Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Isolation, characterization and possible biocontrol application of Bdellovibrionaceae (BD) isolated from NZ sources

Muftikhar Ahmed

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) at Massey University

2008
Abstract

Bdellovibrionaceae (BD) are unique, predatory, endoparasitic, Gram-negative bacteria. As the world’s smallest living hunter they prey on other Gram-negative bacteria giving them potential as biological control agents. Prior to this study, however, there were no reports of BD in New Zealand. The overall aim of this research was to isolate BD from New Zealand sources, characterise them and investigate their potential role as a biological control agent. The history, characteristics, life cycle and mechanism of predation of this organism are reviewed and the possibility of the industrial applications of BD, are discussed.

In this study, a halophilic species of BD was isolated from fourteen coastal sea water sites around New Zealand. Thirteen isolates were characterised using proven characterisation techniques including general, microscopic and molecular techniques. It was found that the isolates were taxonomically identical or very closely related to each other and belong to the genus Bacteriovorax.

The predation pattern of BD isolates was examined against a group of Gram negative bacteria in solid and liquid media. The predation patterns and efficiencies of the different BD isolates were similar, which confirms that the BD isolates are closely related, are selective in their predation, and prey on some Gram-negative bacteria but not all.

The rapid loss of culture viability of BD is well known, but no studies have been reported to date on the survival of pure cultures of BD at different temperatures. The survival rate of BD in dense suspensions at different temperatures without host bacteria was investigated and it was observed that pure BD cultures can be stored with minimal reduction in numbers at temperatures ranging from 4°C to 20°C. However, significant reductions in numbers were observed at -18°C, 30°C and 37°C after 13 to 16 days.

The effects of the 13 New Zealand BD isolates on the growth of a population of Photobacterium phosphoreum were examined to select the best isolate for in vitro application. All of the isolates tested had considerable reduction effect against P. phosphoreum. Some isolates were more
effective than others, despite their taxonomic similarity to each other. The isolate OT2 was selected for further studies based on these results.

The *in vitro* efficacy of BD was assessed against late exponential cultures of a seafood spoilage bacterium, *P. phosphoreum*, originally isolated from Cod fillets from Denmark. Log$_{10}$ reductions of *P. phosphoreum* and some other Gram–negative bacteria ranged from 4.5 to 4.8 after 9 h of incubation at 25°C. BD was effective in reducing the numbers of *P. phosphoreum* at pH 5.5 to 8.5 and salinity 0.9 to 4.5% (w/v). A significant interaction was observed between the prey and predator concentrations and nutrient concentration. Prey concentrations were observed to be the most vital factor in predation and the most favourable predation conditions were at a prey concentration of \approx8 log$_{10}$ colony forming units (CFU)/mL, together with a predator concentration of 3 – 7 log$_{10}$ plaque forming units (PFU)/mL and a prey : predator ratio of $>$5.0. The thresholds of the prey and predator concentrations for predation were observed to be 3.7 log$_{10}$ CFU/mL and 3.9 log$_{10}$ PFU/mL, respectively. The trials carried out in this study focused on the efficiency of BD on a pure culture of one organism, *P. phosphoreum* and not on mixed cultures of Gram-negative spoilage bacteria, the normal condition observed in saltwater fish. There has been very little research in this field and the results of these trials suggest further investigation into the effect of BD on mixed cultures of Gram-negative spoilage organisms is warranted. Since only one isolate of BD (OT2) was examined against only one spoilage bacterium (*P. phosphoreum*) in liquid medium, the evidence of these findings must be restricted to these particular conditions. Future studies, using a range of BD isolates against a mixture of spoilage and pathogenic organisms in solid medium are warranted.

