THE TONSILLAR CARRIAGE OF
YERSINIA SPECIES BY PIGS

A THESIS PRESENTED IN PARTIAL FULFILMENT (40%)
OF THE REQUIREMENTS FOR THE DEGREE OF MASTER
OF PHILOSOPHY IN VETERINARY SCIENCE
AT MASSEY UNIVERSITY

CLAUDE ADRIAN De.ALLIE

April, 1994
"Let those who labour hold the reins"

M.R. Bishop

In memory of a Grenadian Hero and Martyr who endeavoured to uplift the standards of the working class through mass education and social reforms. His spirit lives on!

To my family and children Maurice and Yenifer.
The impetus for this study arose due to the increasing isolation of species of *Yersinia* from people, with pigs being suspected as major reservoirs of human pathogenic strains of the organism in New Zealand. The general aims of the study, conducted in two phases, among pigs from several herds sent for slaughter at an abattoir in Palmerston North were:

(i) to determine the presence of human pathogenic strains of *Yersinia* in the tonsils of slaughtered pigs and their distribution among selected herds,

(ii) to determine the seasonal effect on prevalence of isolation and type of organism isolated, and

(iii) to determine the *in vitro* virulence characteristics of strains of the organism isolated from the tonsils of slaughter pigs, and their potential public health implications.

The first phase involved a cross-sectional study, conducted between August and September, 1993. Tonsils were collected from 124 pigs from eight farms and were examined for the presence of species of *Yersinia*. A total of 77 (62.1%) strains of *Yersinia* were isolated, this consisted of 42 (33.9%), 27 (21.8%), 7 (5.6%) and 1 (0.8%) strains of *Y. enterocolitica*, *Y. pseudotuberculosis*, *Y. frederiksenii* and *Y. kristensenii* respectively. *Yersinia enterocolitica* serotypes 0:3, 0:5,27 and *Y. pseudotuberculosis* comprised 26 (33.8%), 12 (15.6%) and 27 (35.1%) of the total number of isolates respectively. Yersinia were isolated from all eight farms with individual farm prevalences ranging from 20% to 100%, while the number of species per farm ranged from 1 to 3. The pyrazinamidase activity test correctly identified 48 of the isolates as pathogenic or non-pathogenic yersiniae, (a specificity of 96%).

The second phase, a longitudinal study, was conducted over a period of twelve months (February 1993 - January 1994), among pigs from four farms, selected according to the particular strain of *Yersinia* prevailing in the herd. A total of 705 pigs were examined for the carriage of species of *Yersinia* in their tonsils. A total of 264 isolates were obtained, consisting of 198 (75%), 55 (20.8%), 5 (1.9%), and 1 (0.4%) strains of *Y. enterocolitica*, *Y.
pseudotuberculosis, Y. intermedia, Y. frederiksenii and Y. kristensenii respectively. *Yersinia enterocolitica* serotypes 0:5,27 and 0:3 comprised 105 (39.8%) and 78 (29.5%) of the total number of isolates respectively. *Yersinia pseudotuberculosis* comprised 55 (20.9%) with serotype III, 39 (14.8%) the most consistently isolated serotype.

*Yersinia* were isolated throughout the year particularly in the colder months. *Yersinia enterocolitica* serotypes 0:3 and 0:5,27 were found throughout the year with the lowest prevalence in the warmer months. However, a seasonal variation existed among serotypes of *Y. pseudotuberculosis*, with serotypes I and II found only in the winter and spring. Serotype III was found throughout the year, except for February.

During phase two of the study, 150 isolates of *Yersinia* were tested for *in vitro* virulence-associated characteristics. The autoagglutination test, CR-MOX agar, and the pyrazinamidase assay, coupled with salicin and aesculin tests, were highly successful in separating pathogenic from non-pathogenic strains of *Y. enterocolitica*. Likewise, the three assays successfully identified virulence activity in the majority of strains of *Y. pseudotuberculosis* with specificity among the three assays ranging between 90-100% for both *Y. pseudotuberculosis* and *Y. enterocolitica*.

