Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
VARIABLE RATE APPLICATION TECHNOLOGY IN
THE NEW ZEALAND AERIAL TOPDRESSING INDUSTRY

A thesis presented in partial fulfilment of the requirements of the degree of Doctor of Philosophy in Agricultural Engineering at Massey University, New Zealand

Robert Ian Murray
2007
ABSTRACT

Greater use of technology to assist aerial application of fertiliser will be of benefit to the topdressing industry and farmers. Benefits arise through automating the fertiliser flow control system; reducing off target fertiliser application, and managing fertiliser inputs based on the potential outputs of the farmland; thus increasing the profitability of hill country farming systems. A case for technology assisted application is developed by investigating the field performance of conventional and enhanced flow control systems and the effect of variable rate application on hill country pasture production.

A single particle model that predicts flight trajectory from the particle force balance based on the aircraft groundspeed, axial and tangential propeller wash, wind characteristics and particle properties including sphericity was developed. Model predictions were compared to predictions from AGDISP 8.15. Results and trends were similar.

The single particle ballistics model described above was extended to predict the lateral distribution of fertiliser after release from an aircraft. To achieve this, two parameters are important, the transverse flow profile of material leaving the hopper gatebox and the sphericity of the particles. Techniques for measuring these parameters are described and experimental results are presented for superphosphate. These data were used in the model to predict the lateral distribution pattern from a Gippsland Aeronautics 200C for a known discharge mass, which was compared to a measured pattern from the same aircraft for the same discharge mass. Good agreement between the shapes of the two distributions was found. The transverse distribution model provides a practical tool for optimising the design of spreaders, or optimum particle characteristics for a given spreader. It has the ability to predict the distribution profile of any particle size distribution from each, or all, of the spreader ducts.

Culmination of the single particle and transverse distribution models led to the development of a deposition footprint model that was capable of predicting field application within a 25 ha trial site. The deposition footprint model was embedded inside a geographical information system and comparisons were made between the actual and predicted deposition across a series of transect lines. Good agreement was found.
Following this, a comparison of the predicted field performance between an automated and manual control system were made. Economic benefits for a single application of superphosphate were identified through using automated control, where 10% less fertiliser was applied outside of the application zone when compared to the manually operated system. This equated to a net benefit of NZD $2800 for a 1500 ha hill country farming system. The value of improving the performance of a topdressing aircraft, on an industry level, was also examined. Cost/benefit analysis between a manual and automated system revealed a benefit of NZD $111,700 yr$^{-1}$ for a single topdressing aircraft using the automated system.

The economic impact of Variable Rate Application Technology (VRAT) is examined, using Limestone Downs as an example. The spatially explicit decision tree modelling technique was used to predict the annual pasture production over the entire Limestone Downs property. The resulting decision tree classes tended to follow the farm’s digital elevation model. A series of six different fertiliser application scenarios were developed for comparison to a base line scenario using conventional aerial application techniques. VRAT outperformed the fixed rate applications in terms of pasture production and fertiliser utilisation. Full variable rate application and a model optimised prescription map, produced the highest annual pasture yield. Variable rate techniques were predicted to increase annual production and the spatial variability of that production. An economic analysis of the six production scenarios was undertaken. Farm cash surplus was calculated for each scenario and clearly revealed the benefits of using variable rate application technology. VRAT was found to be the most efficient and highest returning application method per hectare. Additional costs and increased charge-out rates were likely to occur under VRAT; nevertheless, the analysis indicated that significant financial incentives were available to the farmer. A sensitivity analysis revealed that even with a 20% increase in charge-out rate associated with VRAT, the farm’s annual cash position varied by only $4500 (0.4%), suggesting the cost of implementing such a system is not prohibitive and would allow aircraft operators to add value to their services.
ACKNOWLEDGEMENTS

I am deeply indebted to my chief supervisor, Dr. Ian Yule and would like to thank him and my co supervisors, Dr. Jim Jones, Professor Mike Hedley and Dr. Allan Gillingham for their advice, constructive suggestions and critical comments throughout. It was deeply gratifying to being surrounded by a team of peers capable of providing sound advice on how to tackle the many technical issues presented throughout this study.

