Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
CHARACTERISATION OF HAWKES BAY RIVERS
BASED ON BIOTIC COMMUNITIES

A thesis presented in partial
fulfilment of the requirements
for the degree of
Master of Science in Ecology
at Massey University

Graeme John Franklyn

1997
Environmental data, aquatic macroinvertebrates and periphyton were sampled in 52 rivers throughout Hawkes Bay primarily between January and March, 1995. The 97 invertebrate taxa collected comprised predominantly Trichoptera (27), Ephemeroptera (17), Diptera (11) and Coleoptera (10). 49 periphyton taxa were collected which comprised of 30 diatoms, 10 Green algae and 9 Blue-Green algae. An ordination of sites by macroinvertebrate data using Detrended Correspondence Analysis (DECORANA) produced two interpretable axes. Axis 1 was correlated with measures reflecting terrain, land use and nutrient levels. Axis 2 was correlated with measures of periphyton abundance. DECORANA analysis of periphyton indicated pH had most influence over community structure, with measures of periphyton abundance, leaf litter, and water colour (absorbance at 440nm) having a secondary influence. Classification of macroinvertebrate communities using Two-Way Indicator Species Analysis (TWINSPAN) produced six groups. Sites within each group were generally found to fall into restricted areas of Hawkes Bay and these are suggested as bioregions. Each bioregion is described and could be used as a management unit by appropriate organisations. Analysis of periphyton with TWINSPAN classified sites into seven groups, but no geographical pattern was evident.

Direct analysis of environmental variables and macroinvertebrate taxa using Canonical Correspondence Analysis (CANOCO) indicated that gradient, altitude, substrate size, conductivity, SO₄ and K had most influence over macroinvertebrate communities. Two widely used biotic indices of water quality (MCI and EPT) were strongly positively correlated with several chemical variables and negatively correlated with substrate related factors so it was difficult to know if macroinvertebrates were responding to water quality or physical features. Ranking taxa by their CANOCO axis scores is suggested as a way of recalibrating taxa MCI scores for a region and assigning appropriate MCI scores to new taxa.
The bioregions generated from the TWINSPAN analysis of macroinvertebrates are compared to an existing New Zealand-wide ecoregion classification and also to ecoregions developed from a cluster analysis of six climatic and geomorphological factors of the 52 sites in Hawkes Bay. Little correlation was found between the bioregions and the cluster analysis, however some similarity between bioregions and the existing ecoregion classification was found, and the bioregions are suggested as possible “subecoregions”.

Environmental data and macroinvertebrates were also sampled in nine sites on each of two major Hawkes Bay rivers to look at longitudinal patterns in macroinvertebrate communities. Both rivers exhibited a zonation pattern rather than a continuum, and the zonation is related to degree of human disturbance.
ACKNOWLEDGEMENTS

This thesis has benefited from the advice and assistance of a number of people.

The person I am most grateful to is my supervisor, Dr Ian Henderson. Throughout the thesis he provided valuable assistance, support and encouragement. His guidance has been invaluable in all aspects of this thesis, from macroinvertebrate identification through to multivariate data analysis. I am also indebted to him for his aid in the writing and editing of this thesis.

I am grateful to Dr Ian Boothroyd of the Hawkes Bay Regional Council for providing the opportunity to undertake this study, as well as taking the time out of his busy schedule to discuss the initial stages of the project, and introducing me to other people who were of assistance. His comments on an earlier draft of the chapters is also appreciated. I would also like to thank him for organising the funding for my first ever helicopter trip! Other people from the Hawkes Bay Regional Council whose assistance is gratefully acknowledged are Suzanne Porter, Robin Black, Neale Hudson, Geoff Woods, Kim Caulton and Belinda Burgiss.

Suzanne Lambie kindly chauffeured me around some of my sites for a week and provided helpful assistance in the field.

The periphyton analysis was undertaken by Cathy Kilroy of NIWA, Christchurch, for which I am grateful. Thankyou also to the Department of Conservation for allowing samples to be taken from the Kaweka and Kaimanawa Ranges.

I am grateful (and relieved) to the people at Budget rental cars for believing me when I said it was roadworks that was causing the cars to be so dirty!
Thankyou to my friends and colleagues in the Ecology Department, particularly those residing in the TVL building. They provided many helpful comments and helped keep the thesis enjoyable. This includes Dr Russell Death who, although constantly reminding me I’m not one of his students, kindly provided many helpful comments.

The final people I would like to thank are my parents, Eric and Carol Franklyn. Their support (both morally and financially) and encouragement were, and still are, greatly appreciated.