The biopreservation capability of BD in extending the shelf life of king salmon was evaluated. A significant effect was observed at 20°C but not at 10°C. At 20°C the shelf life was extended through extension of the lag phase of growth of the prey bacteria and a reduction in total numbers attained. Sensory evaluation of the salmon product being tested confirmed that the shelf life was extended. However, at 10°C there was no reduction in prey organisms, which suggested that the strain of BD used is ineffective at refrigeration temperatures.
Acknowledgements

I am particularly grateful to my chief supervisor, Dr Quan Shu for his excellent guidance, support, encouragement and for organising the invaluable research training in the University of Maryland, Baltimore, USA. I would like to express my sincere gratitude to my supervisor Professor Ian S. Maddox of the Institute of Technology and Engineering, Massey University for his patience, encouragement, and invaluable contribution of ideas, advice and continuing support throughout the study period. I would also like to express my sincere appreciation to my supervisor and team leader Mr Graham C Fletcher of the New Zealand Institute for Crop & Food Research Limited for his total support, valuable guidance and direction, patience and invaluable advice throughout the course of the study and in the completion of my thesis. I also thank Dr Lynn McIntyre lately of the ESR, Christchurch for providing valuable supervision and encouragement throughout the period of my research. I am grateful to the New Zealand Institute for Crop & Food Research and my group leader Mr TC Chadderton for providing research and fellowship funding, generous support, laboratory facilities and administrative support.

I will always respect my great teacher Professor Henry N Williams of Florida A & M University and the University of Maryland, Baltimore, USA for his great guidance, training, hospitality, confidence, and for preparing me for doing this study. I am particularly grateful to Dr Silvia A Piñeiro of the Department of Medical and Research Technology, School of Medicine, University of Maryland, Baltimore, USA for her great teaching, advice and scientific contribution particularly in training me for the isolation and molecular characterisation of Bdellovibrionaceae. I would like to thank to the entire BD team of the University of Maryland, particularly Susan (Fluorescent microscope training), Tim (laboratory), Muhammad and all the others for their huge support and encouragement.

I gratefully acknowledge technical assistance from a number of staff and postgraduate students of Crop & Food Research particularly – Graeme Summers (sigma plot training), Joseph Youssef (microbiology laboratory), Michelle Miles (microbiology laboratory), Simon Brown (sample collection), Salley Harrow (molecular biology laboratory), Jeanette McMonagle (administration) and fellow postgraduate students Douglas Rossendale, Lu Guangin and Sravani Gupta for their
great help and valuable advice throughout the study period. I want to thank to Duncan Hedderley for his statistics advice.

I gratefully acknowledge technical assistance from a number of staff of Hort Research and Massey University particularly – Paul Sutherland (electron microscope laboratory), Diane Barraclough (SDS-PAGE laboratory), Tim Holmes (photography unit), Sunita Bajaj (fluorescent microscope laboratory) and Rebecca Pattison (PFGE laboratory) of the Massey University.

I would like to specially thank my entire family, and my two lovely daughters (Nabila and Nazia) for their encouragement, patience, huge support and sacrifices during the entire course of my studies.

I want to dedicate this thesis to the sole memory of my father, the late Mr Azim Uddin Ahmed and my mother Mrs Nurun Nahar for their excellent encouragement and total support.
Table of Contents

Abstract ... i
Acknowledgements ... iii
Table of Contents ... v
List of Tables ... v
List of Figures ... xii
Chapter I .. 1