I would also like to thank everyone involved in the New Zealand Centre for Precision Agriculture, for their support, both in terms of technical assistance and the many social escapades that provided such memorable moments throughout the duration of the study.

My special thanks are extended to Dr. Hilton Furness and Mr. Greg Sneath from FertResearch for liaising with fertiliser industry contributors ensuring the research was able to be applied at industry level. I also thank the Fertiliser Quality Council, Ravensdown and Ballance Agri-Nutrients for providing technical data and support. I am also very appreciative to the Enterprise Scholarship in conjunction with New Zealand Fertiliser Manufacturers’ Research Association (NZFMRA) and the Frank Sydenham Trust Scholarship for the financial assistance offered throughout the entirety of my studies and also to the Claude McCarthy Fellowship and the Royal Society travel grant which aided my travel to an overseas conference.

Finally my immense gratitude to my parents for their unyielding support throughout my life’s endeavours, and especially to my wife Niki, for her love, encouragement and unwavering support which enabled me to complete this work.
STATEMENT REGARDING RESEARCH CONTRIBUTION

The thesis is founded on six papers which have either been published or submitted for publication. The order of authorship reflects the contribution made to the individual pieces of work. In five of the six papers, Robert Murray is the main author. One paper, Chapter 2, has Dr Jim Jones as main author, this reflects his contribution in developing the mathematical model described. Robert Murray understands the model and worked closely with Dr Jones in verifying and testing the core mathematics used in the modelling process.

Signed ____________________________ Date 18/03/2008

Associate Professor Ian Yule, Chief Supervisor.
TABLE OF CONTENTS

ABSTRACT	1
ACKNOWLEDGEMENTS	III
STATEMENT REGARDING RESEARCH CONTRIBUTION	IV
LIST OF TABLES	VII
LIST OF FIGURES	IX
NOMENCLATURE	XIV

CHAPTER 1 - GENERAL INFORMATION

1.1 INTRODUCTION | 1 |
1.2 POTENTIAL USE OF VRAT | 2 |
1.3 AREA OF STUDY | 4 |
1.4 SPECIFIC OBJECTIVES | 5 |
1.5 STRUCTURE OF THESIS | 6 |

CHAPTER 2 - MODELLING SOLID FERTILISER DEPOSITION FROM A FIXED WING

AIRCRAFT - A BALLISTICS MODEL | 9 |
2.1 INTRODUCTION | 9 |
2.2 THE MODEL | 11 |
2.2.1 FRAMES OF REFERENCE | 12 |
2.3 RESULTS AND DISCUSSION | 26 |
2.4 CONCLUSION | 33 |

CHAPTER 3 - MODELLING SOLID FERTILISER DEPOSITION FROM A FIXED WING

AIRCRAFT – PREDICTING LATERAL DISTRIBUTION | 35 |
3.1 INTRODUCTION | 35 |
3.2 MATERIALS AND METHODS | 38 |
3.3 RESULTS AND DISCUSSION | 46 |
3.4 CONCLUSION | 54 |

CHAPTER 4 - MODELLING SOLID FERTILISER DEPOSITION FROM A FIXED WING

AIRCRAFT - FIELD SCALE PREDICTIONS WITHIN A GIS ENVIRONMENT | 56 |
4.1 INTRODUCTION | 56 |
4.2 MATERIALS AND METHODS | 58 |
4.3 RESULTS AND DISCUSSION | 62 |
4.4 ECONOMIC ANALYSIS | 71 |
4.5 CONCLUSION | 73 |
CHAPTER 5 - DEVELOPING VARIABLE RATE APPLICATION TECHNOLOGY:
MODELLING ANNUAL PASTURE PRODUCTION ON HILL COUNTRY ..75
5.1 INTRODUCTION...75
5.2 REVIEW OF LITERATURE..76
5.2.1 FACTORS OF SIGNIFICANCE...77
5.2.2 PASTURE PRODUCTION MODELS...84
5.3 DECISION TREE MODEL EVALUATION...87
5.4 CONCLUSION...93

