Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Mechanisms of complex programmed patterns of anthocyanin pigment formation in *Antirrhinum majus*

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

In

Plant Molecular Biology

at Massey University, Palmerston North, New Zealand.

Nilangani Nadyeshda Pathirana

2007
Abstract

Antirrhinum majus is a model plant used in flower pigmentation studies. Anthocyanin pigment production is mainly controlled by regulation of transcription of the anthocyanin biosynthetic genes. Two types of transcription factors, MYB and bHLH, together with a WD40 type co-regulator have been shown to regulate the transcription of the anthocyanin biosynthetic genes. In antirrhinum, in addition to the wild type Rosea1 phenotype, in which pigmentation occurs throughout the inner and outer epidermis of the petal, other complex pigmentation patterns are observed, such as anthocyanins being produced only in the outer (abaxial) epidermis of both lobes and upper tube region of the dorsal petals (rosea^dorsea^ phenotype). The major objective of this research project was to understand the genetic regulatory system leading to the development of the two different floral pigmentation patterns in antirrhinum as a means to understanding differential regulation of gene expression in similar cells.

Promoter deletion analysis coupled with linker scanning mutagenesis identified the -162 bp to -120 bp region of the *Rosea1* promoter as important for the regulation of the *Rosea1* gene. Four putative transcription factor-binding sites within this region: a W-box, a pyrimidine box, a DOF and a WRKY transcription factor binding site were shown to be important for *Rosea1* gene regulation.

Promoter deletion analysis carried out on the *rosea1^dorsea^* promoter showed that the proximal 187 bp deletion was, surprisingly, not responsible for the *rosea1^dorsea^* phenotype. Cloning and characterisation of the *Rosea1* promoter sequence from various *Antirrhinum* species and accessions verified this finding. The *rosea1^dorsea^* promoter analysis also indicated that -151 bp of the promoter was sufficient for its expression as well as for the maintenance of petal specific expression. The *rosea1^dorsea^* allele was also shown to encode a functional protein.

In situ hybridisation analysis showed that *Rosea1* transcripts were present in the inner and outer epidermis of the petal tissue of both wild type and *rosea1^dorsea^* petal tissue.
Vascular expression of the *Rosa1* mRNA is indicative of regulation of this gene through sugar or hormonal cues. However, *roseal*

\[\text{roseal}^{dorsea} \]

transcript levels (in *rosea^{dorsea}*) were much lower than *Rosa1* (wild type). Lowered expression of *roseal*

\[\text{roseal}^{dorsea} \]

transcripts may be responsible for the overall weak pigmentation in the *rosea^{dorsea}* flowers. Analysis of the intron sequences of the two alleles revealed that many sequence changes were present in the intron 2 of *roseal*

\[\text{roseal}^{dorsea} \]

. These changes may lead to instability or the lower expression of the *roseal*

\[\text{roseal}^{dorsea} \]

mRNA and may be responsible for the *rosea^{dorsea}* phenotype. Another possibility is that a fourth *Myb* gene may be responsible for the *rosea^{dorsea}* phenotype.

The role of the *Deficiens* gene in direct regulation of *Roseal* was analysed by RNAi and bioinformatics-based methods. The presence of potential MADS box binding sites in the intron 2 region of the *Rosa1* allele indicated that *Rosa1* might be directly regulated by *Deficiens*. Initial experiments using transient assays did not support this suggestion. However, silencing of *Deficiens* in wild type antirrhinum buds led to the loss of anthocyanin pigments in the petals. Further analysis of the RNAi tissue using SEM revealed that the proper development of conical shaped epidermal cells was also affected. The RNAi tissue also developed chlorophyll pigments underscoring the plasticity of petal identity. This work demonstrated that proper expression of *Deficiens* is required throughout flowering for anthocyanin pigment production as well as maintenance of petal cell identity.

