Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Surface characteristics of an adhesive thermophilic spore-forming *Bacillus*, isolated from milk powder

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Food Technology

At Massey University, Palmerston North, New Zealand

Jon Stuart Palmer

2008
ABSTRACT

The growth of thermophiles during the manufacture of milk powder leads to a progressive increase in the number of thermophilic bacteria contaminating the final product. The limited residence time of the milk in the plant during milk powder manufacture and the concentration effect of converting milk into milk powder cannot explain the number of thermophiles found in the final product. This suggests that thermophiles are attaching to the large surface area of stainless steel found within a milk powder plant and then growing and developing into biofilms, with individual cells and/or biofilm fragments sloughing off into the product line and thus contaminating the final product.

The aim of the present study was to investigate the attachment mechanisms that enable the thermophile *Anoxybacillus flavithermus* (B12) to attach to stainless steel surfaces. Passing a B12 culture through a column of stainless steel chips, collecting the first cells to pass through, re-culturing and repeating the process six times, resulted in the isolation of a mutant, labelled X7, with 10-fold reduced ability to attach to stainless steel as well as a reduced ability to attach to plastic and glass.

A comparison of bacterial cell surface properties indicated that X7 was less hydrophobic than its parental strain B12. Cell surface charge measurements also suggest that X7 has less net negative surface charge. Disruption of extracellular polysaccharides and DNA appeared to have no effect on the attachment process. Removal of surface proteins caused a reduction in attachment of B12 and X7 as well as a reduction in surface hydrophobicity suggesting surface protein involvement in both.

Analysis by two-dimensional gel electrophoresis of lysozyme/mutanolysin extracted surface proteins revealed two proteins expressed at reduced levels in X7 compared with B12. One protein was identified by mass spectrometry as the cytoplasmic enzyme Formate acetyltransferase. The role of Formate acetyltransferase and the
second unidentified protein on the attachment process of *Anoxybacillus flavithermus* remains unclear.
LIST OF PUBLICATIONS

LIST OF PRESENTATIONS

ACKNOWLEDGEMENTS

I would like to thank chief supervisor Prof John Brooks for this supervision throughout this project, even after his move from Massey University to Auckland Institute of Technology University. His ability to keep a balanced view of the overall project with metaphors such as “How will this make the boat go faster?” always kept the final goal of this project in mind.

Thanks must also go to my other supervisors Assoc/Prof Steve Flint for his never-ending encouragement and guidance. I would also like to thank Dr Jan Schmid for his helpful discussions and ideas throughout this project.

Thanks also to everyone in the Microbiology suite, in particular Ann-Marie Jackson, John Sykes, Mike Sahayam, Judy Collins and Susan Bassett as well as various postgraduate and visiting Dutch students working in the same laboratory.

I also gratefully acknowledge, Fonterra research centre staff members, Kylie Walker, Richard Ireland and Dr Skealt for their use of analytical equipment and technical advice.

Finally, I would like to thank family and friends who have encouraged and helped keep me sane the last few years. To Terri and my daughters (Bree and Sophie), no words can explain my gratitude to you for allowing me to pursue this dream.
TABLE OF CONTENTS

Abstract .. ii

List of Publications .. iv

List of Presentations .. iv

Acknowledgements .. v

Table of Contents .. vi

List of Figures .. xix

List of Tables .. xxviii

List of Abbreviations ... xxix

Chapter 1 .. 1

Introduction and project objectives ... 1

1.1 Introduction ... 1

1.2 Project objectives .. 2
Chapter 2
Bacterial cell attachment, the beginning of a biofilm – a
review of the Literature .. 3

2.1 Thermophiles in foods .. 4
 2.1.1 Thermophiles in the dairy industry 4
 2.1.2 Dairy biofilms ... 5

2.2 Initial bacterial attachment to surfaces 8
 2.2.1 Conditioning of a surface .. 8
 2.2.2 Mass transport ... 10
 2.2.3 Initial attachment .. 12
 2.2.4 Surface charge ... 13
 2.2.5 Hydrophobicity ... 16
 2.2.6 DLVO theory ... 20
 2.2.7 Surface roughness and micro-topography 22
 2.2.8 Role of surface carbohydrates in attachment 23
 2.2.9 Role of surface proteins in attachment of
 Staphylococcus species .. 24