CHAPTER 6 - DEVELOPING VARIABLE RATE APPLICATION TECHNOLOGY: SCENARIO
DEVELOPMENT AND AGRONOMIC EVALUATION...95
6.1 INTRODUCTION...95
6.2 MATERIALS AND METHODS...97
6.3 ANNUAL PASTURE PRODUCTION MODEL..100
6.4 SCENARIO DEVELOPMENT...101
6.6 RESULTS..104
6.7 DISCUSSION..108
6.8 CONCLUSION..110

CHAPTER 7 - DEVELOPING VARIABLE RATE APPLICATION TECHNOLOGY:
ECONOMIC IMPACT FOR FARM OWNERS AND TOPDRESSING OPERATORS112
7.1 INTRODUCTION...112
7.2 METHODS...114
7.3 RESULTS..118
7.4 DISCUSSION..121
7.5 CONCLUSION..123

CHAPTER 8 - SUMMARY...125
8.1 OVERVIEW...125
8.2 SUMMARY...126
8.3 CONCLUDING REMARKS AND FUTURE STUDY DIRECTIONS130
8.4 DISSEMINATION OF KNOWLEDGE..133
8.5 REFERENCES..136
LIST OF TABLES

Table 2.1. Comparison of predicted transverse (z-direction) landing position to the model of Bansal et al., (1998b) for the special case of constant drag coefficient at $C_D = 0.44$. The offset is the position of the duct relative to the centreline of the aircraft. Exit velocities are relative to the aircraft using our coordinate reference system ($+x$, flight direction; $+y$, towards ground; $+z$, true right of aircraft). The ducts are described in Bansal et al. (1998b) ... 27

Table 3.1. Superphosphate particle size distribution, averaged from 3 samples of 170 grams within a bulk silo from field trials on a hill country farm, 15 km northeast of Kimbolton, New Zealand. A nine compartment, Spreadmark (FQC NZ, 2003) hand-held sieve box was used, < 0.5 mm material was ignored. ... 39

Table 3.2. Particle characteristics determined by photographic analysis corresponding to sieve size. .. 40

Table 3.3. Compartment flowrates for superphosphate from a Gippsland Aeronautics 200C gatebox .. 43

Table 3.4. Particle exit parameters for a six duct spreader mounted on a Gippsland Aeronautics GA200C. A discharge angle of 180° corresponds to directly behind the aircraft, i.e., opposite to the direction of travel ... 44

Table 3.5. Model parameters used to simulate the field test spread pattern .. 46

Table 4.1. Comparison of measured and predicted mean application rate (kg ha$^{-1}$) from transects A – L, each consisting of 10 collectors spaced as 5 m intervals. .. 66

Table 4.2. Economic analysis for the application of superphosphate fertiliser on a 25 ha trial site, 15 km North of Kimbolton, Manawatu, New Zealand. Results are also extrapolated to a hypothetical 1500 ha (effective) farm scale. Superphosphate cost NZ$ 191 ton$^{-1}$ (Ravensdown, 2005), target application rate 150 kg ha$^{-1}$. .. 72

Table 5.1 Net total P balance (kg ha$^{-1}$) including standard errors of estimate for each net value. Adapted from Gillingham et al. (1980) .. 81

Table 5.2 Data inputs, common to all scenarios used in the decision tree pasture production model .. 87

Table 5.3 Summary of predicted annual pasture production on Limestone Downs, North
TABLE 6.1 Data inputs, common to all scenarios used in pasture production and species composition models. Seasons are defined as summer (Dec – Feb), autumn (Mar – May), winter (Jun – Aug), spring (Sep – Nov).

TABLE 6.2 Results from an agronomic evaluation of six fertiliser application scenarios (applied for five years) and their effect on modelled annual pasture production on Limestone Downs, North Island, New Zealand.

TABLE 7.1 Results from the agronomic assessment of annual pasture production on 2518 ha of Limestone Downs as described in Murray and Yule (2007a).

TABLE 7.2 Farm cash inflows and outflows used to calculate cash farm surplus in each of the six scenarios defined in Murray and Yule (2007a). Note: Excludes superphosphate fertiliser and application cost as this was calculated independently (refer to Table 7.3).

