) carbonyl complexes .. 103
4.3.3 Cation Binding to the \([M(O\textsubscript{5}NP)\textsubscript{2}][PF\textsubscript{6}]\) \(M =\text{Cu, Ag, Au}\) complexes .. 104
4.3.4 The Cation Binding to the Halide Complexes of Cu(I), Ag(I) and Au(I) .. 108
4.3.5 Crystal Structures ... 111
4.3.5.1 The structure of W(CO)\textsubscript{4}(O\textsubscript{5}NP)Na(PF\textsubscript{6}) 111
4.3.5.2 The Structure of \([\text{Cu(O\textsubscript{5}NP)\textsubscript{2}]K[PF\textsubscript{6}]_2}\) 117
4.4 Summary .. 125
4.5 References .. 126

Appendix A
X-ray structural analyses ... Data CD
List of Figures

1.1 2-(diphenylphosphino)pyridine .. 3
1.2 Aminophosphines .. 4
1.3 Pd(I) iminophosphine catalyst ... 5
1.4 N-(2-diphenylphosphino)benzylidene)(2-(2-pyridyl)ethyl)amine palladium(0) ... 5
1.5 (R)-((2-(diphenylphosphino)phenyl)methylene)
(1-(2,4,6-trimethylphenyl)ethyl)amine ... 6
1.6 Idealised 2:1 and 3:2 sandwich complexes .. 9
1.7 Benzo-18-crown-6 with bound CsNCS .. 9
1.8 A Cu(I) complex that has a blue shift in its MLCT upon cation uptake 11
1.9 A Co(II) complex of a tetraamine with a 12-crown-4 pendent ligand 12
1.10 Ferrocene compounds with one and two benzo-15-crown-5 moieties 13
1.11 Features of an electrospray mass spectrometer 15
1.12 The spray produced by a high potential difference 16
1.13 The ligands NP and O$_5$NP ... 19
2.1 ORTEP diagram of O$_5$NP .. 35
2.2 ORTEP diagram of [Cu(NP)$_2$][PF$_6$] ... 39
2.3 ORTEP diagram of [Ag(NP)$_2$][PF$_6$] ... 43
2.4 ORTEP diagram of [Au(NP)$_2$][PF$_6$] .. 47
2.5 ORTEP diagram of [Cu(NP)Br]$_2$.. 51
2.6 ORTEP diagram of Au(NP)Cl .. 55
2.7 ORTEP diagram of Au(NP)Br .. 60
2.8 The 31P NMR spectrum of [Ag(NP)$_2$][PF$_6$] 71
3.1 ORTEP diagram of Mo(CO)$_4$(NP) .. 83
3.2 ORTEP diagram of Mo(CO)$_4$(O$_5$NP) ... 87
3.3 The v(CO) modes of a cis-[M(CO)$_4$L$_2$] system 93
4.1 The 1:1 and 2:1 complex to cation species of O$_5$NH$_2$ and O$_5$NP 101
4.2 The relative alkali cation binding strengths of O$_5$NH$_2$ and O$_5$NP 102
4.3 1:1 and 2:1 cation binding by M(CO)$_4$(O$_5$NP) 103
4.4 The relative alkali cation binding strengths of
M(CO)$_4$(O$_5$NP) (M = Cr, Mo, W) .. 104
4.5 Some possible cation binding modes of [M(O$_5$NP)$_2$][PF$_6$].......................... 105
4.6 A probable mode of cation binding by [M(O$_5$NP)$_2$][PF$_6$].......................... 105
4.7 The relative alkali cation binding strengths of [M(O$_5$NP)$_2$][PF$_6$] (M = Cu, Ag, Au).. 106
4.8 The ESMS spectra of [Au(O$_5$NP)$_2$M]$^{2+}$ (M = Li, Na, K, Rb, Cs).............. 107
4.9 Possible modes of cation binding by Au(O$_5$NP)Cl 108
4.10 Cation binding formations possible for [M(O$_5$NP)Cl]$_2$ (M = Cu, Ag)........ 109
4.11 The relative alkali cation binding strengths of M(O$_5$NP)Cl (M = Cu, Ag, Au).. 110
4.12 ORTEP diagram of W(CO)$_n$(O$_5$NP)Na(PF$_6$) with bidentate PF$_6^-$........ 113
4.13 ORTEP diagram of the crown ether moiety with tridentate PF$_6^-$ 114
4.14 ORTEP diagram of [Cu(O$_5$NP)$_2$]K[PF$_6$]$_2$... 120
4.15 ORTEP diagram of [Cu(O$_5$NP)$_2$]K[PF$_6$]$_2$ displaying the sandwiching of the K$^+$ cation ... 121
List of Tables

