Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
X-RAY CRYSTALLOGRAPHIC ANALYSIS OF THE PYROPHOSPHATE-DEPENDENT PHOSPHOFRUCTOKINASE OF SPIROCHAETA THERMOPHILUM

A thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Biochemistry at Massey University, New Zealand.

Andrew James Welham
2002
"I think, therefore I am"

René Descartes
ABSTRACT

The structure of a homodimeric, non-allosteric, PP$_r$-dependent phosphofructokinase from the thermophilic bacterium *Spirochaeta thermophilum* has been resolved by X-ray crystallography in two distinct conformations at 2.2 (R = 0.1991 [R$_{free}$ = 0.2288]) and 1.85 Å (R = 0.1923 [R$_{free}$ = 0.2035]) resolution. The 554 residue (M_r 61080 g.mol$^{-1}$) subunit, a homologue of the plant PP$_r$-PFK β-subunit exhibits an asymmetrical quaternary structure and shares both sequence and tertiary structure with the N- and C-terminal Rossmann-like domains of prokaryotic ATP-PFKs. *Spirochaeta thermophilum* PP$_r$-PFK exhibits three major inserts relative to the prokaryotic ATP-PFK of *E. coli*, an N-terminal insert, a C-terminal insert, and an insert within the PFK C-terminal domain which forms an autonomous α-helical domain. The active site is formed at the interface of the N and C domains. The 'open' and 'closed' subunit asymmetry of the *S. thermophilum* PP$_r$-PFK 1.85 Å atomic model mirrors that of the *B. burgdorferi* PP$_r$-PFK (1KZH [Moore et al.2002]) with the exception that the two unique β-hairpins (380-390 [α16-α17] and 485-495 [β14-β15]) of subunit A are not displaced into the active site. Both subunits of the *S. thermophilum* PP$_r$-PFK 2.2 Å atomic model adopt an 'open', apparently inactive conformation. The conformational change involves concomitant closure of the active site of both subunits via a rigid-body displacement of the C and α-helical domains, relative to the N domain. The N domain of one subunit and the C domain of the opposing subunit can be thought of as a rigid body, therefore closure of one active site dictates closure of the other. Rotation of the small domain forces Met251 of the MGR motif to adopt an active conformation and displacement of the α-helical domain, specifically the 380-390 β-hairpin into the active site 'folds' Arg253 (MGR) into an active conformation. Closure of the active site, which prevents wasteful hydrolysis, involves movement of the β14-β15 β-hairpin into the active site and simultaneous rearrangement of the PP$_r$-binding GGDD motif. The conformational change of the *S. thermophilum* PP$_r$-PFK is surprisingly complex and unique relative to prokaryotic ATP-PFKs and involves displacement of novel structural elements. These movements change the conformation of conserved motifs at the active site and therefore function to modulate PP$_r$-dependent activity.
This thesis is representative of the efforts of a number of people to whom I am indebted. Primarily I would like to thank my supervisor Dr. Stan Moore for his unbounded patience, encouragement, and support. Unforeseeably, giving me the opportunity to undertake this research also ceded a passion for science and research, a life long pursuit.

I would like to thank Dr. Ron Ronimus and Dr. Hugh Morgan from the Thermophile Research Unit, University of Waikato for the purified *Spirochaeta thermophilum* pyrophosphate-dependent phosphofructokinase.

I would like to thank Dr. Kathryn Stowell for her immense patience in listening to my ideas and the proof reading of this thesis.

I would like to thank past and present members of the Institute of Molecular Biosciences and the Institute of Fundamental Sciences for there tutorage, particularly Assoc. Prof. John Tweedie, Dr. Mark Patchet, Prof. Pat Sullivan, Dr. Gill Norris, Dr. Max Scott, Assoc. Prof. Geoff Jameson, Dr. Bryan Anderson, Dr. Emily Parker, and last but not least Dr. Simon Brown (an inspirational teacher).

I gratefully acknowledge financial support from the award of a Massey University Masterate Scholarship.