2.3 Conclusion ... 26

Chapter 3
Methods and materials ... 28

3.1 Source of isolates ... 32

3.2 Culture preparation ... 33
3.3 Isolation of variant X7 from Anoxybacillus flavithermus strain (B12) with reduced attachment to stainless steel

3.4 Attachment Assay

3.4.1 Epifluorescence microscopy

3.4.2 Impedance detection

3.4.3 Comparison of B12 and X7 attachment to stainless steel cuttings in a glass column and to stainless steel cuttings suspended in solution

3.4.4 Polystyrene microtiter plate assay

3.5 Comparison of B12 and X7 Bacterial Strains

3.5.1 Random amplified polymorphic DNA (RAPD) analysis

3.5.1.2 Agarose gel electrophoresis

3.5.2 API biochemical profile

3.5.3 Transmission electron microscopy (TEM)

3.5.4 Supernatant exchange and effect on attachment to stainless steel

3.5.5 Cell surface Hydrophobicity

3.5.5.1 Microbial adhesion to hydrocarbon test (MATH)

3.5.5.2 Hydrophobic interactive chromatography (HIC)

3.5.5.3 Attachment to Sigma coated Glass
3.5.6 Cell surface charge ..46
3.5.6.1 Zeta potential ...46
3.5.6.2 Electrostatic interaction chromatography (EIC)47
3.5.6.3 Effect of pH on attachment to stainless steel48

3.5.8 Quantitative analysis of protein concentration49

3.5.9 Treatment of cells with protein disrupting agents50

3.5.10 Quantitative analysis surface carbohydrates50

3.5.11 Treatment of cells with carbohydrate disrupting agent51

3.5.12 HPLC analysis of surface carbohydrates51

3.5.13 Treatment of cells with DNase I52

3.6 Comparison of Total and Surface extracted Proteins by Gel Electrophoresis ...53

3.6.1 One-dimensional gel electrophoresis (SDS-PAGE) of cell proteins ...53
3.6.1.1 Total cell protein extraction for one-dimensional gel electrophoresis (SDS-PAGE) ...53
3.6.1.2 Acid Glycine surface protein extraction for one-dimensional gel electrophoresis (SDS-PAGE)53
3.6.1.3 Lysozyme surface protein extraction for one-dimensional gel electrophoresis (SDS-PAGE)54
3.6.1.4 One-dimensional gel electrophoresis (SDS-PAGE) method ..54
3.6.1.4.1 Gel staining and photography 57

3.6.2 Two-dimensional gel electrophoresis (2D PAGE) of cell proteins ... 58

3.6.2.1 Total cell protein extraction for two-dimensional gel electrophoresis (2D PAGE) ... 58

3.6.2.2 Acid Glycine surface protein extraction for two-dimensional gel electrophoresis (2D PAGE) 59

3.6.2.3 Lysozyme surface protein extraction for two-dimensional gel electrophoresis (2D PAGE) 59

3.6.2.4 Two-dimensional gel electrophoresis (2D PAGE) method ... 58

3.6.2.4.1 Isoelectric focusing .. 60

3.6.2.4.2 Second dimension and strip transfer 61

3.6.2.4.3 Gel Staining and Image acquisition 63

3.6.2.4.4 ImageMaster 2D software 63

3.6.2.5 Cytoplasmic enzyme assay ... 64

3.7 Protein Identification ... 65

3.7.1 Electrospray ionisation–Quadrupole–Time-of Flight (ESI-QUAD-TOF) ... 65

3.7.2 Bioinformatics ... 65

3.7.2.1 BLAST searches ... 65

3.7.2.2 Sequence alignments and Phylogenetic comparison ... 65

3.7.3 Polymerase Chain reaction (PCR) ... 66

3.7.4 Extraction of PCR product from agarose ... 67
3.7.5 DNA cloning and Transformation for DNA sequencing 67
 3.7.5.1 DNA cloning .. 67
 3.7.5.2 Transformation .. 68
3.7.6 Plasmid extraction .. 69
3.7.7 DNA quantification .. 69
3.7.8 DNA sequencing .. 70

Chapter 4
Isolation of isogenic strain X7 with reduced attachment to stainless steel from parental strain B12 .. 70