Financial support for this thesis was provided by the Hawkes Bay Regional Council, a J. P. Skipworth (Ecology) scholarship, and a Massey University Postgraduate Scholarship, for which I am grateful.

The macroinvertebrate pictures on the title pages for each chapter are copied from Winterbourn and Gregson (1989).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE PAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>1</td>
</tr>
</tbody>
</table>

CHAPTER 2: CHARACTERISATION OF HAWKES BAY RIVERS AND STREAMS BASED ON BENTHIC MACROINVERTEBRATES

2.1. Introduction 5
2.2. Study Sites 8
2.3. Methods 8
 2.3.1. Data collection 8
 2.3.2. Laboratory procedures 12
 2.3.3. Data analysis 13
2.4. Results 15
 2.4.1. Taxonomic composition of invertebrate communities 15
 2.4.2. Ordination of sites 16
 2.4.3. Correlations between biotic and environmental variables 16
 2.4.4. Classification of sites 19
2.5. Discussion 23
 2.5.1. Characterisation of invertebrate communities 23
 2.5.2. Environmental variables affecting biotic factors 28
 2.5.3. Bioregions 29
CHAPTER 3: CHARACTERISATION OF HAWKES BAY PERiphyton Communities

3.1. Introduction 33
3.2. Study Sites 34
3.3. Methods 34
 3.3.1. Data collection 34
 3.3.2. Laboratory procedures 34
 3.3.3. Data analysis 35
3.4. Results 35
 3.4.1. Community characteristics 35
 3.4.2. Ordination of sites 36
 3.4.3. Classification of sites 36
3.5. Discussion 40

CHAPTER 4: COMPOSITION AND DISTRIBUTION OF BENTHIC MACROINVERTEBRATES ALONG TWO LARGE HAWKES BAY RIVERS

4.1. Introduction 44
4.2. Study Sites 46
4.3. Methods 47
 4.3.1. Data collection 47
 4.3.2. Laboratory procedures 47
 4.3.3. Data analysis 47
4.4. Results 48
 4.4.1. Tukituki River 48
 4.4.2. Ngaruroro River 54
 4.4.3. Tukituki River and Ngaruroro River combined 56
4.5. Discussion 57

CHAPTER 5: ASSESSMENT OF WATER QUALITY IN RIVERS: COMPARING BIOTIC INDICES AND CANONICAL CORRESPONDENCE ANALYSIS 63
5.1. Introduction
5.2. Methods
 5.2.1. Data analysis
5.3. Results
 5.3.1. Ordination of semi-quantitative data
 5.3.2. Ordination of presence/absence data
5.4. Discussion

CHAPTER 6: LOTIC ECOREGIONS OF HAWKES BAY
6.1. Introduction
6.2. Methods
 6.2.1. Identification of Hawkes Bay ecoregions
6.3. Results
 6.3.1. Cluster analysis ecoregions versus Chapter 2 bioregions
 6.3.2. Cluster analysis ecoregions versus Hardings (1994) ecoregions
 6.3.3. Hardings (1994) ecoregions versus Chapter 2 bioregions
6.4. Discussion

REFERENCES

APPENDIX 1: Taxa Names and Abbreviations Used in Chapter 5

DATA DISKETTE

Contains:
 apendix2.xls Spreadsheet of macroinvertebrate and environmental data used in chapters 2 and 5.
 apendix3.xls Spreadsheet of macroinvertebrate and environmental data used in chapter 4.
 apendix4.xls Spreadsheet of periphyton chlorophyll a and ash-free dry-weight for each site.
 apendix5.xls Spreadsheet of periphyton taxonomy found at each site.

Envelope on back cover
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Environmental variables used in the analysis together with their units and abbreviations used in later tables and figures.</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Matrix of Pearson correlation coefficients between biotic and environmental variables.</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Mean values and ANOVA statistics for selected environmental factors analysed by TWINSPAN macroinvertebrate groups.</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Mean values and ANOVA statistics for selected environmental factors analysed by TWINSPAN periphyton groups.</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Environmental variable measurements for the Tukituki River.</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Environmental variable measurements for the Ngaruroro river.</td>
<td>55</td>
</tr>
<tr>
<td>5.1</td>
<td>Results of canonical correspondence analysis using semi-quantitative and presence/absence taxa data.</td>
<td>68</td>
</tr>
<tr>
<td>5.2</td>
<td>Weighted intraset correlations of environmental variables with the first two axes of canonical correspondence analysis for semi-quantitative taxa data.</td>
<td>70</td>
</tr>
<tr>
<td>5.3</td>
<td>Weighted intraset correlations of environmental variables with the first two axes of canonical correspondence analysis for presence/absence data.</td>
<td>74</td>
</tr>
</tbody>
</table>
Table 5.4. Ranking of some common taxa by semi-quantitative canonical correspondence analysis Axis 1 score. 78