The current investigation revealed that the higher order regulation of the *Roseal* alleles in antirrhinum petals is much more complex than initially postulated.
Dedicated to the loving memory
of Chumpa aunty and Podisudu mami
Acknowledgments

I would like to express my gratitude and heartfelt thanks to my supervisors Professor Paula Jameson, Dr Kathy Schwinn, Dr Kevin Davies and Associate Professor Michael McManus. Thank you very much for your support, guidance, encouragement and faith in me. I am also grateful for the support and advice from Professor Cathie Martin.
I appreciate all the help Steve Arathoon, Jan Manson, Margaret Young and Andrew Mullen have given me in the lab. Special thanks to Erin O’Donoghue, Dave Brummell, Don Hunter, Huaibi Zhang, Lyn Watson, Simon Deroles, Jocelyn Eason, David Lewis and Marian McKenzie for helping with numerous queries, and Ian King and Julie Ryan for looking after my many tobacco plants. I am grateful to Ross Lill and Julian Heyes for letting me work at Crop & Food Research. Thanks to Tatyana, Lia, Anya, Nick, Lei, Margaret B., Margaret T., Sheryl, Phil, Carol, Maryanne, Darren, Trev and everyone in the molecular biology lab for your friendship.

Thathi and ammi, none of this would have been possible without your love, guidance, support and encouragement. You are the best parents in the whole world and I would like to thank you so much for giving me the best of everything, I am very grateful. Thank you John, for your love, support and encouragement. Thanks also to my little sis for her love and support and her faith in me. I’m also grateful to my grandparents, uncles and aunties for their best wishes in my endeavours. I would like to dedicate this thesis to the loving memory of Chumpa aunty and Podisudu mami, two people who would have loved to call me Dr. Nadyeshda.

I also acknowledge the Marsden Fund, the Institute of Molecular BioSciences, The Royal Society of New Zealand and the New Zealand Society of Plant Biologists for contributions made towards research and conference travels. I am grateful for the Bright Future Scholarship from the Tertiary Education Commission for providing me with tuition fees, general living expenses and conference monies.
Table of Contents

Title I
Abstract II
Acknowledgments V
Table of Contents VI
List of Figures XI
List of Tables XIV
Abbreviations XVI

Chapter 1: Introduction 1
1.1 Overview 1
1.2 Plant pigments 3
 1.2.1 Anthocyanin pigments 3
 1.2.2 The anthocyanin biosynthetic pathway 3
1.3 Genetic regulation of the anthocyanin biosynthetic pathway in flowers 7
 1.3.1 Eukaryotic gene transcription 8
 1.3.2 Regulation of anthocyanin biosynthetic genes in model species 10
1.4 Regulation of anthocyanin production in *Antirrhinum majus* 15
 1.4.1 *Antirrhinum* as a model plant for pigmentation patterning studies 20
 1.4.2 *Antirrhinum majus* flower architecture 21
 1.4.3 Pigmentation patterns conferred by the *Rosea1* alleles 21
1.5 Regulation of the transcription factors controlling the anthocyanin biosynthetic genes 22
1.6 Role of *Deficiens* in *Antirrhinum majus* flower development 24
1.7 Aims, objectives and hypothesis 30

Chapter 2: Materials and Methods 31
2.1 Plant material

2.2 Nucleic acid manipulation

2.2.1 Plasmid DNA preparation

- 2.2.1.1 Purification of plasmid DNA using alkaline lysis method
- 2.2.1.2 Purification of plasmid DNA using commercial kits

2.2.2 Isolation of genomic DNA

- 2.2.2.1 Cetyl Trimethyl Ammonium Bromide (CTAB)-based DNA extraction protocol
- 2.2.2.2 Genomic DNA preparation using the Nucleon™ Phytopure™ Genomic DNA Extraction Kit

2.2.3 Restriction enzyme digestion of DNA

2.2.4 Agarose gel electrophoresis for determination of DNA fragment sizes

2.2.5 Insert preparation

2.2.6 Vector preparation

- 2.2.6.1 End filling
- 2.2.6.2 Dephosphorylation

2.2.7 Determination of DNA/RNA concentration

- 2.2.7.1 Spectrophotometric method
- 2.2.7.2 Agarose gel concentration standards