TABLE 7.3 Parameters used in calculating fertiliser application, an example of the parameters is provided for the application of 671 T of superphosphate to 2518 ha of Limestone Downs.

TABLE 7.4 Summary of the total SU and equivalent numbers of sheep and cattle. Data is calculated based on annual pasture production (refer to Table 7.1), SU equivalent factors Farmtracker 6.2 (Farmworks Precision Farming System Ltd 2005), and a sheep to cattle ratio of approximately 70:30.

TABLE 7.5 Sensitivity analysis of Scenario F showing the relationship between aircraft charge out rate and yield variation and how this effects the cash position of Limestone Downs.

TABLE 7.6 Summary of the economic findings from several alternative fertiliser application methods on the 2518 ha Limestone Downs property, SSU refers to Standard Stock Unit.
LIST OF FIGURES

FIGURE 2.1. COORDINATE FRAMES OF REFERENCE ... 13

FIGURE 2.2. ILLUSTRATION OF THE GA200C AIRCRAFT INCLUDING LOCATION OF THE SIX DUCT SPREADER DEVICE (LOCATED 0.75 M BELOW THE AXIS OF THE PROPELLER) .. 28

FIGURE 2.3. PHASE DIAGRAM SHOWING EFFECT OF PARTICLE SIZE ON LANDING POSITION FOR SPHERICAL PARTICLES OF 1, 3, AND 5 MM DIAMETERS AT WIND SPEED OF 0, 2 AND 4 M S\(^{-1}\) WHERE THE WIND BLOWS FROM ALL POINTS OF THE COMPASS. COMPARISONS FROM AGDISP CORRESPOND TO FIVE WIND ANGLES FROM 250 TO 290° FOR WIND BLOWING AT 4 M S\(^{-1}\). OUR MODEL PARAMETERS: PARTICLE EJECTION ANGLES ARE 160° (X-Z PLANE) AND 180° (Y-Z PLANE), PARTICLE EJECTION VELOCITY WITH RESPECT TO THE AIRCRAFT = 10 M S\(^{-1}\), TRANSVERSE DISCHARGE OFFSET \(z_{\text{offset}} = 0.1\) M, DISCHARGE POINT RELATIVE TO PROPELLER AXIS OF ROTATION \(r_{\text{discharge}} = 0.75\) M, RELEASE HEIGHT = 15 M, PARTICLES ARE SUPERPHOSPHATE OF DENSITY 1760 KG M\(^{-3}\), GIPPSLANDS GA200C AIRCRAFT \((C_D, \text{AIRCRAFT} = 0.1, \text{PLANFORM AREA } S = 10.42 \text{ m}^2, \text{PROPELLER RADIUS } R = 1.07 \text{ m}, \text{GROUND SPEED 203 KM H}^{-1}, \text{PROPELLER ROTATING AT 2500 RPM})\) ... 30

FIGURE 2.4. PHASE DIAGRAM SHOWING THE EFFECT OF SPHERICITY ON LANDING POSITION FOR PARTICLES OF 3 MM DIAMETER WITH SPHERICITIES 0.6, 0.8 AND 1.0, AT A WIND SPEED OF 2 M S\(^{-1}\) WHERE THE WIND BLOWS FROM ALL POINTS OF THE COMPASS. COMPARISONS FROM AGDISP CORRESPOND TO FIVE WIND ANGLES FROM 250 TO 290° FOR WIND BLOWING AT 2 M S\(^{-1}\). OUR MODEL PARAMETERS: PARTICLE EJECTION ANGLES ARE 160° (X-Z PLANE) AND 180° (Y-Z PLANE), PARTICLE EJECTION VELOCITY WITH RESPECT TO THE AIRCRAFT = 10 M S\(^{-1}\), TRANSVERSE DISCHARGE OFFSET \(z_{\text{offset}} = 0.1\) M, DISCHARGE POINT RELATIVE TO PROPELLER AXIS OF ROTATION \(r_{\text{discharge}} = 0.75\) M, RELEASE HEIGHT = 15 M, PARTICLES ARE SUPERPHOSPHATE OF DENSITY 1760 KG M\(^{-3}\), GIPPSLANDS GA200C AIRCRAFT \((C_D, \text{AIRCRAFT} = 0.1, \text{PLANFORM AREA } S = 10.42 \text{ m}^2, \text{PROPELLER RADIUS } R = 1.07 \text{ m}, \text{GROUND SPEED 203 KM H}^{-1}, \text{PROPELLER ROTATING AT 2500 RPM})\) ... 31