The study also revealed marked variation in prevalence and type of *Yersinia* species isolated from pigs from different farms. The fact that particular serotypes predominate and persist on specific farms strongly suggest that there are factors such as source of pigs, management practices or contact with other animals which determine their status. Identification of these determinates could lead to control or eradication of important yersiniae from pig farms.

The overall prevalence of 41.1% ranks New Zealand among countries with reported high isolation rates of the organism and further emphasises the fact that pigs constitute major reservoirs for human pathogenic strains of *Yersinia* worldwide. The infection among slaughter pigs in New Zealand may be of human health concern and this warrants further investigation particularly to determine whether the strains isolated from pigs are identical to those involved in human disease.
ACKNOWLEDGEMENTS

I would like to record my sincere gratitude to the government and people of New Zealand for permitting me to pursue higher studies in Veterinary Science, under the Commonwealth Scholarships and Fellowship Plan.

My research would have been jeopardised, without the excellent supervision of my Chief Supervisor, Professor C R Wilks. Colin is a genius. His accessible personality, motivation, and constructive criticism enabled the termination of my study and my successful stay in New Zealand.

My other supervisors, Mr Per Madie and Mr Stanley Fenwick, contributed significantly throughout the duration of my study. Per’s introduction to the working environment at the abattoir, established a solid foundation for carrying out the research. Stan’s quest for new strains of *Yersinia* enlightened my interest in working with this organism. There constructive critical comments during editing of the manuscripts has been greatly appreciated.

Several other persons contributed to my learning experience at Massey University.

Associate Professor M R Alley supervised the pathology section of my course and from whom I acquired tremendous skills in Diagnostic Veterinary Pathology.

Professor B W Manktelow, with his vast experience in Veterinary Pathology, and from whom I learnt a lot during weekly departmental tutorials.

The other members of staff in the department, who unselfishly assisted whenever it became necessary.

Dr Alister Johnstone and his staff at the Ministry of Agriculture and Fisheries (MAF) from whom I gained a lot during pathology seminars.

This modest work would not have terminated without the excellent secretarial skills of Mrs Gillian Budge, who typed the manuscripts and Mrs Sheryll Crawford, for her tremendous
assistance in correcting and formatting the manuscripts. Her willingness to assist was greatly appreciated.

My special thanks to Mr Malcolm Rice for his excellent preparation of the graphs. Associate Professor M R Alley for the photomicrographs. Mr Tony Watts for the photographs taken at the abattoir. Mr Peter Wildbore for arranging transportation during the collection of samples. Mrs Jan Schrama for preparation of special microbiological media. Mr N K Pillai for calculation of molar volumes in the preparation of special media.

Finally, to all who contributed with social gestures, which made my stay in New Zealand a memorable one. Not forgetting, Mr Stanley Fenwick, Dr Eammon Gormley and Dr David Palmer.

To all, my sincere appreciation.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xv</td>
</tr>
<tr>
<td>GENERAL INTRODUCTION</td>
<td>xvi</td>
</tr>
<tr>
<td>CHAPTER ONE: REVIEW OF THE LITERATURE</td>
<td>1</td>
</tr>
<tr>
<td>SECTION A: YERSINIOSIS</td>
<td>1</td>
</tr>
<tr>
<td>HISTORICAL AND GEOGRAPHICAL ASPECTS</td>
<td>2</td>
</tr>
<tr>
<td>GENERAL CHARACTERISTICS OF YERSINIA SPECIES</td>
<td>6</td>
</tr>
<tr>
<td>The bacterium</td>
<td>6</td>
</tr>
<tr>
<td>Growth requirements</td>
<td>7</td>
</tr>
<tr>
<td>Isolation</td>
<td>8</td>
</tr>
<tr>
<td>Identification</td>
<td>9</td>
</tr>
<tr>
<td>Biotypes and serotypes</td>
<td>10</td>
</tr>
<tr>
<td>EPIDEMIOLOGY</td>
<td>13</td>
</tr>
<tr>
<td>Reservoirs</td>
<td>13</td>
</tr>
<tr>
<td>Transmission</td>
<td>14</td>
</tr>
<tr>
<td>Susceptible species</td>
<td>16</td>
</tr>
<tr>
<td>PATHOGENESIS AND CLINICAL PRESENTATION</td>
<td>17</td>
</tr>
<tr>
<td><em>Yersinia pseudotuberculosis</em> infection</td>
<td>17</td>
</tr>
<tr>
<td><em>Yersinia enterocolitica</em> infection</td>
<td>18</td>
</tr>
<tr>
<td>YERSINIOSIS IN PIGS</td>
<td>23</td>
</tr>
<tr>
<td>Infections with <em>Y. enterocolitica, Y. pseudotuberculosis</em></td>
<td>23</td>
</tr>
<tr>
<td>and <em>Y. pestis</em></td>
<td>23</td>
</tr>
<tr>
<td>Anatomical distribution</td>
<td>27</td>
</tr>
<tr>
<td>Seasonal occurrence</td>
<td>29</td>
</tr>
<tr>
<td><em>YERSINIA ENTEROCOLITICA</em> IN FOOD HYGIENE</td>
<td>30</td>
</tr>
</tbody>
</table>
Screening for *Yersinia* species 57
Identification and serotyping of *Yersinia* isolates 57
Virulence assay 58
Biochemical media used 58