4.1 Introduction .. 72

4.2 Procedures .. 73
 4.2.1 Isolation of Strain X7 ... 73
 4.2.2 Comparison of growth rates and Biochemical and RAPD profiles of B12 and X7 .. 73
 4.2.3 Attachment of dairy and non-dairy isolates of Anoxybacillus and Geobacillus strains to stainless steel... 74

4.3 Results .. 75
 4.3.1 Attachment of B12 and X7 to various surfaces 75
4.3.1.1 Attachment of B12 and X7 to stainless steel measured by epifluorescence microscopy count 75
4.3.1.2 Attachment to stainless steel by cultures of B12 and X7 measured by impedance 76
4.3.1.3 Cumulative Percentage of Cells Collected Through Column ... 77
4.3.1.4 Attachment of B12 and X7 to suspended stainless steel chips ... 78
4.3.1.5 Attachment of B12 and X7 to Glass measured by epifluorescence microscopy count 79
4.3.1.6 Attachment of B12 and X7 cultures to polystyrene plates ... 80
4.3.1.7 Attachment of B12 and X7 cultures to plastic centrifuge tubes .. 81

4.3.2 Growth rate and attachment of B12 and X7 .. 82

4.3.3 Biochemical and RAPD analysis of B12 and X7 85
 4.3.3.1 RAPD comparison of B12 and X7 .. 85
 4.3.3.2 Morphology and biochemical test profiles of B12 and X7 using API 50CHB test strip 86

4.3.4 Attachment of dairy and non-dairy isolates of Anoxybacillus and Geobacillus strains to stainless steel.. 88

4.4 Discussion .. 89

4.5 Conclusion .. 92
Chapter 5

Cell surface properties of B12 and X7 ... 94

5.1 Introduction ... 96

5.2 Procedures ... 97

5.3 Results ... 99

5.3.1 Transmission Electron Microscopy of B12 and X7 cells 99

5.3.2 Supernatant exchange of B12 and X7 and the effect on attachment of B12 and X7 to stainless steel coupons 100

5.3.3 Surface Charge of B12 and X7 .. 101

5.3.3.1 Zeta potential .. 101

5.3.3.2 Electrostatic Interaction Chromatography 102

5.3.3.3 Effect of pH on the attachment of B12 and X7 to stainless steel coupons ... 103

5.3.4 Hydrophobicity of B12 and X7 .. 104

5.3.4.1 Determination of cell surface hydrophobicity using MATH (Microbial Adhesion to Hydrocarbons) 104

5.3.4.2 Determination of cell surface hydrophobicity using HIC (Hydrophobic Interactive Chromatography) 105

5.3.4.3 Attachment of B12 and X7 to glass and Sigmacote coated glass ... 106
5.3.5 Attachment of B12 and X7 cells to stainless steel coupons following disruption of surface proteins by various methods ... 107

5.3.6 Surface Carbohydrates ... 109
 5.3.6.1 The effect of Acidified Sodium metaperiodate treated cells and effect on attachment to stainless steel coupons ... 109
 5.3.6.2 Analysis of extracellular polysaccharide (EPS) from B12 and X7 ... 110

5.3.7 Effect of DNase I on attachment of B12 and X7 to stainless steel coupons .. 112

5.3.8 Effect of various treatments on surface charge of B12 and X7 as measured by Electrostatic Interaction Chromatography ... 113

5.3.9 Effect of various treatments on hydrophobicity of B12 and X7 as measured Microbial Adhesion to Hydrocarbons ... 114

5.4 Discussion .. 115

5.5 Conclusion .. 124
Chapter 6
Comparison of total cell and surface extracted proteins from B12 and X7 cells using one-dimensional SDS-PAGE and two-dimensional PAGE gel electrophoresis

6.1 Introduction

6.2 Procedures
 6.2.1 One-dimensional SDS-PAGE of total, acid-glycine and lysozyme/mutanolysin extracted proteins
 6.2.2 Two-dimensional PAGE of total, acid-glycine and lysozyme/mutanolysin extracted proteins