FIGURE 2.5. EFFECT OF SPHERICITY ON FLIGHT TRAJECTORY IN THE X-Y PLANE. \(S_x\) IS THE AXIAL POSITION RELATIVE TO THE RELEASE POINT OF THE PARTICLE. PARTICLE SIZE = 3 MM, WIND SPEED 2 M S\(^{-1}\), A HEAD WIND WITH WIND DIRECTION 0° (X-Z PLANE), PARTICLE EJECTION ANGLES ARE 160° (X-Z PLANE) AND 180° (Y-Z PLANE), PARTICLE EJECTION VELOCITY WITH RESPECT TO THE AIRCRAFT = 10 M S\(^{-1}\), NO TRANSVERSE DISCHARGE OFFSET \(z_{\text{offset}} = 0\) M, DISCHARGE POINT RELATIVE TO PROPELLER AXIS OF
ROTATION \(R_{\text{DISCHARGE}} = 0.75 \text{ m} \), PARTICLES ARE SUPERPHOSPHATE OF DENSITY 1760 kg m\(^{-3}\), RELEASE HEIGHT 15 m, GIPPSLANDS GA200C AIRCRAFT \((C_{D,\text{AIRCRAFT}} = 0.1\), PLANFORM AREA \(S = 10.42 \text{ m}^2\), PROPPELLER RADIUS \(R = 1.07 \text{ m} \), GROUNDSPEED 203 km h\(^{-1}\), PROPPELLER ROTATING AT 2500 RPM).... 32

Figure 2.6. Effect of sphericity on flight trajectory in the \(y-z \) plane. \(S_y \) is the transverse position relative to the release point of the particle. Particle size = 3 mm, wind speed 2 m s\(^{-1}\), a head wind with wind direction 0° (\(x-z \) plane), particle ejection angles are 160° (\(x-z \) plane) and 180° (\(y-z \) plane), particle ejection velocity with respect to the aircraft = 10 m s\(^{-1}\), no transverse discharge offset \(Z_{\text{OFFSET}} = 0 \text{ m} \), discharge point relative to propeller axis of rotation \(R_{\text{DISCHARGE}} = 0.75 \text{ m} \), particles are superphosphate of density 1760 kg m\(^{-3}\), release height 15 m, GIPPSLANDS GA200C AIRCRAFT \((C_{D,\text{AIRCRAFT}} = 0.1\), PLANFORM AREA \(S = 10.42 \text{ m}^2\), propeller radius \(R = 1.07 \text{ m} \), groundspeed 203 km h\(^{-1}\), propeller rotating at 2500 RPM). 33

Figure 3.1. Static flow results showing the proportion of flow from a GIPPSLAND AERONAUTICS GA200C gate outlet. Error bars indicate the range of measurements over the eight tests. 42

Figure 3.2. Comparison of the measured and predicted lateral distribution pattern for a thirty-tray transverse test for a Gippsland Aeronautics GA200C fixed wing aircraft with a six duct spreader. Spreader auditing data (R. Horrell, unpublished data, 16th October 2002, Feilding, New Zealand), trays were spaced at 1 m intervals, aircraft flying conditions – altitude 25 m, superphosphate, ground speed 51 m s\(^{-1}\), wind velocity 0 m s\(^{-1}\), wind angle 0° from flight direction. Discharge velocity set to 25% of flight speed. Negative lateral positions are on the true left of the aircraft. 48

Figure 3.3. Comparison of the predicted lateral distribution pattern of a Gippsland Aeronautics GA200C fixed wing aircraft with a six duct spreader by altering the best model fit standard deviation for discharge velocity of 5.0 m s\(^{-1}\), to 2.5 m s\(^{-1}\) and 7.5 m s\(^{-1}\). 49
Trays were spaced at 1 m intervals. Aircraft flying conditions – altitude 25 m, superphosphate, ground speed 51 m s\(^{-1}\), wind velocity 0 m s\(^{-1}\), wind angle 0° from flight direction. Discharge velocity set to 25% of flight speed. Negative lateral positions are on the true left of the aircraft.