1.1 Crown cavity and ionic diameters .. 8
1.2 Formation constants of benzo-15-crown-5 with alkali cations 8
1.3 Electrochemical data ... 13
2.1 Crystal data and structure refinement for O$_5$NP 36
2.2 Selected bond lengths and angles for O$_5$NP 37
2.3 Selected torsion angles for O$_5$NP .. 37
2.4 Crystal data and structure refinement for [Cu(NP)$_2$][PF$_6$] 40
2.5 Selected bond lengths and angles for [Cu(NP)$_2$][PF$_6$] 41
2.6 Selected torsion angles for [Cu(NP)$_2$][PF$_6$] 41
2.7 Crystal data and structure refinement for [Ag(NP)$_2$][PF$_6$] 44
2.8 Selected bond lengths and angles for [Ag(NP)$_2$][PF$_6$] 45
2.9 Selected torsion angles for [Ag(NP)$_2$][PF$_6$] 45
2.10 Hydrogen bonds for [Ag(NP)$_2$][PF$_6$] .. 45
2.11 Comparison of bond length and angles ... 46
2.12 Crystal data and structure refinement for [Au(NP)$_2$][PF$_6$] 48
2.13 Selected bond lengths and angles for [Au(NP)$_2$][PF$_6$] 49
2.14 Selected torsion angles for [Au(NP)$_2$][PF$_6$] 49
2.15 Crystal data and structure refinement for [Cu(NP)Br]$_2$ 52
2.16 Selected bond lengths and angles for [Cu(NP)Br]$_2$ 53
2.17 Selected torsion angles for [Cu(NP)Br]$_2$ 53
2.18 Crystal data and structure refinement for Au(NP)Cl 56
2.19 Selected bond lengths and angles for Au(NP)Cl 57
2.20 Selected torsion angles for Au(NP)Cl ... 57
2.21 Hydrogen bonds for Au(NP)Cl ... 58
2.22 Crystal data and structure refinement for Au(NP)Br 61
2.23 Selected bond lengths and angles for Au(NP)Br 62
2.24 Selected torsion angles for Au(NP)Br .. 62
2.25 Hydrogen bonds for Au(NP)Br .. 62
2.26 Selected Far IR spectral results and comparison of Au(NP)X 63
2.27 Selected Far IR spectral results and comparison of [Ag(NP)X]$_2$ 64
2.28 Selected IR data for the NP ligand and its complexes 65
2.29 Selected IR data for the O₅NP ligand and its complexes 66
2.30 Selected ³¹P and ¹H NMR data for the ligands ... 67
2.31 Selected ³¹P and ¹H NMR data of the PF₆⁻ complexes 68
2.32 Selected ³¹P and ¹H NMR data for the halo complexes 69
2.33 Selected ESMS data for the ligands .. 72
2.34 Selected ESMS data of the PF₆⁻ salts ... 72
2.35 Selected ESMS data of the halide complexes ... 73
3.1 Details of preparation .. 81
3.2 Elemental analyses ... 81
3.3 Crystal data and structure refinement for Mo(CO)₄(NP) 84
3.4 Selected bond lengths and angles for Mo(CO)₄(NP) 85
3.5 Selected torsion angles for Mo(CO)₄(NP) .. 85
3.6 Hydrogen bonds for Mo(CO)₄(NP) .. 85
3.7 Crystal data and structure refinement for Mo(CO)₄(O₅NP) 88
3.8 Selected bond lengths and angles for Mo(CO)₄(O₅NP) 89
3.9 Selected torsion angles for Mo(CO)₄(O₅NP) ... 89
3.10 Hydrogen bonds for Mo(CO)₄(O₅NP) ... 90
3.11 Selected ¹H and ³¹P NMR data for the carbonyl complexes...................... 91
3.12 Selected ¹³C NMR data for the carbonyl complexes 92
3.13 Selected IR data of the carbonyl complexes ... 93
3.14 Selected ESMS data of the carbonyl complexes 94
4.1 Mass and concentration of alkali chlorides .. 99
4.2 Crystal data and structure refinement for W(CO)₄(O₅NP)Na(PF₆) 115
4.3 Selected bond lengths and angles for W(CO)₄(O₅NP)Na(PF₆) 116
4.4 Selected torsion angles for W(CO)₄(O₅NP)Na(PF₆) 117
4.5 Crystal data and structure refinement for [Cu(O₅NP)₂]K[PF₆]₂ 122
4.6 Selected bond lengths and angles for [Cu(O₅NP)₂]K[PF₆]₂ 123
4.7 Selected torsion angles for [Cu(O₅NP)₂]K[PF₆]₂ .. 124
4.8 Hydrogen bonds for [Cu(O₅NP)₂]K[PF₆]₂ .. 124
List of Schemes