2.2.8 Ligation

2.2.9 DNA purification

- 2.2.9.1 Precipitation using ethanol/isopropanol
- 2.2.9.2 Purification of DNA using commercial kits

2.3 Transformation

2.3.1 Preparation of competent *E. coli* cells

2.3.2 Transformation of *E. coli* by the heat shock method

2.3.3 Identification of positive transformants

2.3.4 Transformation of *A. tumefaciens* by electroporation

2.4 Polymerase Chain Reaction (PCR)

2.5 Sequencing
Chapter 3: Characterisation of the \textit{Rosea1} promoter region and analysis of \textit{Rosea1} expression

3.1 Introduction

3.2 Materials and Methods

3.2.1 Promoter deletion construct generation

3.2.2 Southern blot analysis

3.2.4 Bioinformatic analysis

3.2.5 Cloning of the 3' UTR of \textit{Rosea1} into pBlueScript vector

3.2.6 DIG labelled probe synthesis

3.2.7 Tissue fixation and sectioning

3.2.8 \textit{In situ} RNA hybridisation

3.3 Results

3.3.1 Promoter deletion analysis

3.3.2 Linker scanning mutagenesis of the -189 bp to -123 bp region of the \textit{Rosea1} promoter

3.3.3 Bioinformatic analysis

3.4 Discussion

Chapter 4: Cloning and characterisation of the \textit{rosea1}dorsea gene

4.1 Introduction

4.2.1 Generation of \textit{rosea1}dorsea promoter deletion constructs

4.2.2 Cloning of the \textit{Rosea1} promoter region from different \textit{Antirrhinum} species
4.2.3 Cloning of the \textit{rosea} \textit{dorsea} genomic sequence

4.2.4 Construction of the \textit{rosea} \textit{dorsea} expression vector

4.2.5 Construction of pPN 371 reporter vector

4.2.6 \textit{In situ} hybridisation

4.2.7 Bioinformatics

4.3 Results

4.3.1 \textit{rosea} \textit{dorsea} promoter deletion analysis

4.3.2 Cloning of the \textit{Rosea} promoter region from different \textit{Antirrhinum} species and accessions

4.3.3 Cloning, characterising and testing the functionality of the \textit{rosea} \textit{dorsea} allele

4.3.4 Analysis by promoter replacement of the importance to gene expression of the intron regions in \textit{rosea} \textit{dorsea}

4.3.5 \textit{In situ} hybridisation

4.3.6 Bioinformatic analysis

4.4 Discussion

Chapter 5: Analysis of the regulation of \textit{Rosea} gene expression by the \textit{Deficiens} gene

5.1 Introduction

5.2 Materials and Methods

5.2.1 Bioinformatics

5.2.2 Deletion of the intron 2 region of \textit{Rosea} and expression vector construction

5.2.3 Mutation of a site similar to a MADS box binding site in the \textit{Rosea} promoter and expression vector construction

5.2.4 \textit{Deficiens} RNAi vector construction

5.2.4.1 \textit{Deficiens} inverted NOS construct

5.2.4.2 \textit{Deficiens} hairpin construct

5.2.5 Transient transformation of antirrhinum buds with the RNAi constructs
List of Figures

Figure 1.1 Examples of pigmentation patterns in antirrhinum (adapted with permission from Dr Kathy Schwinn). 2

Figure 1.2 The anthocyanin biosynthetic pathway [adapted from Schwinn and Davies, (2004); Grotewold, 2006)]. 5

Figure 1.3 Current model for the initiation of transcription of anthocyanin biosynthetic genes. 9

Figure 1.4 MYB-bHLH protein interactions in the different spatial domains of the antirrhinum flower (Schwinn et al., 2006). 17