6.3 Results
 6.3.1 One-dimensional SDS-PAGE of total and surface extracted proteins
 6.3.1.1 One-dimensional SDS-PAGE of total cell proteins
 6.3.1.2 One-dimensional SDS-PAGE of acid-glycine surface extracted proteins
 6.2.1.3 One-dimensional SDS-PAGE of lysozyme/mutanolysin surface extracted proteins
 6.2.1.4 Summary of One-dimensional SDS-PAGE of total and surface extracted proteins
 6.3.2 Two-dimensional PAGE of total and surface extracted proteins
6.3.2.1 Two-dimensional PAGE of total cell proteins 136
6.3.2.2 Two-dimensional PAGE of acid-glycine surface extracted proteins ... 138
6.3.2.3 Two-dimensional PAGE of lysozyme/mutanolysin surface extracted proteins 140
6.3.2.3.1 Validation of lysozyme/mutanolysin extraction .. 145

6.4 Discussion .. 146

6.5 Conclusion ... 150

Chapter 7
Identification and cloning of proteins found to be present at reduced levels on the surface of mutant X7 compared with its parental strain B12 .. 151

7.1 Introduction .. 152

7.2 Procedures ... 156

7.3 Results ... 158

7.3.1 Identification of gel Spots 1 and 2 by Electrospray ionization quadrupole time of flight (ESI-QUAD-TOF) 158

7.3.2 PCR primer design by bioinformatic analysis of Formate acetyltransferase ORF from related bacteria 159
7.3.3 PCR amplification and cloning of the Formate acetyltransferase gene from B12 and X7 .. 160

7.3.4 Bioinformatic analysis of Formate acetyltransferase DNA and predicted protein sequences from B12 and X7 sequences ... 162

7.3.5 Levels of Formate acetyltransferase from total cell proteins of B12 and X7 ... 165

7.4 Discussion ... 168

7.5 Conclusion .. 174

Chapter 8
Discussion ... 175

8.1 Final Discussion .. 174

8.2 Future work .. 181

8.3 Final Conclusion ... 183

Appendix A1 .. 184

Appendix A2 .. 187

Appendix A3 .. 204

Appendix A4 .. 212
LIST OF FIGURES

Figure 3.1: Photograph of the glass column containing stainless steel chips used to select for attachment deficient strain of B12....35

Figure 3.2: Calibration curve for planktonic Anoxybacillus flavithermus strain B12 on the MiniTrac 4000 impedance monitor using TSB as the growth medium. IDT = Impedance Detection Time ...38

Figure 3.3: Calibration curve for planktonic Anoxybacillus flavithermus strain X7 on the MiniTrac 4000 impedance monitor using TSB as the growth medium. IDT = Impedance Detection Time ...38

Figure 3.4: Calibration curve for protein estimation using PIERCE BCA protein assay kit ..49

Figure 3.5: Calibration curve for the detection of EPS...............................51

Figure 3.6: Plasmid vector pCR® 4-TOPO® (Invitrogen) used for cloning PCR products..68

Figure 3.7: Calibration curve for DNA estimation using Fluorescence assay kit ...70

Figure 4.1: Summary of strategy used to isolate attachment deficient mutant from culture B12. This process was repeated seven times to produce the isolate known as X7, derived by selection of natural variants of culture B12.......................75
Figure 4.2: Epifluorescence microscopy count of strain B12 attached to stainless steel (x400 magnification, $5.21 \pm 0.02 \log_{10}$ cells per cm2) ... 76

Figure 4.3: Epifluorescence microscopy count of strain X7 attached to stainless steel (x400 magnification, $3.69 \pm 0.24 \log_{10}$ cells per cm2) ... 76

Figure 4.4: Cumulative percentage of B12 and X7 cells collected after passing through a column filled with stainless steel chips. 78

Figure 4.5: The attachment ability of B12 and X7 cells to suspended stainless steel chips by measuring the reduction of cells present in the suspended medium .. 79

Figure 4.6: Epifluorescence microscopy count of strain B12 attached to glass (x400 magnification, $4.13 \pm 0.08 \log_{10}$ cells per cm2) ... 80

Figure 4.7: Epifluorescence microscopy count of strain X7 attached to glass (x400 magnification, $3.78 \pm 0.28 \log_{10}$ cells per cm2) ... 80