General Introduction ... 1
1.1 General review of literature .. 1
1.1.1 Early history of Bdellovibrionaceae ... 1
1.1.2 Morphology of Bdellovibrionaceae ... 1
1.1.3 Physiology of Bdellovibrionaceae .. 3
1.1.4 Life cycle of Bdellovibrionaceae ... 4
1.1.5 Mechanisms of predation .. 8
1.1.6 Cell-associated Bdellovibrionaceae products .. 11
 1.1.6.1 Lipopolysaccharide .. 11
 1.1.6.2 Nucleic acid ... 12
 1.1.6.3 Enzymes ... 13
 1.1.6.4 Membrane proteins .. 13
1.1.7 Taxonomy of Bdellovibrionaceae ... 14
1.1.8 Isolation of Bdellovibrionaceae ... 21
 1.1.8.1 Nutritional requirements ... 21
 1.1.8.2 Choice of lawn-forming organism for cultivation of Bdellovibrionaceae 22
 1.1.8.3 Separation of Bdellovibrionaceae from host cells .. 24
 1.1.8.4 Association of Bdellovibrionaceae with surfaces .. 24
 1.1.8.5 Temperature ... 25
 1.1.8.6 Other considerations .. 25
1.1.9 Distribution of Bdellovibrionaceae in the natural environment ... 26
1.1.10 Biocontrol applications of Bdellovibrionaceae .. 32
1.2 Objectives of this study ... 34
Chapter 2 .. 36

General methodologies .. 36

2.1 Growth of host organism (*Vibrio parahaemolyticus*) for routine cultivation of BD 36
2.2 Isolation, selection, purification and cultivation of BD .. 37
2.3 Enumeration of BD ... 38
2.4 Preparation of pure BD pellet for characterisation study ... 38
2.5 Preparation of large-scale BD inocula ... 39
2.6 Preparation of the challenge inocula of *P. phosphoreum* and other spoilage and
pathogenic bacteria .. 39
2.7 Enumeration of *P. phosphoreum* and other bacteria ... 40

Chapter 3 .. 41

Isolation and characterisation of BD isolates .. 41

3.1 Introduction .. 41
3.2 Materials and methods ... 44
3.2.1 Isolation of BD from New Zealand seawater ... 44
3.2.2 Characterisation of BD by fluorescence microscopy ... 45
3.2.3 Characterisation of BD by transmission electron microscopy .. 46
3.2.4 Characterisation of BD isolates using enzymic reactions ... 46
3.2.5 Characterisation of BD isolates by antibiotic sensitivity ... 47
3.2.6 Characterisation of BD isolates using 16S rDNA sequencing ... 48
3.2.6.1 Bacterial strains, culture medium and growth conditions ... 48
3.2.6.2 Genomic DNA extraction from BD isolates .. 48
3.2.6.3 Determination of DNA concentration, yield and purity .. 49
3.2.6.4 Amplification of 16S rDNA by polymerase chain reaction (PCR) 49
3.2.6.5 Gel electrophoresis of PCR products .. 51
3.2.6.6 Staining and photographing of the gel .. 51
3.2.6.7 Purification of PCR products and DNA sequencing ... 51
3.2.6.8 Sequencing of the PCR product .. 52
3.2.6.9 Assembling of sequences and similarity searches in Genbank .. 52
3.2.7 Characterisation of BD isolates using SDS-PAGE ... 53
3.2.8 Characterisation of BD isolates using pulsed-field gel electrophoresis 54
3.2.8.1 Preparation of pellets from BD isolates .. 54
3.2.8.2 Preparation of DNA plugs ... 54
3.2.8.3 Restriction endonuclease digestion of DNA embedded in agarose plugs 55
3.2.8.4 Pulsed-field gel electrophoresis of digested DNA ... 55
3.2.8.5 Staining, photography and interpretation of pulsortype patterns 56
3.2.8.6 Dendrogram of the pulsortypes of BD isolates ... 56
3.3 Results ... 57
 3.3.1 Isolation of BD from New Zealand seawater ... 57
 3.3.2 Characterisation of BD by fluorescence microscopy ... 63
 3.3.3 Characterisation of BD by transmission electron microscopy 66
 3.3.4 Characterisation of BD isolates using enzymic reactions 69
 3.3.5 Characterisation of BD isolates using antibiotic sensitivity 71
 3.3.6 Characterisation of BD isolates using 16S rDNA sequencing 74
 3.3.7 Characterisation of BD isolates using SDS-PAGE ... 81
 3.3.8 Characterisation of BD isolates using pulsed-field gel electrophoresis 82
3.4 Discussion .. 84