**RESULTS** 60
Occurrence and Distribution of *Yersinia* isolates 60
Biochemical and serological characterization of isolates 60
Pathogenic *Yersinia* isolates 61
Virulence assay 62

**DISCUSSION** 62

**CONCLUSIONS** 64

**CHAPTER THREE: THE EFFECT OF SEASON ON PREVALENCE AND SPECIES OF YERSINIA ISOLATED FROM THE TONSILS OF SLAUGHTERED PIGS** 66

**INTRODUCTION** 66

**MATERIALS AND METHODS** 67
Farm selection 67
Determination of sample sizes 67
Animal reference 68
Sampling plan 68

**RESULTS** 68
Distribution and prevalence of species of *Yersinia* 72
Monthly isolation of yersiniae 72
*Yersinia enterocolitica* 72
Other *Yersinia* species 72
*Yersinia pseudotuberculosis* 74
Relationship between monthly isolation of Yersinia and average daily temperatures 74
Distribution and seasonal incidence of species of *Yersinia* on individual farms 75

**DISCUSSION** 83
CHAPTER FOUR: IN VITRO ASSESSMENT OF VIRULENCE AMONG STRAINS OF *YERSINIA ENTEROCOLITICA* AND *YERSINIA PSEUDOTUBERCULOSIS* ISOLATED FROM THE TONSILS OF SLAUGHTERED PIGS.

PUBLIC HEALTH SIGNIFICANCE OF POTENTIAL PATHOGENS

INTRODUCTION

MATERIALS AND METHODS

Bacterial strains

Growth, isolation and identification procedures

Evaluation of sample tests used to define pathogenic serotypes of *Y. enterocolitica*

Temperature-dependent autoagglutination

Congo red, magnesium oxalate agar (CR-MOX)

Pyrazinamidase test

Salicin fermentation-aesculin hydrolysis

RESULTS

Virulence-associated characteristics in strains of *Y. enterocolitica*

Virulence-associated characteristics in strains of *Y. pseudotuberculosis*

DISCUSSION

CONCLUSIONS

CHAPTER FIVE: GENERAL DISCUSSION

RECOMMENDATIONS

APPENDICES

REFERENCES
# LIST OF FIGURES

| Figure 1.1 | The proposed route of infection for *Yersinia enterocolitica*. | 15 |
| Figure 1.2 | Flow diagram for production and processing of pork products. | 44 |
| Figure 3.1 | Individual farm prevalence of species of *Yersinia* isolated from the tonsils of pigs during the period February 1993-January 1994. | 69 |
| Figure 3.2 | Relationship between monthly isolations of species of *Yersinia* and average daily temperatures. | 76 |
| Figure 3.3 | Seasonal distribution and prevalence of *Y. pseudotuberculosis* serotype I from Farm K. | 77 |
| Figure 3.4 | Seasonal distribution and prevalence of *Y. pseudotuberculosis* serotype II from Farm K. | 77 |
| Figure 3.5 | Seasonal distribution and prevalence of *Y. pseudotuberculosis* serotype III from Farm K. | 78 |
| Figure 3.6 | Seasonal distribution and prevalence of *Y. enterocolitica* serotype 0:3 from Farm T. | 80 |
| Figure 3.7 | Seasonal distribution and prevalence of *Y. enterocolitica* serotype 0:5,27 from Farm W. | 82 |
LIST OF TABLES