Figure 4.8: Attachment of B12 and X7 cultures to polystyrene nontreated microtitre plates stained with crystal violet. All wells of X7 and B12, labelled 1 to 8 were loaded with equal volume and density of cells. Control wells contained no cells ... 81
Figure 4.9: Two 500 ml plastic centrifuge tubes showing the ability of B12 to attach to the plastic wall of the centrifuge tube compared to X7, during centrifugation at 1000 x g for 20 minutes. Culture supernatant was left behind to provide contrast...82

Figure 4.9A: Two 40 ml centrifuge tubes highlighting the ability of B12 to attach plastic wall of the centrifuge tube compared to X7, during centrifugation at 1000 x g for 20 minutes.........................82

Figure 4.10: Optical density over 24 hour period of B12 and X7 cultures..84

Figure 4.11: Total viable count of B12 and X7 cultures over 24 hour period ..84

Figure 4.12: Impedance (MiniTrac 4000) count of B12 and X7 attached to stainless steel coupons...85

Figure 4.13: Epifluorescence microscopy count of B12 and X7 attached to stainless steel coupons...85

Figure 4.14: RAPD profiles of B12 and X7 cells. Lanes 3 and 4 contain DNA amplified from B12 and X7 respectively. Lanes 1 and 5 both contain 1 kb + ladder (Invitrogen). Lane 2 contains negative control...86

Figure 4.15: Attachment of various Anoxybacillus and Geobacillus strains to stainless steel coupons...89
Figure 5.1: Transmission electron micrographs of intact B12 & X7 cells and Ruthenium red stained cells of B12 (labelled A) and X7 (labelled B). Red arrows point to outer layer of cell wall........99

Figure 5.2: Supernatant exchange of B12 and X7 and the effect on attachment to stainless steel coupons. Error bars represent the standard deviation from the mean of 3 replicates........100

Figure 5.3: Zeta potentials of strains B12 and X7 as a function of pH
Error bars represent the standard deviation from the mean of 3 replicates...101

Figure 5.4: Proportion of B12 & X7 cells retained on anionic (functional group R-CH₂N+(CH₃)₃) and cationic (functional group R-SO₃⁻) exchange resins at pH 7. Error bars represent the standard deviation from the mean of 3 replicates..........102

Figure 5.5: Effect of pH on attachment of B12 and X7 to stainless steel coupons as measured by epifluorescence microscopy. Error bars represent the standard deviation from the mean of 3 replicates...103

Figure 5.6: Percentage hydrophobicity measurements of strains B12 and X7 using MATH test over increasing ionic strengths. Error bars represent the standard deviation from the mean of 3 replicates...104

Figure 5.7: Percentage absorbance measurements of strains B12 and X7 using HIC test over increasing ionic strengths. Error bars represent the standard deviation from the mean of 3 replicates...105
Figure 5.8: Attachment of B12 and X7 to Sigmacote coated and uncoated glass with increasing ionic strengths. Error bars represent the standard deviation from the mean of 3 replicates..........................106

Figure 5.9: The attachment of B12 and X7 to stainless steel following disruption of surface proteins. Error bars represent the standard deviation from the mean of 3 replicates..............108

Figure 5.10: Attachment of B12 & X7 to stainless steel following treatment with acidified Sodium metaperiodate to remove surface carbohydrates. Error bars represent the standard deviation from the mean of 3 replicates..................109

Figure 5.11: Monosaccharide composition of EPS isolated from strain B12 digested by Sulphuric acid and analysed by HPLC......111

Figure 5.12: Monosaccharide composition of EPS isolated from strain X7 digested by Sulphuric acid and analysed by HPLC........111

Figure 5.13: Attachment of B12 & X7 to stainless steel following treatment with DNAase I to remove surface associated DNA. Error bars represent the standard deviation from the mean of 3 replicates...112

Figure 5.14: Effect of Trypsin, Acid-glycine and Sodium metaperiodate treatment on surface charge of B12 and X7 cells as measured by Electrostatic Interaction Chromatography......113
Figure 5.15: Effect of Trypsin, Acid-glycine and Sodium metaperiodate treatment on Hydrophobicity of B12 and X7 cells as measured by MATH (Microbial Adhesion to Hydrocarbons) in the presence 1, 2, 3 or 4 molar concentrations of NaCl...114

Figure 6.1: Lysozyme, mutanolysin and lysostaphin cleavage sites in the peptidoglycan layer of Gram positive bacteria (adapted from Gatlin et al., 2006)...128