Figure 3.5. Comparison of the predicted lateral distribution pattern of a Gippsland Aeronautics GA200C fixed wing aircraft with a six duct spreader by altering the best model fit standard deviation for discharge angle of 5.0°, to 2.5° and 7.5°. Trays were spaced at 1 m intervals. Aircraft flying conditions – altitude 25 m, superphosphate, ground speed 51 m s\(^{-1}\), wind velocity 0 m s\(^{-1}\), wind angle 0° from flight direction. Discharge velocity set to 25% of flight speed. Negative lateral positions are on the true left of the aircraft.

Figure 3.6. Comparison of the predicted lateral distribution pattern of 0.7 mm, 2.3 mm, 4.2 mm, 5.2 mm, and 7.6 mm diameter particles from a Gippsland Aeronautics GA200C fixed wing aircraft with a six duct spreader. Trays were spaced at 1 m intervals. Aircraft flying conditions – altitude 25 m, superphosphate, ground speed 51 m s\(^{-1}\), wind velocity 0 m s\(^{-1}\), wind angle 0° from flight direction. Discharge velocity set to 25% of flight speed. Negative lateral positions are on the true left of the aircraft.

Figure 3.7. Comparison of the predicted lateral distribution pattern of ducts 1-6 from a Gippsland Aeronautics GA200C fixed wing aircraft with a six duct spreader. Trays were spaced at 1 m intervals. Aircraft flying conditions – altitude 25 m, superphosphate, ground speed 51 m s\(^{-1}\), wind velocity 0 m s\(^{-1}\), wind angle 0° from flight direction. Discharge velocity set to 25% of flight speed. Negative lateral positions are on the true left of the aircraft.

Figure 4.1. Field trial collector layout on 25 ha of hill country sheep and beef farmland, includes four non-application zones. Transects A - L consisted of ten collectors spaced at five meter intervals. Individual collector area 0.28 m\(^2\), target application rate was 150 kg ha\(^{-1}\) of superphosphate fertiliser, cross section Y – Z is referred to below.

Figure 4.2. Schematic illustration of the effect of interpolating GPS positions to create sub-positions and increase point density A) deposition footprint without interpolation B) deposition footprint with interpolation. Note: Particle concentrations were reduced.
as a function of the interpolation distance... 61

Figure 4.3. Predicted field scale application (kg ha⁻¹) on a 25 ha trial site, 15 km north of Kimbolton, Manawatu, New Zealand.. 63

Figure 4.4. An illustration of the predictions of fertiliser distribution along the collector transects A-L. Each transect consisted of ten collectors spaced at five meter intervals. — solid line is measured application rate, --- dashed line is the predicted application rate .. 65

Figure 4.5. Predicted field scale application (kg ha⁻³) using automated hopper door control on a 25 ha trial site, 15 km north of Kimbolton, Manawatu, New Zealand............................ 67

Figure 4.6. Modelled transverse fertiliser distribution of particles ejected from a Gippsland Aeronautics GA200C fixed wing aircraft with a six duct spreader — altitude 25 m, aircraft heading 360°, superphosphate, ground speed 54 m s⁻¹, no wind and 4 m s⁻¹ wind blowing from 315° ... 69

Figure 4.7. Cross section (Y-Z) of wind speed in the north/south direction taken from an interpolated ArcGIS raster surface. Wind speed data was obtained during fertiliser application on a 25 ha trial site, 15 km north of Kimbolton, Manawatu, New Zealand (refer to Figure 4.1) ... 71