Table 1.1  Interrelationships between serogroup, biovar, phagevar and geographical distribution of the most common human pathogenic strains of *Y. enterocolitica*.  5

Table 1.2  Relationship between biotype, serogroups, pathogenicity and geographic distribution of *Y. enterocolitica*.  6

Table 1.3  Biochemical differentiation of species within the genus *Yersinia*.  12

Table 1.4  Biochemical differentiation of *Y. enterocolitica* biogroups.  13

Table 1.5  Cardiovascular infections with *Y. enterocolitica*.  22

Table 1.6  The prevalence of *Yersinia enterocolitica* in pigs based on the findings of various investigators.  27

Table 1.7  Summary of some documented outbreaks of Yersiniosis.  33

Table 1.8  Methods used to define virulence in cultures of *Yersinia enterocolitica*.  37

Table 2.1  Flow diagram used in the isolation of *Yersinia* species from tonsils.  59

Table 2.2  Occurrence and distribution of *Yersinia* species from tonsils.  60

Table 2.3  Biochemical and serological characterization of 77 isolates of *Yersinia*.  61
Table 2.4  
Prevalence of pathogenic *Yersinia* from the tonsils of pigs.  

Table 2.5  
Presence of pyrazinimidine activity (PYZ) in the isolates of *Y. enterocolitica* and related species.  

Table 3.1  
Farm distribution and prevalence of species of *Yersinia* isolated from the tonsils of pigs during the period February 1993 - January 1994.  

Table 3.2  
Species of *Yersinia* isolated in the study.  

Table 3.3  
Monthly isolation of species of *Yersinia* from the tonsils of pigs during the period February 1993 - January 1994.  

Table 3.4  
Serological characterization of 253 strains of *Y. enterocolitica* and *Y. pseudotuberculosis* isolated during the study.  

Table 3.5  
Monthly isolation of species of *Yersinia* from Farm H.  

Table 3.6  
Monthly isolation of species of *Yersinia* other than *Y. pseudotuberculosis* from Farm K.  

Table 3.7  
Monthly isolation of species of *Yersinia* other than *Y. enterocolitica* serotype 0:3 from Farm T.  

Table 3.8  
Monthly isolation of species of *Yersinia* other than *Y. enterocolitica* serotype 0:5,27 from Farm W.  

Table 4.1  
Properties of *Y. enterocolitica* strains.
<table>
<thead>
<tr>
<th>Table 4.2</th>
<th>Occurrence of virulence-associated characteristics among strains of <em>Yersinia enterocolitica</em> (Ye) isolated from the tonsils of pigs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.3</td>
<td>Occurrence of virulence-associated characteristics among serotypes of <em>Yersinia pseudotuberculosis</em> isolated from the tonsils of pigs.</td>
</tr>
</tbody>
</table>
LIST OF PLATES

Plate I  The palatine tonsils of the pig; paired lympho-epithelial organs.  52

Plate II Histologic section of pig’s tonsil, showing a tonsillar follicle, consisting of a crypt (C) with its associated lymphatic centres (L) H & E stain (x20).  52

Plate III Histologic section of pig’s tonsil, showing invagination of surface epithelium to form a crypt H & E stain (x40).  53

Plate IV Histological tonsil of pig’s tonsil, showing active lymphoid epithelium of a crypt H & E (x60).  53

Plate V Porcine tongue, tonsils and pharynx. Location of tonsils are indicated.  65

Plate VI Circumanal incision and removal of the intestines.  106

Plate VII Excision of tongue, pharynx and particularly the tonsils.  106

Plate VIII Post-mortem meat inspection involving incision of mandibular lymph nodes.  108