Figure 6.1: Image of a typical SDS-PAGE of total cell proteins from B12 cells and X7 cells ..131

Figure 6.2: Image of a typical SDS-PAGE of acid-glycine extracted surface proteins from X7 and B12 ...132

Figure 6.3: Image of a typical SDS-PAGE of lysozyme extracted surface proteins from lysozyme control (lane 1), X7 (lane 2) and B12 (lane 3) ..133

Figure 6.4: 2D-PAGE gels of whole cell protein extracts of B12 and X7 cells. 200µg of protein extract was run on a 17cm, pH 3-10 strip, with the second dimension using a 12.5% SDS-PAGE gel, stained with Sypro Ruby and Laser scanned at 450nm ...135

Figure 6.5: Gel to gel comparisons of whole cell gel sections B12 (labelled A) and X7 (labelled B) and 3D images (representations of Spot intensity) of the same gel sections using Imagemaster 2D software..........................136
Figure 6.6: 2D PAGE of acid-glycine surface protein extracts from B12 and X7 cells. 300µg of protein extract was run on a 17cm, pH 3-10 strip, with the second dimension using a 12.5% SDS-PAGE gel, stained with SYPRO Ruby and laser scanned at 450nm.

Figure 6.7: Comparisons of acid-glycine surface protein extracted gel sections B12 (labelled A) and X7 (labelled B) and 3D images of the same gel sections using Imagemaster 2D software on the right column. The acid-glycine sample strips were loaded with 300µg of protein, which is the maximum recommended by the strip manufactures.

Figure 6.8: 2D PAGE Comparisons of lysozyme/mutanolysin surface extracted protein gel sections from B12 and X7. 300µg of protein extract was run on a 17cm, pH 3-10 strip, with the second dimension using a 12.5% SDS-PAGE gel, stained with SYPRO Ruby and laser scanned at 450nm. Arrows highlight differences between B12 and X7 that were reproducible in all four samples.

Figure 6.9: The increased concentration of Spot 1 (Red arrows) and Spot 2 (Blue arrows) in B12 cultures compared with X7 cultures over four separate samples. Black arrows point to reference Spots that indicate relative protein loading between B12 and X7 samples.

Figure 7.1: Protein identification by mass spectrometry. (A) Protein identification by matrix-assisted laser desorption/ionisation – time of flight (MALDI-TOF). Proteins digested with proteolytic enzymes into peptide fragments and then
analysed by MALDI-TOF to measure the masses of the peptides is known as peptide mass fingerprinting. The peptide masses are then searched against the peptide mass maps generated from the theoretical digest of proteins in a database. (B) In tandem mass spectrometry one peptide fragment is directed into a collision chamber for fragmentation. Mass analysis of the peptide fragments generated can be used to determine the amino acid sequence of the peptide (adapted from Graves and Haystead, 2003). ... 154

Figure 7.2: Amplification of Formate acetyltransferase ORF from B12 and X7. (A) DNA sequences of Formate acetyltransferase gene from five Bacillus species, showing extensive homology which were used to design PCR primers. 1) Bacillus thuringiensis str. Al Hakam, 2) Bacillus anthracis str. Sterne, 3) Bacillus cereus ATCC 10987, 4) Bacillus thuringiensis serovar konkukian, 5) Bacillus licheniformis ATCC 14580. (B) Direct PCR primers designed from the sequence comparison of five Bacillus species and the predicted position of the primers in the Formate acetyltransferase ORF from B12 and X7 ... 160

Figure 7.3: Agarose gel electrophoresis of PCR products from the amplification of part of the Formate acetyltransferase gene. The green arrow represents a PCR product, which matches the expected size of the partial Formate acetyltransferase gene ... 161

Figure 7.4: Agarose gel electrophoresis of PCR products after second round of amplification ... 161
Figure 7.5: The predicted amino acid sequence from the cloned and sequenced DNA from the Formate acetyltransferase gene fragment amplified from B12 and X7. Underlined amino acids are sequences identified by mass spectrometry from 2D PAGE gels Spots as having homology to known Formate acetyltransferase sequences................................. 163