Chapter 4 ... 89
Predation pattern of BD against some pathogenic and spoilage organisms in solid and
liquid media ... 89
 4.1 Introduction .. 89
 4.2 Experimental procedure ... 90
 4.2.1 BD predation of pathogenic and spoilage bacteria in solid medium 90
 4.2.2 BD predation of pathogenic and spoilage organisms in liquid medium 91
 4.3 Results .. 92
 4.3.1 BD predation of pathogenic and spoilage bacteria in solid medium 92
 4.3.2 BD predation of pathogenic and spoilage organisms in liquid medium 97
 4.4 Discussion .. 103
 4.4.1 BD predation of pathogenic and spoilage bacteria in solid medium 103
 4.4.2 BD predation of pathogenic and spoilage organisms in liquid medium 104
Chapter 5

In vitro study of BD against *Photobacterium phosphoreum*

5.1 Introduction .. 107
5.2. Experimental procedure .. 109
 5.2.1 Survival of two BD isolates at different temperatures 109
 5.2.2 Screening of different seawater BD against *P. phosphoreum* 109
 5.2.3 Ability of BD (OT2) to reduce numbers of *P. phosphoreum* at different salinities .. 110
 5.2.4 Ability of BD (OT2) to reduce numbers of *P. phosphoreum* at different pH values .. 111
 5.2.5 Co-culture of BD (OT2) with *P. phosphoreum* in 70% ASW 111
 5.2.6 Effect of different nutrient concentrations on the reduction of *P. phosphoreum* by BD (OT2) .. 112
 5.2.7 Effect of prey concentrations on the predation of *P. phosphoreum* by BD (OT2) 113
 5.2.8 Effect of predator levels on the reduction of *P. phosphoreum* numbers 114
5.3. Results .. 115
 5.3.1 Survival of two BD isolates at different temperatures 115
 5.3.2 Screening of different seawater BD against *P. phosphoreum* 120
 5.3.3 Ability of BD (OT2) to reduce numbers of *P. phosphoreum* at different salinities .. 124
 5.3.4 Ability of BD (OT2) to reduce numbers of *P. phosphoreum* at different pH values .. 128
 5.3.5 Co-culture of BD (OT2) with *P. phosphoreum* in 70% ASW 131
 5.3.6 Effect of different nutrient concentrations on the reduction of *P. phosphoreum* numbers by BD .. 134
 5.3.7 Effect of prey concentrations on the predation of *P. phosphoreum* by BD 135
 5.3.8 Effect of predator levels on the reduction of *P. phosphoreum* numbers 138
 5.3.9 Effect of prey : predator ratios on the predation of *P. phosphoreum* by BD 141
5.4 Discussion ... 145
 5.4.1 Survival of BD isolates at different temperatures 145
 5.4.2 Screening of seawater BD against *P. phosphoreum* 146
5.4.3 Ability of BD (OT2) to reduce numbers of *P. phosphoreum* at different salinities ... 147
5.4.4 Ability of BD (OT2) to reduce numbers of *P. phosphoreum* at different pH values .. 148
5.4.5 Co-culture of BD (OT2) with *P. phosphoreum* in 70% ASW 148
5.4.6 Effect of different nutrient concentrations on the reduction of *P. phosphoreum* numbers by BD (OT2) .. 149
5.4.7 Effect of prey concentrations on the predation of *P. phosphoreum* by BD 149
5.4.8 Effect of predator levels on the reduction of *P. phosphoreum* numbers 150
5.4.9 Effect of prey : predator ratios on the reduction of *P. phosphoreum* numbers...... 151

Chapter 6 .. 154
Effect of BD on the reduction of numbers of spoilage and pathogenic organisms in King Salmon ... 154
6.1 Introduction ... 154
6.2 Experimental procedure .. 156
6.2.1 Microbiological analysis .. 157
6.2.2 Sensory evaluation ... 157
6.3 Results ... 158
6.4 Discussion .. 162