Figure 1.5 Floral phenotypes of deficiens mutants. 28

Figure 3.1 The initial three regions of the Rosea1 promoter mutated by PCR linker scanning mutagenesis. 51

Figure 3.2 The eight regions of the Rosea1 promoter mutated by finer PCR linker scanning mutagenesis. 52

Figure 3.3 Transient GUS assay using particle bombardment transformation of rosea\textsubscript{dorica} antirrhinum (line #112) petal tissue with the Rosea1 promoter deletion constructs listed in Table 3.1. 61

Figure 3.4 Typical GUS expression pattern in petals of stably transformed tobacco harbouring the Rosea1 promoter deletion constructs. 65

Figure 3.5 Temporal GUS expression pattern over petal development in flowers of stably transformed tobacco plants harbouring the pPN 237 (1.2 kb Rosea1 promoter:GUS:OCS) construct. 67

Figure 3.6 Southern analysis showing transgene copy number in ten different transgenic lines containing the pPN 242 (0.493 bp Rosea1 promoter fragment:GUS:OCS) construct. 68
Examples of GUS expression pattern in flower tissue of stably transformed tobacco harbouring the linker scanning mutant constructs ALS1, ALS2 and ALS3.

Putative cis-elements predicted to be present in the region between 162-123 bp of the Roseal promoter.

Analysis of Roseal gene expression in stage 3, wild type antirrhinum flowers (line #522) by in situ hybridisation.

Sequence alignments between the Roseal and the rosealdorsea promoter regions.

Floral phenotypes of different species within the Antirrhinum genus.

Transient assay using particle bombardment transformation of rosealdorsea antirrhinum petal (line #112) tissue using the rosealdorsea promoter deletion constructs.

GUS expression in petal tips of stably transformed tobacco harbouring a transgene containing the GUS reporter gene driven by 151 bp of the rosealdorsea promoter.

Graphical representation of the sequence alignment of the Roseal promoter region from wild type (line #522), rosealdorsea (line #112) and other Antirrhinum species and accessions.

In situ hybridisation on stage 3 (10-15 mm) wild type (line #522) and rosealdorsea (line #112) antirrhinum petal tissue.

PLACE database analysis of the proximal 151 bp region of the rosealdorsea promoter.

Sequence of the intron 2 region of the Roseal allele and the location of the two putative MADS box protein binding sites.

Development of antirrhinum flower buds (line #522) shot with gold-only preparation cultured in vitro over a 14-day period.
Figure 5.3 Inhibition of Deficiens activity in developing antirrhinum flower buds (line #522) using transient RNAi.

Figure 5.4 Phenotype of antirrhinum flower buds (line #522) silenced for CHS and Deficiens genes using transient RNAi.

Figure 5.5 SEM analysis of Deficiens RNAi petal tissue of antirrhinum (line #522).

Figure 5.6 Light microscopy and SEM analysis of deficiens chlorantha antirrhinum petal tissue.
List of Tables

Table 1.1	Transcription factors involved in the regulation of the anthocyanin biosynthetic pathway in model species.	16
Table 2.1	Antibiotic selection used for the screening of positive transformants containing different base vectors.	39
Table 3.1	Details of *Roseal* promoter deletion constructs used for transient and stable assays.	48
Table 3.2	Details of the constructs used for the initial PCR linker scanning mutagenesis of the *Roseal* promoter.	50
Table 3.3	Details of the constructs used for the finer PCR linker scanning mutagenesis of the *Roseal* promoter.	53
Table 3.4	*In situ* hybridisation protocol for day one.	58
Table 3.5	*In situ* hybridisation protocol for day two.	59
Table 3.6	GUS expression results of transient assays carried out on *rosea*\(^{dorsea}\) antirrhinum petal tissue using the *Roseal* promoter deletion constructs.	63
Table 3.7	GUS expression results of stable transgenic tobacco plants harbouring *Roseal* promoter deletion constructs\(^{a}\).	64
Table 3.8	GUS expression results of stable transgenic tobacco plants harbouring the initial linker scanning mutagenesis constructs.	72
Table 3.9	GUS expression results of stable transgenic tobacco plants harbouring the finer linker scanning mutagenesis constructs.	75
Table 4.1	Details of *roseal*\(^{dorsea}\) promoter deletion constructs used for transient and stable assays\(^{a}\).	91
Table 4.2	GUS expression results of transient assays carried out on *rosea*\(^{dorsea}\) antirrhinum petal (line #112) tissue using the *roseal*\(^{dorsea}\) promoter deletion constructs.	97
Table 4.3	GUS expression results of stable transgenic tobacco plants harbouring *roseal*\(^{dorsea}\) promoter deletion constructs.	98
Table 4.4 Results of the PCR amplification of the *Roseal*
promoter region from different *Antirrhinum* species
and accessions.