Thank you to my family: Mum, Uncle Howard, Aunt Beth, Gaylyn, Sylvia, Shaun, Martyn, Pieter, Jeannie and Michelle for your perpetual love, support, patience and faith in me. I will always be indebted.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Abstract</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xii</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction and Literature Review

1.1 Metabolism 1
1.2 Glycolysis 1
1.3 Modified Embden-Meyerhof Pathways 4
 1.3.1 Pyrophosphate-dependent Glycolysis 5
1.4 Kinases 6
 1.4.1 Phosphoryl transfer 6
 1.4.2 Dissociative S_{N1} 7
 1.4.3 Associative S_{N2} 7
 1.4.4 Ping-Pong 8
 1.4.5 General Acid-Base Catalysis 9
 1.4.6 Transition State Stabilization 9
 1.4.7 Kinase Structural Folds 9
1.5 Structure: Prokaryotic ATP-PFKs 12
1.6 Active Site: Substrate Binding and Catalysis 15
 1.6.1 F16bP Binding Site 15
 1.6.2 ADP Binding Site 16
 1.6.3 Mg$^{2+}$ Binding Site 19
1.7 Allosteric Site 19
 1.7.1 R-T State Transition 24
1.8 Caveat: Failure of the Concerted Two-state Model 27
Table of Contents

1.9 Evolution of the Phosphofructokinase A Family 27
1.9.1 PFK A Family 28
1.9.2 Group I ATP-PFKs 30
1.9.3 Group II PP_i-PFKs 32
1.9.4 Evidence for a Latent Nucleotide Binding Site? 37
1.9.5 Group III PFKs 37
1.9.6 Summary: Evolution of PFK A PFKs 37

1.10 Aims of this Research 39

Chapter 2 Materials and Methods

2.1 Introduction 41
2.1.1 Experimental Strategy 41
2.2 Materials 42
2.3 Methods 43
2.3.1 Crystallization of *S. thermophilum* PP_i-PFK 43
2.3.2 Determination of *S. thermophilum* PP_i-PFK Concentration 43
2.3.3 SDS-PAGE Gel Electrophoresis 44
2.3.4 Equilibration 44
2.3.5 Commercial Crystallization Screens 45
2.3.6 X-ray Data Collection 45
2.3.6.1 Data set: 2.2 Å Resolution 45
2.3.6.2 Data set: 1.85 Å Resolution 46
2.3.7 Crystallographic Data Processing 46
2.3.8 Molecular Replacement 48
2.3.8.1 Rotation Function 49
2.3.8.2 Translation Function 50
2.3.9 AMORE 51
2.3.10 Restrained Crystallographic Refinement 52
2.3.10.1 Cross-validation 52
2.3.10.2 CNS Rigid-body Refinement 52
Table of Contents

4.7 Dimer Interface 107
4.8 Active Site Geometry 112
4.9 F6P/F16bP Binding Site 114
 4.9.1 Conformational Change: the MGR Motif 121
 4.9.2 Arg146: Transition State Stabilization 127
4.10 Pyrophosphate Binding Site 129
 4.10.1 Phosphoryl Donor Specificity 136
 4.10.2 GGDD Motif 137
 4.10.3 *B. burgdorferi* PP-PFK: Pyrophosphate Binding Site 140
 4.10.4 PKTIDGD: Lys203 143
4.11 GGPAPG Loop 146
4.12 Summary: *S. thermophilum* PP-PFK 146

Chapter 5 *Spirochaeta thermophilum* PP-PFK: Synopsis 148
5.1 Synopsis: Data Quality and Atomic Model Statistics 148
5.2 Synopsis: Structure and Function 148
 5.2.1 F6P/F16bP Binding Site 150
 5.2.2 Pyrophosphate Specificity 151
 5.2.3 GGDD 152
 5.2.4 Conformational Change: Substrate Analogue 152
5.3 Future Directions 154
 5.3.1 Site-Directed Mutagenesis 154
 5.3.2 Substrate/Product Binding 154
 5.3.3 PP-PFK Inhibition 155
 5.3.4 Plant PP-PFKs 155
5.4 Conclusion 155