Chapter 7 .. 164
Final Discussion ... 164
References .. 168
Appendices .. 188
List of Tables

Table

3.1 List of primers used for Partial and Complete 16S rDNA sequencing 49
3.2 Sampling site locations of BD isolates .. 58
3.3 Plaque morphology, purity verification, turbidity reduction of dual cultures and concentration of BD cells in sea water samples ... 60
3.4 Enzymic reactions (API ZYM system - bioMérieux) of BD isolates 70
3.5 Characterisation of BD isolates using antibiotics sensitivity test 72
3.6 The closest phylogenetic relatives of OT2 isolate ... 78
4.1 A summary of the predation pattern of BD isolates against host bacterium after 24, 48 and 72 h of incubation at 20°C, 25°C, 30°C and 37°C ... 93
4.2 The effectiveness of OT2 in reducing absorbance of different spoilage and pathogenic organisms after challenge for 24 hours at 25°C ... 98
5.1 The effectiveness of different isolates of BD in reducing numbers of P. phosphoreum in 70% ASW after 10 and 24 h at 25°C .. 121
5.2 Salinity measurement using hand refractometer ... 125
5.3 Effect of salinity on the reduction of absorbance of dual cultures of OT2 and P. phosphoreum after 10, 24 and 48 h of incubation at 25°C ... 126
List of Tables (continued)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Effect of pH on the reduction of absorbance of the dual cultures of OT2 and P. phosphoreum after 24 and 48 h of incubation at 25°C</td>
<td>129</td>
</tr>
<tr>
<td>5.5</td>
<td>Reduction of P. phosphoreum population in diluted SWYE broth</td>
<td>134</td>
</tr>
<tr>
<td>5.6</td>
<td>Effect of prey to predator ratio on the absorbances of the dual cultures of P. phosphoreum and OT2</td>
<td>139</td>
</tr>
<tr>
<td>5.7</td>
<td>Summary of the reduction of P. phosphoreum at different prey to predator ratios in 70% ASW after 24 h of incubation at 25°C</td>
<td>143</td>
</tr>
<tr>
<td>6.1</td>
<td>Sensory evaluation of King Salmon samples after 48 h of incubation at 20°C</td>
<td>160</td>
</tr>
</tbody>
</table>
List of Figures

Figure

1.1 Development cycle of Bdellovibrionaceae (BD)---6

3.1 Map of the North Island of New Zealand showing the locations of sampling sites --------59

3.2 Enlarged photographic image of the plaques of BD-OT2 after 48 h incubation at 25°C on Pp20 agar plate --61

3.3 Enlarged photographic image of the plaques of OT2 after 72 h incubation at 25°C on Pp20 agar plate --62

3.4 Fluorescence microscopy image of OT2 and host (V. parahaemolyticus) cells using Live/Dead® BacLight™ dye ---64

3.5 Fluorescence microscopy image of pure OT2 ---65

3.6 Transmission electron microscopy image of an attack phase cell of OT2 ------------------------66

3.7 Transmission electron microscopy image of a few attack phase OT cells and formation of bdelloplast ---67

3.8 Transmission electron microscopy image of the formation of bdelloplast ------------------------68

3.9 Photograph of the PCR amplified product of 8 BD isolates using the universal 16S primer U16a and U16b for generating complete 16S rDNA sequencing ---75

3.10 Photograph of the PCR amplified product of 9 BD isolates using the BD specific reverse primer 842R and a forward primer 63F for generating partial 16S rDNA sequencing --------------------76
List of Figures (continued)

3.11 Photograph of the PCR amplified product of 4 BD isolates using the BD specific reverse primer 842R and a forward primer 63F for generating partial 16S rDNA sequencing -------77