Figure 7.6: Phyllogenetic relationship of Formate acetyltransferase from *Anoxybacillus flavithermus* with other related bacteria proteins. The phyllogenetic tree in this figure was prepared using BLAST pairwise alignments, with Fast Minimum Evolution as the tree method. For details of the sequences used in this alignment, see Appendix A5.2.......................... 164

Figure 7.7: Two-dimensional-PAGE (2D-PAGE) gels of whole cell protein extracts of B12 and X7 cells. 200µg of protein extract was run on a 17cm, pH 3-10 strip, with the second dimension using a 12.5% SDS-PAGE gel, stained with Sypro Ruby and Laser scanned at 450 nm. Red arrows mark location of Formate acetyltransferase protein and Blue boxes mark sections analysed in Fig 7.8 below.165

Figure 7.8: The comparable expression levels of Formate acetyltransferase enzyme (red arrows) from B12 and X7 total cell proteins over four samples, with 3D images of the each gel underneath. Black and green arrows point to Reference Spots that indicate relative protein loading between B12 and X7 samples................................. 167

Figure 7.9: Formate acetyltransferase catalytic conversion of pyruvate to formate and acetyl-CoA (adapted from Walsh, 1979)......171
LIST OF TABLES

Table 3.1: List of isolates and their origin ... 32

Table 3.2: Composition of citrate and phosphate buffers to create buffers in 2-8 pH range ... 47

Table 3.3: Composition of citrate and phosphate buffers to create buffers in 3-7.2 pH range ... 48

Table 3.4: Primers used in this study ... 66

Table 4.1: Biochemical test profiles of B12 and X7 cultures 87

Table 6.0: Aminopeptidase C assay of lysozyme/mutanolysin surface extractions as a marker of cytoplasmic contamination over a 5 hour period of cell exposure to lysozyme/mutanolysin. Sonicated cells of B12 and X7 were used as positive controls for the assay. B12 and X7 controls contained no lysozyme/mutanolysin enzyme and were used to measure spontaneous cell lysis over the treatment period .. 145

Table 6.1: β-Galactosidase assay of lysozyme/mutanolysin surface extractions as a marker of cytoplasmic contamination over a 5 hour period. Sonicated cells of B12 and X7 were used as positive controls for the assay. B12 and X7 controls contained no lysozyme/mutanolysin enzyme and were used to measure spontaneous cell lysis over the treatment period ... 145