Figure 4.8. Modelled spatial fertiliser deposition of particles ejected from a Gippsland Aeronautics GA200C fixed wing aircraft with a six duct spreader — altitude 25 m, superphosphate, ground speed 54 m s⁻¹, wind in case A) no wind, B) 4 m s⁻¹ wind blowing from 315° ... 70

Figure 5.1 Annual pasture production model for North Island of New Zealand as developed by Zhang et al. (2004). Each rectangular object contains an input variable and a split value. Where the variable is less than the split value then follow the left branch, where greater, follow the right branch. This continues until a production value is found... 89

Figure 5.2 Predicted annual pasture production on Limestone Downs, North Island, New Zealand resulting from the decision tree model... 90

Figure 5.3 Monthly feed requirements for the period of July 2003 to June 2004 on Limestone Downs sheep and beef hill country farm, North Island, New Zealand. Derived from feed
INTAKE MODEL

FIGURE 6.1 The decision tree model that was used to define high fertility response grasses as described in (Zhang et al., 2005a). Each rectangular object contains an input variable and a split value. Where the variable is less than the split value then follow the left branch, where greater, follow the right branch. This continues until the circular object, containing a percentage of HFRG is reached.

FIGURE 6.2 Classification of Limestone Downs, North Island, New Zealand, into pastures unresponsive to fertiliser application, due to the combination of topography, pasture composition and meteorological conditions.

FIGURE 6.3 Spatial variation in annual pasture production resulting from the six scenarios. Pasture production maps correspond to the scenarios A – F.

FIGURE 6.4 Summary of annual production across the three different slope classes, flat to rolling 0-12°, easy 13-26° and steep >26°.

FIGURE 6.5 Predicted spatial variation in annual pasture production over a five year period using variable rate application technology (VRAT).
NOMENCLATURE

\(A = \text{area} \ [m^2] \)

\(Arsh = \text{inverse hyperbolic sine} \)

\(A_{sp} = \text{specific area} \)

\(C_D = \text{drag coefficient} \)

\(CV = \text{coefficient of variation} \)

\(ch = \text{hyperbolic cosine} \)

\(D_p = \text{diameter of particle} \ [m] \)

\(du, dd = \text{directly upstream, directly downstream of propeller} \)

\(g = \text{gravitational acceleration} \ [m \ s^{-2}] \)

\(H = \text{height above ground} \ [m] \)

\(I_a = \text{axial flow induction factor} \)

\(I_r = \text{tangential flow induction factor} \)

\(m, n = \text{wind constants} \)

\(R, r = \text{radius of propeller} \ [m] \)

\(Re = \text{Reynolds number} \)

\(S = \text{aircraft planform area} \ [m^2] \)

\(S_p = \text{projected area of particle} \ [m^2] \)

\(S_{x, y, z} = \text{distance from release point in} \ x, y, z \ \text{axis} \ [m] \)

\(sh = \text{hyperbolic sine} \)

\(SU = \text{stock unit} \)

\(th = \text{hyperbolic tangent} \)

\(t = \text{time} \ [s] \)

\(U_{x, y, z} = \text{velocity components} \ [m \ s^{-1}] \)

\(|U| = \text{slip velocity between particle and} \ \text{air} \ [m \ s^{-1}] \)

\(V_p = \text{volume of particle} \ [m^3] \)

\(x, y, z = \text{components along} \ x, y \ \text{and} \ z \ \text{axis} \ \text{respectively} \)
\(Y_{\text{prop}} \) = distance from centre of propeller in \(y \) direction

\(z_{\text{prop}} \) = distance from centre of propeller in \(z \) direction

\(\rho_p \) = density of particle [kg m\(^{-3}\)]

\(\rho_{\text{air}} \) = density of air [kg m\(^{-3}\)]

\(\mu_{\text{air}} \) = air viscosity [Pa s]

\(\phi \) = particle sphericity [-]

\(\Delta \) = incremental change [-]

\(k \) = constant

\(\alpha \) = integration constant

\(\omega \) = angular velocity of the rotating wake at radius \(r \) [rad s\(^{-1}\)]

\(\Omega \) = the angular velocity of the propeller [rad s\(^{-1}\)]