References 157
List of Figures

Chapter 1 Introduction and Literature Review

Figure 1.1 Chair Conformation of Glucose 2
Figure 1.2 Embden-Meyerhof Pathway 3
Figure 1.3 Phosphoryl Transfer: Associative and Dissociative Mechanisms 8
Figure 1.4 The Rossmann-like Structural fold 10
Figure 1.5 Tertiary Structure of the Prokaryotic ATP-PFK of *E. coli* 13
Figure 1.6 Active Site of the Prokaryotic ATP-PFK of *E. coli* 17
Figure 1.7 Mechanism of the ATP inhibition of ATP-PFKs 20
Figure 1.8 Allosteric site of the Prokaryotic ATP-PFK of *E. coli* 22
Figure 1.9 R - T State Transition of the Prokaryotic ATP-PFK of *B. stearothermophilus* 25
Figure 1.10 Phylogenetic Tree of PFK A Family Members 31
Figure 1.11 Sequence Alignment of Group I PFKs 34
Figure 1.12 Sequence Alignment of Group II, Long Clade Family Members 36
Figure 1.13 Sequence Alignment of Group I, III, and Group II, X Clade Family Members 36

Chapter 3 Results: Data Quality and Atomic Model Statistics

Figure 3.1 Unit cells of the *S. thermophilum* PP1-PFK structures 61
Figure 3.2 Initial 2m|Fo| - D|Fc| and m|Fo| - D|Fc| Electron Density Maps of Met282B from the *S. thermophilum* PP1-PFK 2.2 Å Atomic Model 66
Figure 3.3 Ramachandran Plot of the *S. thermophilum* PP1-PFK 2.2 Å Atomic Model 72
Figure 3.4 Ramachandran Plot of the *S. thermophilum* PP1-PFK 1.85 Å Atomic Model 73
List of Figures

Figure 3.5 Real Space Correlation Coefficient and Temperature Factor Plot of the *S. thermophilum* PP1-PFK 1.85 Å Atomic Models Subunits 75

Figure 3.6 Final 2m|F₀| - D|F₀| Electron Density Map of the *S. thermophilum* PP1-PFK 1.85 Å Atomic Models Subunit B N Domain β-Sheet 76

Figure 3.7 2m|F₀| - D|F₀| Electron Density Map of the *S. thermophilum* PP1-PFK 2.2 Å Atomic Models Subunit B N Domain β-Sheet 77

Chapter 4 *Spirochaeta thermophilum* PP1-PFK: Structure and Function

Figure 4.1 Quaternary Structure of the PP1-PFK of *S. thermophilum* 79

Figure 4.2 Structure Based Sequence Alignment of Group I and Group II, Long Clade Family members 80

Figure 4.3 Superposition of the *S. thermophilum* PP1-PFK Subunit A with that of *E. coli* ATP-PFK 84

Figure 4.4 Hydrophobicity Plot of the *S. thermophilum* PP1-PFK 86

Figure 4.5 β-Sheet Topology of the *S. thermophilum* PP1-PFK 87

Figure 4.6 Tertiary Structure of the *S. thermophilum* PP1-PFK 88

Figure 4.7 Subunit RMS Coordinate Differences for the PP1-PFK Atomic Models 92

Figure 4.8 Subunit Asymmetry of the PP1-PFK Atomic Models 95

Figure 4.9 Cα - Cα Pseudo Torsion Angle Plot of the *S. thermophilum* PP1-PFK Atomic Models 100

Figure 4.10 Conformational Change of the *S. thermophilum* PP1-PFK 104

Figure 4.11 Conserved Orientation of the Large Domain Relative to the Small Domain of the Opposing Subunit 106

Figure 4.12 Superposition of the *S. thermophilum* PP1-PFK Dimer with the A:D dimer of *E. coli* ATP-PFK 108

Figure 4.13 Active Site of *S. thermophilum* PP1-PFK: Global View 113

Figure 4.14 F6P/F16bP Binding Site 114
Figure 4.15	van der Waals Contact Between Leu420B and Tyr244B and Tyr426A of the *S. thermophilum* PP_{1}-PFK 1.85 Å Atomic Model	117
Figure 4.16	Structure Based Sequence Alignment of helix α9 of Group I and Group II, Long Clade Family Members	119
Figure 4.17	MGR Motif of *B. burgdorferi* PP_{1}-PFK	120
Figure 4.18	MGR Motif of the *S. thermophilum* PP_{1}-PFK 2.2 Å Atomic Model	121
Figure 4.19	Relative Disorder of the MGR Motif of the *S. thermophilum* PP_{1}-PFK 1.85 Å Atomic Model	124
Figure 4.20	Superposition of the MGR Motifs of the *S. thermophilum* PP_{1}-PFK Atomic Models	124
Figure 4.21	Displacement of the Subunit A 380-390 β-Hairpin of the *S. thermophilum* PP_{1}-PFK 1.85 Å Atomic Model	126
Figure 4.22	RMS Deviation of the Small Domain Between Subunits of the PP_{1}-PFK Atomic Models	128
Figure 4.23	Structure based sequence alignment of the GGDD and PKTIDND motifs.	129
Figure 4.24	Pyrophosphate Binding Site of *S. thermophilum* PP_{1}-PFK	130
Figure 4.25	Pyrophosphate Binding Site of *B. burgdorferi* PP_{1}-PFK	133
Figure 4.26	Alternative conformations of the *S. thermophilum* GGDD motifs.	139
Figure 4.27	Pyrophosphate-binding site of *B. burgdorferi* PP_{1}-PFK	141
List of Tables