Plate IX Deboning of head meat.  108
Yersiniosis, a zoonotic disease caused by *Yersinia enterocolitica* and *Y. pseudotuberculosis*, is now recognised worldwide. The species *Y. enterocolitica* is an important cause of gastroenteritis in humans, especially in temperate countries (Mollaret *et al.*, 1979; WHO, 1981, 1987). *Yersinia enterocolitica* is considered to be a foodborne pathogen, despite the fact that attempts to isolate the bacterium from foods implicated in cases of disease in humans have rarely proved successful. However, some large foodborne outbreaks caused by *Y. enterocolitica* have been reported in the U.S.A., Canada and Japan (see Table 1.7). Pork products are considered to be the most likely source of infection (Hurvell, 1981; Lee *et al.*, 1981; Morris and Feeley, 1976), although some aspects of the epidemiology still remain to be clarified.

Pigs appear to constitute an important reservoir for *Y. enterocolitica* infection (Hurvell, 1981; Kapperud, 1991; Schiemann, 1989), and are the only food animal which regularly harbours pathogenic *Y. enterocolitica*. Pigs are often healthy carriers of *Y. enterocolitica* biotype 4/0:3 and biotype 2/0:9 strains which cause disease in humans. Biotype 1B/0:8, the predominant human pathogen in the U.S.A., appears to be rare in pigs. This serotype may have entirely different reservoirs and ecology (Schiemann, 1989). Serotype 0:3 and 0:9 are both faecal commensals and inhabitants of the oral cavity of pigs, especially the tonsils and tongues. Serotype 0:3 is also frequently encountered as a surface contaminant on freshly slaughtered pig carcasses (Andersen, 1988; Nesbakken, 1988; Nesbakken *et al.*, 1985).

Many surveys, reviewed elsewhere (Table 1.6) have demonstrated the common occurrence of *Y. enterocolitica* and related microbes in the intestinal tract and oral cavity of healthy slaughter pigs. The earlier reports of *Y. enterocolitica* in pigs were based on examination of faeces or intestinal contents. It was later demonstrated that the isolation frequency of these bacteria was approximately ten times greater from the tongues or tonsils than that obtained from faeces (Pedersen, 1979; Schiemann, 1980; Wauters, 1979). The reported isolation rates range up to and in excess of 56.0% (Table 1.6) depending on the type of
samples examined (tongues, tonsils, throat swabs), geographical origin, and efficacy of the isolation methods.

In Belgium, which is the country with the highest reported incidence of *Y. enterocolitica* infection of people, a case control study has shown that the infection was strongly associated with eating raw pork (Tauxe *et al.*, 1987). The apparent rareness of *Y. enterocolitica* infection in Moslem countries (Samadi *et al.*, 1982) also supports the potential role of pork as the vehicle of *Y. enterocolitica* infection.

In New Zealand, reports of human disease due to yersiniosis, and of isolations from healthy subjects have been sporadic (Henshall, 1963; Lello and Lennon, 1992; Malpass, 1981; McCarthy and Fenwick, 1990; Rose, 1976), and an active search of possible hosts of species of *Yersinia* has only begun in earnest in recent years.

Prior to this study, only one published report of isolation of yersiniae from pigs in this country existed (Hodges *et al.*, 1984). However, unpublished data by Fenwick (*pers. comm* 1989) suggested that pigs may be carriers of human pathogenic yersiniae in their tonsils.

This study was therefore conducted as a follow up to the former, with the aim of confirming the findings and establishing some epidemiological aspects of the occurrence of yersiniae in the tonsils of slaughtered pigs.

The study was conducted in two phases. The first phase involved a cross-sectional study to determine the presence of species of *Yersinia* in the tonsils of slaughtered pigs and their distribution among farms supplying pigs for slaughter. The second phase, a longitudinal study, which was based on findings from the first, involved a selection of farms in relation to their particular carriage of species of *Yersinia*. Abattoir sampling was carried out on a monthly basis for twelve months, with the objective of investigating the seasonal effects on the occurrence of species of *Yersinia* in the tonsils of slaughtered pigs. During this phase, isolates were tested for possible virulence-associated characteristics with the aim of determining the role of pigs as possible reservoirs for human infection with yersiniae and thus the potential public health significance of pathogenic strains which may be harboured as free-living commensals in the tonsils of slaughtered pigs.