Table 4.5 Summary of sequence differences, insertions and
deletions present between the *Roseal* and *roseal* alleles.
Abbreviations

IIA TFIIA
2-ME 2-mercaptoethanol
3-AT 3-amino 1,2,4-triazole
ANS Anthocyanidin synthase
BAP Benzyl Amino Purine
Ω Omega
bp base pair
CHI Chalcone isomerase
CHS Chalcone synthase
CTAB Cetyl Trimethyl Ammonium Bromide
Ci Curie
DNA DeoxyriboNucleic Acid
dNTP deoxy Nucleotide TriPhosphate
DMF Dimethylformamide
DMSO Dimethyl sulfoxide
DFR Dihydroflavonol 4-reductase
DTT Dithiothreitol
EDTA Ethylenediaminetetra-acetate
F3H Flavanone 3-β-hydroxylase
F3'H Flavonoid 3'-hydroxylase
F3'S'H Flavanoid 3'S'-hydroxylase
g gram
GFP Green Fluorescent Protein
GST Glutathione-S-transferase
GMO Genetically Modified Organism
Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
h hour
IAA Isoamylalcohol
IPTG Isopropyl β-D-1-thiogalactopyranoside
kPa kilo Pascal
L litre
LB L-Broth
LS Linsmaier and Skoog
MES 2-(N-morpholino)ethanesulfonic acid
min minutes
ms miliseconds
N₂ nitrogen
mg milligram
mL millilitre
MS Murshige and Skoog
MOPS 3-(N-morpholino)propanesulfonic acid
NAA Naphthaleneacetic acid
OCS Octopine synthase
PBS Phosphate Buffered Saline
PCR Polymerase Chain Reaction
PIPES Piperazine-NN’-bis-2-ethanesulphonic acid
PMSF Phenylmethylsulphonyl fluoride
Poly A Polyadenylic Acid
PVP Polyvinylpyrrolidine
rpm revolutions per minute
3RT UDP-rhamnose: anthocyanidin-3-O-glucoside rhamnosyltransferase
sec seconds
SD Synthetic Dropout
SDS Sodium Dodecyl Sulphate
SEM Sucrose-EDTA-Morpholinepropanesulfonic acid
SOT Solenoid Opening Time
TAE Tris-Acetate-EDTA
TAFs TBP associated factors
TB Terrfic Broth
TBP TATA-box binding protein
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBE</td>
<td>Tris-Borate-EDTA</td>
</tr>
<tr>
<td>T_m</td>
<td>melting temperature</td>
</tr>
<tr>
<td>μ</td>
<td>micro</td>
</tr>
<tr>
<td>UFGT</td>
<td>UDP-Glc:flavanoid 3-O-glucosyltransferase</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>w/v</td>
<td>weight by volume</td>
</tr>
<tr>
<td>v/v</td>
<td>volume by volume</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside</td>
</tr>
<tr>
<td>X-GlcA</td>
<td>5-Bromo-4-chloro-3-indolyl β-D-glucuronide cyclohexylamine salt</td>
</tr>
</tbody>
</table>