Chapter 1 Introduction and Literature Review

| Table 1.1 | Conserved Motifs of PFK A Family Members | 28 |

Chapter 3 Results: Data Quality and Atomic Model Statistics

Table 3.1	Space Group and Unit Cell Dimensions	55
Table 3.2	Data Refinement Statistics	57
Table 3.3	AMORE: Rotation Function Solutions for the 2.2 Å Data Set	58
Table 3.4	AMORE: Translation Function Solutions for the 2.2 Å Data Set	58
Table 3.5	AMORE: Rotation Function Solutions for the 1.85 Å Data Set	60
Table 3.6	AMORE: Translation Function Solutions for the 1.85 Å Data Set	60
Table 3.7	Crystal Contacts of the *S. thermophilum* PP_i-PFK 2.2 Å Atomic Model	62
Table 3.8	Crystal Contacts of the *S. thermophilum* PP_i-PFK 1.85 Å Atomic Model	63
Table 3.9	Non-Crystallographic Symmetry Groups	64
Table 3.10	Residues of the *S. thermophilum* PP_i-PFK Atomic Models with Uninterpretable Electron Density	69
Table 3.11	Synopsis of Temperature Factors for the *S. thermophilum* PP_i-PFK Atomic Models	70
Table 3.12	Synopsis of the Temperature Factor RMS Deviation for the *S. thermophilum* PP_i-PFK Atomic Models	70
Table 3.13	Correlation Coefficients of the Initial and Final *S. thermophilum* PP_i-PFK 1.85 Å Atomic Model	74
Table 3.14	Correlation Coefficients of the Initial and Final *S. thermophilum* PP_i-PFK 2.2 Å Atomic Model	74
Chapter 4 *Spirochaeta thermophilum* PP$_1$-PFK: Structure and Function

Table 4.1 Domain RMS Deviation Between *S. thermophilum* PP$_1$-PFK Atomic Models 81

Table 4.2 Subunit Asymmetry of PP$_1$-PFKs 91

Table 4.3 Domain Structure Comparison of the *S. thermophilum* PP$_1$-PFK 1.85 Å and *B. burgdorferi* PP$_1$-PFK Atomic Models 93

Table 4.4 Domain Structure Comparison of the *S. thermophilum* PP$_1$-PFK Atomic Models 94

Table 4.5 Conserved Orientation of the N Domain of one subunit relative to the C Domain of the Opposing Subunit 102

Table 4.6 Inter-Subunit Contacts of the *S. thermophilum* PP$_1$-PFK 1.85 Å Atomic Model 107

Table 4.7 Contacts Formed by Sulfate Ions Bound at the Active Site of the *S. thermophilum* PP$_1$-PFK 1.85 Å Atomic Model 115

Table 4.8 Comparison of the MGR Motif Dihedral Angles 122

Table 4.9 Contacts formed by a Sulfate Ion Bound Beneath the Subunit A GGDD Motif of the *S. thermophilum* PP$_1$-PFK 1.85 Å Atomic Model 130