Table 7.1: Various BLAST search programs available 155
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
</tr>
<tr>
<td>AFM</td>
<td>atomic force microscope</td>
</tr>
<tr>
<td>BATH</td>
<td>bacterial adherence to hydrocarbons</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BLAST</td>
<td>basic local alignment search tool</td>
</tr>
<tr>
<td>BCA</td>
<td>bicinechinonic acid</td>
</tr>
<tr>
<td>BAP</td>
<td>biofilm associated protein</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>CHAPS</td>
<td>3-cholamidopropyl-dimethylammonio-1-propanesulfonate</td>
</tr>
<tr>
<td>CIP</td>
<td>cleaning in place</td>
</tr>
<tr>
<td>CID</td>
<td>collision induced spectra</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming units</td>
</tr>
<tr>
<td>Da</td>
<td>daltons</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribosenucleic acid</td>
</tr>
<tr>
<td>DLVO</td>
<td>Derjaguin, Landau, Verwey, Overbeek</td>
</tr>
<tr>
<td>DW</td>
<td>distilled water</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>ESI-QUAD-TOF</td>
<td>electrospray ionization-quadrupole-time-of-flight</td>
</tr>
<tr>
<td>ESIC</td>
<td>electrostatic interactive chromatography</td>
</tr>
<tr>
<td>EB1</td>
<td>equilibration buffer 1</td>
</tr>
<tr>
<td>EB2</td>
<td>equilibration buffer 2</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine tetraacetic acid</td>
</tr>
<tr>
<td>eDNA</td>
<td>extracellular deoxyribosenucleic acid</td>
</tr>
<tr>
<td>EPS</td>
<td>extracellular polysaccharide</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>g/l</td>
<td>grams per litre</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>HIC</td>
<td>hydrophobic interactive chromatography</td>
</tr>
<tr>
<td>IPS</td>
<td>immobilised pH gradient</td>
</tr>
<tr>
<td>IDT</td>
<td>impedance detection time</td>
</tr>
<tr>
<td>IEF</td>
<td>isoelectric electric focusing</td>
</tr>
<tr>
<td>pI</td>
<td>isoelectric point</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base pairs</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>L</td>
<td>litre(s)</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>Magnesium sulphate</td>
</tr>
<tr>
<td>m/z</td>
<td>mass charge ratio</td>
</tr>
<tr>
<td>MALDI</td>
<td>matrix-assisted laser desorption/ionization</td>
</tr>
<tr>
<td>MATH</td>
<td>microbial adherance to hydrocarbons</td>
</tr>
<tr>
<td>µg</td>
<td>microgram(s)</td>
</tr>
<tr>
<td>µl</td>
<td>microlitre(s)</td>
</tr>
<tr>
<td>µm</td>
<td>micrometre(s)</td>
</tr>
<tr>
<td>µM</td>
<td>micromolar</td>
</tr>
<tr>
<td>mA</td>
<td>milliampere</td>
</tr>
<tr>
<td>mg</td>
<td>milligram(s)</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre(s)</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre(s)</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>monobasic potassium phosphate</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>ONPG</td>
<td>o-nitrophenyl-β-D-galactosidase</td>
</tr>
<tr>
<td>TEMED</td>
<td>N-N-N-N-tetramethylene diamine</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>%</td>
<td>percentage</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>KCl</td>
<td>potassium chloride</td>
</tr>
<tr>
<td>RAPD</td>
<td>random amplified polymorphic DNA</td>
</tr>
<tr>
<td>RI</td>
<td>refractive index</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>NaCl</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulfate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SD(s)</td>
<td>standard deviation(s)</td>
</tr>
<tr>
<td>SSP1</td>
<td>Staphylococcus surface protein 1</td>
</tr>
<tr>
<td>SSP2</td>
<td>Staphylococcus surface protein 2</td>
</tr>
<tr>
<td>MS/MS</td>
<td>tandem mass spectroscopy</td>
</tr>
<tr>
<td>TOF</td>
<td>time-of-flight</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscopy</td>
</tr>
<tr>
<td>TAE</td>
<td>tris-acetate-EDTA</td>
</tr>
<tr>
<td>Tris</td>
<td>tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>TE</td>
<td>tris-HCl-EDTA</td>
</tr>
<tr>
<td>TSA</td>
<td>tryptic soya agar</td>
</tr>
<tr>
<td>TSB</td>
<td>tryptic soya broth</td>
</tr>
<tr>
<td>2D-PAGE</td>
<td>two dimensional-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>v/v</td>
<td>volume/volume</td>
</tr>
</tbody>
</table>
Amino acids

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>alanine</td>
</tr>
<tr>
<td>E</td>
<td>glutamic acid</td>
</tr>
<tr>
<td>H</td>
<td>histidine</td>
</tr>
<tr>
<td>L</td>
<td>leucine</td>
</tr>
<tr>
<td>P</td>
<td>proline</td>
</tr>
<tr>
<td>S</td>
<td>serine</td>
</tr>
<tr>
<td>V</td>
<td>valine</td>
</tr>
<tr>
<td>C</td>
<td>cysteine</td>
</tr>
<tr>
<td>F</td>
<td>phenylalanine</td>
</tr>
<tr>
<td>I</td>
<td>isoleucine</td>
</tr>
<tr>
<td>M</td>
<td>methionine</td>
</tr>
<tr>
<td>Q</td>
<td>glutamine</td>
</tr>
<tr>
<td>T</td>
<td>threonine</td>
</tr>
<tr>
<td>Y</td>
<td>tyrosine</td>
</tr>
<tr>
<td>D</td>
<td>aspartic acid</td>
</tr>
<tr>
<td>G</td>
<td>glycine</td>
</tr>
<tr>
<td>K</td>
<td>lysine</td>
</tr>
<tr>
<td>N</td>
<td>asparagine</td>
</tr>
<tr>
<td>W</td>
<td>tryptophan</td>
</tr>
</tbody>
</table>

Nucleotides

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>adenosine</td>
</tr>
<tr>
<td>C</td>
<td>cytidine</td>
</tr>
<tr>
<td>G</td>
<td>guanosine</td>
</tr>
<tr>
<td>T</td>
<td>thymidine</td>
</tr>
</tbody>
</table>