Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
APPLICATION OF PREDICTIVE MAINTENANCE TO INDUSTRY INCLUDING CEPSTRUM ANALYSIS OF A GEARBOX

BY

MATTHEW ALADESAYE

A THESIS SUBMITTED

IN

FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

THE FACULTY OF GRADUATE STUDIES
(Institute of Technology and Engineering)

MASSEY UNIVERSITY AUCKLAND, NEW ZEALAND
July 2008
SUMMARY

The economic implications of equipment failure are called for effective maintenance techniques. The research investigates current maintenance practice in several New Zealand industries and the improvements that could be obtained by the use of predictive maintenance techniques.

Initial research was undertaken in a series of case studies within New Zealand industries situated in Auckland. The first two cases studies were of preventative maintenance techniques of two conveyor lines in a biscuit manufacturing company. The results showed a well defined preventive maintenance schedules that was Systems Applications Products (SAP) programme was used to managed for daily, weekly, monthly and yearly maintenance activities.

A third case study investigated current predictive maintenance technique involving Fast Fourier Transform analysis of shaft vibration to identify a bearing defect. The results diagnosed a machine with a ball bearing defect and recommendation was given to change the bearing immediately and install new one. The machine was opened up, a big dent was on one of the balls as predicted by the analysis and the bearing was changed.

Research then looked at a novel technique called Cepstrum analysis that allows the deconvolution of vibration spectra from separate sources. This allows identification of several defects from the monitoring of a single vibration signal. Experiments were carried out to generate transfer functions for different gear faults at two different loadings. Blind deconvolution of the signal using a homomorphic filter was used to separate the source forcing frequencies from the structure resonance effects of the two gear faults, indicating that the technique could be used successfully to monitor equipment for a range of gear faults occurring simultaneously.
4.1 Introduction 40
4.2 Complex Number 40
4.3 Theory of FFT Analyzer 42
4.4 Case Study 3 – Bearing Failure Due to Shaft Deflection & Critical Speed
 4.4.1 Natural Frequency & Critical Speed 44
 4.4.2 Whirling of Shaft & Critical Speed 46
 4.4.3 Deflection & Stiffness 46
 4.4.4 Permissible Angular Misalignment 47
 4.4.5 Results 47
4.5 Case Study 4 – Fan Imbalance 52
4.6 Case Study 5 – Root Cause Analysis Technique to Identify a Gearbox Failure

Chapter 5 THE THEORY OF CEPSTRUM TECHNIQUE 62
5.1 Introduction 62
5.2 Gearbox Vibration 63
5.3 Transmission Path 64
5.4 Transmission Errors 64
 5.4.1 Static Transmission Error 65
 5.4.2 Residual Error signals 67
5.5 Signal Processing 68
5.6 Homomorphic Theory 71
5.7 Cepstrum Technique 73
5.8 Poles and Zeros Analysis 78

Chapter 6 EXPERIMENTAL ANALYSIS 81
6.1 Introduction 81
6.2 Gear Test Rig 81
6.3 Instrumentation 84
6.4 Instrumentation for Data Collection 84
6.5 The Structure of the Data Files 85
6.6 Blind Deconvolution 85
6.7 Results 87
 6.7.1 Homomorphic Deconvolution 94
 6.7.2 Poles and Zeros Analysis 99
LIST OF TABLES

Table 1.1 Fatal Accident Causes By Category 2
Table 3.1 Questionnaires 21
Table 3.2 The Summary of Maintenance Evolution 22
Table 3.3 Preventive Maintenance Schedule 29
Table 4.1 Entek Spectrum Analyzer Characteristics 43
Table 4.2 Shaft Conditions 51
Table 4.3 Design and Manufacturing Considerations 57
Table 5.1 Comparison of Terms Used in Spectra and Cepstral Analysis 76
Table 6.1 The Poles and Zeros from Curve Fitting Cepstra 103
LIST OF FIGURES