Table 4.10 Disorder of Lys148B and Asp177B of the *B. burgdorferi* PP$_1$-PFK Atomic Model 142
Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Fc]</td>
<td>Structure factor (calculated)</td>
</tr>
<tr>
<td>[Fo]</td>
<td>Structure factor (observed)</td>
</tr>
<tr>
<td>1,3-BPG</td>
<td>1,3-bisphosphoglycerate</td>
</tr>
<tr>
<td>2-PG</td>
<td>2-Phosphoglycerate</td>
</tr>
<tr>
<td>3-PG</td>
<td>3-Phosphoglycerate</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom $\left(10^{\text{-}10}\text{m}\right)$</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine monophosphate</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium peroxidisulphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>CC</td>
<td>Correlation Coefficient</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DHAP</td>
<td>Dihydroxyacetone phosphate</td>
</tr>
<tr>
<td>ED</td>
<td>Entner Doudoroff Pathway</td>
</tr>
<tr>
<td>F16bP</td>
<td>Fructose 1,6-bisphosphate</td>
</tr>
<tr>
<td>F26bP</td>
<td>Fructose 2,6-bisphosphate</td>
</tr>
<tr>
<td>F6P</td>
<td>Fructose 6-phosphate</td>
</tr>
<tr>
<td>FBPase</td>
<td>Fructose bisphosphatase</td>
</tr>
<tr>
<td>FOM</td>
<td>Figure of merit</td>
</tr>
<tr>
<td>G6P</td>
<td>Glucose 6-phosphate</td>
</tr>
<tr>
<td>GAP</td>
<td>Glyceraldehyde-3-phosphate</td>
</tr>
<tr>
<td>GAP:FdOR</td>
<td>Glyceraldehyde-3-phosphate: ferrodoxin oxidoreductase</td>
</tr>
<tr>
<td>GLK</td>
<td>Glucokinase</td>
</tr>
<tr>
<td>Hepes</td>
<td>N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid)</td>
</tr>
<tr>
<td>M_r</td>
<td>Molecular mass (g. mol$^{-1}$)</td>
</tr>
<tr>
<td>NAD</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene Glycol</td>
</tr>
<tr>
<td>PEP</td>
<td>Phosphoenolpyruvate</td>
</tr>
<tr>
<td>PFK</td>
<td>Phosphofructokinase</td>
</tr>
<tr>
<td>PGI</td>
<td>Phosphoglucone isomerase</td>
</tr>
<tr>
<td>PPi</td>
<td>Pyrophosphate</td>
</tr>
<tr>
<td>PPP</td>
<td>Pentose-Phosphate Pathway</td>
</tr>
<tr>
<td>RMS</td>
<td>Root mean squared</td>
</tr>
<tr>
<td>TCA</td>
<td>Tricarboxylic acid cycle</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N’,N’-tetramethylethylenediamine</td>
</tr>
<tr>
<td>TIM</td>
<td>Triose phosphate isomerase</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>ΔG°</td>
<td>Free energy change</td>
</tr>
</tbody>
</table>
Abbreviations

Amino Acids

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Symbol</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>A</td>
<td>Alanine</td>
</tr>
<tr>
<td>Arg</td>
<td>R</td>
<td>Arginine</td>
</tr>
<tr>
<td>Asn</td>
<td>N</td>
<td>Asparagine</td>
</tr>
<tr>
<td>Asp</td>
<td>D</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>Cys</td>
<td>C</td>
<td>Cystine</td>
</tr>
<tr>
<td>Gln</td>
<td>Q</td>
<td>Glutamine</td>
</tr>
<tr>
<td>Glu</td>
<td>E</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>Gly</td>
<td>G</td>
<td>Glycine</td>
</tr>
<tr>
<td>His</td>
<td>H</td>
<td>Histidine</td>
</tr>
<tr>
<td>Ile</td>
<td>I</td>
<td>Iso-leucine</td>
</tr>
<tr>
<td>Leu</td>
<td>L</td>
<td>Leucine</td>
</tr>
<tr>
<td>Lys</td>
<td>K</td>
<td>Lysine</td>
</tr>
<tr>
<td>Met</td>
<td>M</td>
<td>Methionine</td>
</tr>
<tr>
<td>Phe</td>
<td>F</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>Pro</td>
<td>P</td>
<td>Proline</td>
</tr>
<tr>
<td>Ser</td>
<td>S</td>
<td>Serine</td>
</tr>
<tr>
<td>Thr</td>
<td>T</td>
<td>Threonine</td>
</tr>
<tr>
<td>Trp</td>
<td>W</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>Tyr</td>
<td>Y</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>Val</td>
<td>V</td>
<td>Valine</td>
</tr>
</tbody>
</table>