1.1 Possible coordination modes ... 2
1.2 The three main types of P\(\cap\)N ligands ... 3
1.3 Examples of crown ethers ... 7
1.4 Selective binding .. 7
1.5 A metal complex with a crown ether moiety ... 10
1.6 A Ni(CO)\(_3\)L complex binding Na\(^+\) ions ... 11
2.1 A Schiff base condensation reaction ... 32
Abbreviations.

NP \quad N-(2-diphenylphosphinobenzylidine)-aniline
O_{5}NP \quad N-(2-diphenylphosphinobenzylidine)-4'-(benzo-15-crown-5)
2PCHO \quad 2-(diphenylphosphino)benzaldehyde.
ArNH_{2} \quad Aniline.
O_{2}NH_{2} \quad 4'-aminobenzo-15-crown-5.
Ph_{2}Ppy \quad 2-(diphenylphosphino)pyridine
NBD \quad 2,5-norbornadiene.
Pip \quad Piperidine.
Ph \quad Phenyl
Bz \quad Benzo group
Cy \quad Cyclohexyl
Me \quad Methyl
L \quad Ligand (chemical), Litre (measurement)
IR \quad Infrared
NMR \quad Nuclear magnetic resonance
ESMS \quad Electrospray mass spectrometry
FAB+ \quad Fast atom bombardment, positive mode
\delta \quad Chemical shift in ppm.
ppm \quad Parts per million
Hz \quad Hertz.
J_{xY}^{X} \quad Coupling constant over \chi bonds between atoms X and Y.
s \quad Singlet (spectral)
d \quad Doublet (spectral)
t \quad Triplet (spectral)
sep \quad Septuplet (spectral)
m \quad Multiplet (spectral)
\nu(X-Y) \quad Stretching frequency of X-Y bond.
m/z \quad Mass per charge.
ORTFEP The computer program used to produce illustrations of X-ray crystallography structural analyses.
MLCT Metal to ligand charge transfer
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLCT</td>
<td>Ligand to ligand charge transfer</td>
</tr>
<tr>
<td>logK</td>
<td>Formation constants</td>
</tr>
<tr>
<td>E_f</td>
<td>Redox potential</td>
</tr>
<tr>
<td>ΔE</td>
<td>Change in redox potential</td>
</tr>
<tr>
<td>CDCl$_3$</td>
<td>Deuterated chloroform</td>
</tr>
<tr>
<td>CD$_3$CN</td>
<td>Deuterated acetonitrile</td>
</tr>
<tr>
<td>TMS</td>
<td>Tetramethylsilane</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>FW</td>
<td>Formula weight</td>
</tr>
<tr>
<td>μ</td>
<td>Gyromagnetic constant</td>
</tr>
<tr>
<td>U(eq)</td>
<td>Displacement parameters</td>
</tr>
<tr>
<td>g</td>
<td>Grams</td>
</tr>
<tr>
<td>mg</td>
<td>Milligrams</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimoles</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitres</td>
</tr>
<tr>
<td>h</td>
<td>Hours</td>
</tr>
<tr>
<td>molL$^{-1}$</td>
<td>Moles per litre</td>
</tr>
</tbody>
</table>