3.13 A neighbor-joining distance gene tree using 16S rRNA genes of 13 NZ BD isolates, 6 overseas BD strains and an out-group isolate of Vibrio parahaemolyticus strain 070925 using PAUP v 4.0 --------------------------80

3.14 Analysis of whole cell protein banding pattern of BD isolates by SDS-PAGE ---------81

3.15 Photograph of a PFGE gel of BD isolates -----------------------------------82

3.16 Dendrogram of the pulsotypes of BD isolates using Diversity database software -----83

4.1 Predation capability of BD isolates (OT1, OT2, OT3, OT4, OT5, OT-enr, TB1 and control sample) against V. parahaemolyticus -----------------------------------94

4.2 Predation capability of BD isolates (OT-enr, TB1, TB2, MCB, SP, Bundeena and control sample) against A. hydrophila --------------------------------95

4.3 Predation capability of BD isolates (OT-enr, TB1, TB2, MCB, SP, Bundeena and control sample) against L. monocytogenes --------------------------------96

4.4 The effectiveness of OT2 in reducing the population of E. cloacae, M. morganii, P. aeruginosa after a 24 h challenge at 25°C --99

4.5 The effectiveness of OT2 in reducing the population of P. cepacia, P. fluorescens, P. mendocina after a 24 h challenge at 25°C ----------------------------------100
List of Figures (continued)

4.6 The effectiveness of OT2 in reducing the population of *P. phosphoreum*, *P. pseudomallei*, *P. vulgaris* after a 24 h challenge at 25°C -------------------------------101

4.7 The effectiveness of OT2 in reducing the population of *S. putrefaciens*, *V. parahaemolyticus*, *V. vulnificus* after a 24 h challenge at 25°C -------------------------------102

5.1 Survival of BD-MNA stored at different temperatures for 13 days ------------------------116

5.2 Log reduction of BD-MNA after 13 days of storage at different temperatures ---------117

5.3 Survival of BD-MCB stored at different temperatures for 16 days -----------------------118

5.4 Log reduction of BD-MCB after 16 days of storage at different temperatures ---------119

5.5 The effectiveness of BD isolates (OT1, OT2, OT3, OT4, OT5 and OT-enr) in reducing the population of *P. phosphoreum* after a 24 h challenge in 70% ASW at 25°C ------------------------122

5.6 The effectiveness of BD isolates (TB1, TB2, TB-enr, MNZ1, MNA, MCB and SP) in reducing the population of *P. phosphoreum* after a 24 h challenge in 70% ASW at 25°C ------123

5.7 Effect of salinity on the reduction of *P. phosphoreum* numbers by BD after 10, 24 and 48 h of incubation at 25°C ---127

5.8 Effect of pH on the population of *P. phosphoreum* after challenging OT2 against *P. phosphoreum* ---130

5.9 Time course of OT2 against *P. phosphoreum* ---132

5.10 Effect of different doses of OT2 on its growth in presence of *P. phosphoreum* ---------133
List of Figures (continued)

5.11 Effect of different doses of OT2 against a high concentration of *P. phosphoreum* in diluted SWYE or 70% ASW ---135

5.12 Effect of different doses of OT2 against a medium concentration of *P. phosphoreum* in diluted SWYE or 70% ASW ---136

5.13 Effect of different doses of BD against a low concentration of *P. phosphoreum* in diluted SWYE or 70% ASW --137

5.14 Effect of prey : predator ratios of 1.3, 2.3, 5.4, 10, 10^5 and 10^6 on reducing the numbers of *P. phosphoreum* ---140

5.15 Summary of the effect of prey: predator ratios in 70% ASW at 25°C ----------------------144

6.1 Total viable counts in salmon samples stored at 20°C for Trial 1 ------------------------158

6.2 Total viable counts in salmon samples stored at 20°C -----------------------------------159

6.3 Total viable counts in salmon samples stored at 10°C -----------------------------------161