Figure 3.1 Maintenance Strategies Based on Practices in New Zealand Companies 23
Figure 3.2 Preventive Costs by Frequency 26
Figure 3.3 Steel Manufacturing Company in Auckland New Zealand 27
Figure 3.4 Multi Hearth Furnace Fan 28
Figure 3.5 Fan End Bearing 28
Figure 3.6 Spectrum Showing the Bearing Defect 36
Figure 3.7 Acceleration Amplitude versus Frequency 37
Figure 3.8 The Bearing Defect 38
Figure 3.9 New Spectrum with Low Acceleration Amplitude 39
Figure 4.1 Real and Imaginary Plane of a Complex Number 41
Figure 4.2 Fan Bearing Housing at Drive End, Horizontal Direction 45
Figure 4.3 Fan Bearing Housing at Drive End, Axial Direction 46
Figure 4.4 Concentrated Load on a Simply supported Shaft 48
Figure 4.5 Effect of Shaft deflection on Bearing 49
Figure 4.6 Effect of Misalignment Angle on Bearing 49
Figure 4.7 Imbalance Spectrum with High Amplitude 53
Figure 4.8 Spectrum after Balancing of Fan 54
Figure 4.9 Gear with the Broken Teeth 55
Figure 4.10 Gearbox Spectrum 56
Figure 4.11 The Envelope 56
Figure 5.1 Gearbox Spectrum from the Case Study 63
Figure 5.2 Frequency Domain of Graphical Representation 68
Figure 5.3 Vibration of a Gearbox 69
Figure 5.4a The Negatively Inverted Echo Due to Cracked Tooth 70
Figure 5.4b The Negatively Inverted Echo Due to Spall 70
Figure 5.5 Signal Processing for a Gearbox Diagnosis 72
Figure 5.6 Two Signals Deconvolved to Two Separate Signals 73
Figure 5.7a Cepstrum of the Cracked Tooth 74
Figure 5.7b Cepstrum of the Tooth with Spall 74
Figure 5.7c Cepstrum of the Undamaged Teeth 74
Figure 5.8 Frequency Response of a System 76
Figure 5.9 System with Input-Output Relationship
Figure 5.10 Poles and Zeros Plot From Transfer Function
Figure 6.1 Gear Test Rig
Figure 6.2 Cracked and Spall Gears
Figure 6.3 Gear Test Rig
Figure 6.4 Undamaged Gear Vibration Signal
Figure 6.5 Cracked Tooth Vibration Signal
Figure 6.6 Spall Tooth Vibration Signal
Figure 6.7 Cepstrum of Undamaged Teeth Under 50Nm Load
Figure 6.8 Cepstrum of Undamaged Teeth Under 100Nm Load
Figure 6.9 Cepstrum of Cracked Tooth Under 50Nm Load
Figure 6.10 Cepstrum of Cracked Tooth Under 100Nm Load
Figure 6.11 Cepstrum of Spall Tooth Under 50Nm Load
Figure 6.12 Cepstrum of Spall Tooth Under 100Nm Load
Figure 6.13 Undamaged Gear Under 100Nm After Filtering
Figure 6.14 Cracked Gear Under 100Nm After Filtering
Figure 6.15 Spall Gear Under 100Nm After Filtering
Figure 6.16 Smoothed Spectra for Undamaged, Spall and Cracked Gears
Figure 6.17 Frequency Response of System with Cracked, Spall and Undamaged Teeth
Figure 7.1 Cepstra for Different Measurements
Figure 7.2 Cepstra for Different Measurements
Figure 7.3 Cepstra for Different Measurements
Figure 7.4 Cepstra for Different Measurements
Figure 7.5 Cepstra for Different Measurements
Figure 7.6 Poles and Zeros Frequency Response
ACKNOWLEDGMENT

I will like to express first and foremost my gratitude to my supervisors Dr. Huub Bakker and Johan Potgieter for their guidance and encouragement in the course of this research. Their patience and support are sincerely appreciated.

I express my special gratitude to my external supervisor, Professor R.B. Randall, University of New South Wales (UNSW), Sydney, Australia, for his guidance, great support, patience and his very useful comments.
I like to also acknowledge David Hanson, PhD student at UNSW for his support, encouragement, contribution and valuable advice during the time I was carrying out my experiments out in the university.

My gratitude extends to the technical staff of the UNSW, mechanical engineering workshop for allowing me to use their facility for my experiments and testing.
I will like to thank Werner Schneider of SchemNZ who got the funding for this research from TechNZ.

It would be impossible to include everyone who has provided help and inspiration throughout my stay in Massey University, Albany Campus, Auckland. Let me humbly thank fellow students and others who have contributed.

My deepest gratitude goes to my family members for their love, encouragement and unconditional support during the whole course of my Ph.D work at Massey University, Auckland, and for providing a reason to finish as soon as possible.

Finally, my utmost thanks go to my Heavenly Father and the Lord Jesus Christ. Strong biblical convictions form the core of my personality and provide my source of strength and optimism. It would be very remiss not giving glory to whom glory is ultimately due.
DECLARATION OF ORIGINALITY

I, Matthew Aladesaye, declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published and unpublished work of others has been acknowledged in the text and a list of references is given in this thesis.

I also acknowledge that I have pursued the PhD course in accordance with the requirements of the university’s regulations:

- Research practice and ethical policies have been complied with appropriately
- This thesis does not exceed 100,000 words, excluding appendices.

Signed:...