Table 6.1. Climatic and geomorphological variables used in the cluster analysis to develop ecoregions. 85

Table 6.2. Characteristic features of the six climatic and geomorphological variables of the four ecoregions derived from the cluster analysis. 88
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. 2.1.</th>
<th>Location of study sites and major river catchments in Hawkes Bay.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.2.</td>
<td>Ordination along the two main DECORANA axes the 52 rivers by macroinvertebrates. Environmental variables significantly correlated with DECORANA axes are indicated.</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 2.3.</td>
<td>TWINSPAN dendrogram showing the classification of the 52 Hawkes Bay sites by macroinvertebrates. Indicator species diagnostic of each division are shown.</td>
<td>20</td>
</tr>
<tr>
<td>Fig. 2.4.</td>
<td>Proposed bioregions for the Hawkes Bay region based on a TWINSPAN analysis of macroinvertebrate data.</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 3.1.</td>
<td>Ordination along the two main DECORANA axes of 47 sites by periphyton. Environmental variables significantly correlated with DECORANA axes are indicated.</td>
<td>37</td>
</tr>
<tr>
<td>Fig. 3.2.</td>
<td>TWINSPAN dendrogram showing the classification of 47 sites by periphyton. Indicator species diagnostic of each division are shown.</td>
<td>38</td>
</tr>
<tr>
<td>Fig. 4.1.</td>
<td>Number of taxa identified at each site along the Tukituki and Ngaruroro rivers.</td>
<td>50</td>
</tr>
<tr>
<td>Fig. 4.2.</td>
<td>Number of invertebrates found at each site along the Tukituki and Ngaruroro rivers.</td>
<td>51</td>
</tr>
</tbody>
</table>
Fig. 4.3. Dendrogram showing the results of the TWINSPEAN analysis of macroinvertebrates on the (a) Tukituki River and (b) the Ngaruroro River. 52

Fig. 4.4. Percentage composition by Order of macroinvertebrate communities in the Tukituki River and Ngaruroro River. Groups derived from TWINSPEAN analysis. 53

Fig. 4.5. Dendrogram showing the results of a TWINSPEAN analysis on all 18 sites from the Tukituki and Ngaruroro rivers indicating three main zones. 57

Fig. 5.1. Canonical Correspondence Analysis using semi-quantitative taxa data. (a) Ordination of taxa. (b) Ordination of sites. (c) Ordination of environmental variables. (d) Summary of the three previous graphs. Letters refer to the bioregions identified in chapter 2. 69

Fig. 5.2. Canonical Correspondence Analysis using presence/absence taxa data. (a) Ordination of taxa. (b) Ordination of sites. (c) Ordination of environmental variables. (d) Summary of the three previous graphs. Letters refer to the bioregions identified in chapter 2. 73

Fig. 5.3. Ranking of taxa from Table 5.4 by Axis 1 score and by MCI score. Most obvious outliers are labelled. 80

Fig. 6.1. Ecoregion classification for the North Island, New Zealand derived from merging six climatic and geomorphological variables (from Harding, 1994, reproduced with permission). 87
Fig. 6.2. Groupings of sites found with cluster analysis. Ecoregion codes and line showing cutoff level are shown.

Fig. 6.3. Ecoregion classification derived from a cluster analysis of six climatic and geomorphological variables.
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate 2.1</th>
<th>Site 48, Ikanui River. Bioregion A.</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 2.2</td>
<td>Site 33, Mangaone River. Bioregion B.</td>
<td>24</td>
</tr>
<tr>
<td>Plate 2.3</td>
<td>Site 3, Esk River. Bioregion C.</td>
<td>25</td>
</tr>
<tr>
<td>Plate 2.4</td>
<td>Site 55, Ngaruroro River. Bioregion D.</td>
<td>25</td>
</tr>
<tr>
<td>Plate 2.5</td>
<td>Site 39, Hopuruahine River. Bioregion E.</td>
<td>26</td>
</tr>
<tr>
<td>Plate 2.6</td>
<td>Site 12, Waipunga River. Bioregion F.</td>
<td>26</td>
</tr>
<tr>
<td>Frontispiece</td>
<td>Site 46, Nuhaka River.</td>
<td>i</td>
</tr>
</tbody>
</table>