Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
IDENTITY, TAXONOMY AND SEED-BORNE
ASPECTS OF THE GRAY LEAF SPOT
ORGANISM ON BLUE LUPIN

A thesis submitted in partial fulfilment
of the requirements for the Degree

Master of Agricultural Science
at
Massey University

by

Kenneth Gregory Tate
1968
INTRODUCTION

I THE PATHOGEN
 A. IDENTITY OF THE SPECIES CAUSING GRAY LEAF SPOT
 B. STUDIES CONCERNED WITH ARTIFICIAL INFECTIONS
 C. FIELD IDENTIFICATION

II TAXONOMY OF STEMPHYLIUM
 A. INTRODUCTION
 B. DETERMINATION OF TRUE STEMPHYLIA
 C. THE BASIS FOR SPECIES DELIMITATION IN STEMPHYLIUM
 D. STABILITY OF TAXONOMIC CRITERIA IN STEMPHYLIUM
 E. GENERAL DISCUSSION

III SIGNIFICANCE OF THE PATHOGEN IN BLUE LUPIN SEED CROPS
 A. INTRODUCTION
 B. EFFECT OF CROP INFECTION ON SEED YIELD
 C. EFFECT OF SEED SIZE ON SEED PERFORMANCE
 D. THE RELATIONSHIP BETWEEN SEED AND PATHOGEN
 E. SIGNIFICANCE OF SEED INFECTION
 F. GENERAL DISCUSSION

SUMMARY

BIBLIOGRAPHY

APPENDICES
FIGURES

1. Developmental Morphology of the causal organism on artificially inoculated blue lupins 1

2. Apparatus for irradiating colonies with UV light 10

3. Constant humidity apparatus 13

4. Apparatus for excised-leaf method in inoculation studies 15

5. Conidiophore characters and conidial arrangements observed for Stemphylium during the present study 36

6. Interpretation of descriptive terms used to categorise conidia 49

7. Naturally occurring examples of Stemphylium conidia illustrating the spore form categories of Table 12 49

8. Morphologic comparison of 12 Stemphylium spp. 49

9. Frequency of conidial form first observed on blue lupins and after reinoculation to blue lupin 64

10. Frequency of conidial form first observed on blue lupins, during subculture on PDA and again on blue lupin leaflets 67

11. "Free-flow" seed washing apparatus 97
<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cultural characters of the causal organism</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Sexual characteristics of the causal organism</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Symptom differentiation at early stages of expression</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Leaflet symptoms</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>Leaflet symptoms</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>Cotyledon symptoms</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>Pod symptoms</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>Pod symptoms</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>Stem symptoms</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>Stem symptoms</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>Olympus microscope fitted with camera lucida</td>
<td>49</td>
</tr>
<tr>
<td>12</td>
<td>Immaturity and proliferation in conidia of S. botryosum</td>
<td>55</td>
</tr>
<tr>
<td>13</td>
<td>Suggested spore groups for Stemphylium</td>
<td>69</td>
</tr>
<tr>
<td>14</td>
<td>Motorised seed cleaner used for grading blue lupin seed into three sizes</td>
<td>77</td>
</tr>
<tr>
<td>15</td>
<td>Intensity of pod infection at 12 days following inoculation</td>
<td>77</td>
</tr>
<tr>
<td>16</td>
<td>Effect of pod infection on seed size</td>
<td>77</td>
</tr>
</tbody>
</table>
17. Small white, small lesioned and normally developing seed of blue lupin

18. Combined effect of S. botryosum and Ascochyta sp. on pod and seed development

19. Lesions of unknown cause on blue lupin seeds

20. Marford seed germinator used for maintaining high humidity conditions at constant temperatures

21. Maintenance of high humidity conditions at room temperatures following inoculation of newly emerged seedlings

22. Constant temperature water bath used for HWT of seed

23. Effect of 2,4-D on germination at seven days

24. Colony characteristics and pigmentation produced by S. botryosum in the presence of blue lupin seed

25. Pod maturity classes used in determining mechanism of seed infection

26. Development of blue lupin hypocotyl and manner of emergence from soil

27. Degrees of stunting in blue lupin seedlings as a result of sowing seed naturally infected with S. botryosum

28. Typical symptoms of S. botryosum on seedling hypocotyl of blue lupin as a result of saving naturally infected seed
TABLES

1. Relative incidence and pathogenicity of *Stemphylium* species in blue lupin crops ... 7

2. Effect of media on conidial production ... 10

3. Effect of light conditions on conidial production 11

4. Effect of temperature on conidial production 13

5. Effect of humidity on conidial production and mycelial growth 14

6. Effect of high humidity duration on disease intensity 17

7. Effect of high humidity duration on disease intensity 18

8. Effect of temperature on the rate of disease development 20

9. Effect of inoculum concentration on intensity of infection 22

10. Species representing *Stemphylium* Wallr. 41

11. Macrosporia with possible affinity to *Stemphylium* Wallr. 43

12. Subdivision of conidial form categories 49

13. Effect of substrate on conidial morphology 58

14. Effect of temperature on conidial morphology 60
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Effect of light conditions on conidial morphology</td>
</tr>
<tr>
<td>16. Effect of humidity on conidial morphology</td>
</tr>
<tr>
<td>17. Frequency of conidial form observed first on blue lupin (A) and after reinoculation (B)</td>
</tr>
<tr>
<td>18. Frequency of conidial form observed first on blue lupins (A) during subculture on PDA (B), and again on blue lupin leaflets (C)</td>
</tr>
<tr>
<td>19. Effect of pod infection on seed size and weight</td>
</tr>
<tr>
<td>20. Effect of pod infection on total weight of seed harvested</td>
</tr>
<tr>
<td>21. Effect of pod infection on the proportions of seed in three size categories</td>
</tr>
<tr>
<td>22. Effect of seed size on germination</td>
</tr>
<tr>
<td>23. Effect of seed size on emergence</td>
</tr>
<tr>
<td>24. Effect of seed size on early seedling vigour</td>
</tr>
<tr>
<td>25. Presence and viability of contaminating conidia on blue lupin seed</td>
</tr>
<tr>
<td>26. Effect of treatment duration on viability of contamination</td>
</tr>
<tr>
<td>27. Effect of treatment duration on viability of contamination</td>
</tr>
<tr>
<td>28. Effect of treatment duration on viability of contamination</td>
</tr>
<tr>
<td>29. The presence of S. botryosum in five seed lines</td>
</tr>
</tbody>
</table>
30. Pathogenicity of seed isolates of *S. botryosum*

31. Mechanism of seed infection

32. Germination performance of seed lines naturally infected with *S. botryosum*
ACKNOWLEDGEMENTS

Grateful acknowledgement is made to -

the New Zealand Department of Agriculture for both
 making this study possible and in providing
 generous financial and material support;
Dr. H.T. Wenham for his guidance, encouragement and
 constructive criticism;
Miss D. Scott and Miss C. Mitchell for photographic
 processing;
Miss W. McGowan for typing this thesis;
Staff of the University Library for obtaining
 publications;
Staff of the University Languages Department and
 Mr. P. Hockey for translations;
Mrs. M. Hudson and Mrs. E. Robertson for laboratory
 assistance;
my wife for her patience, encouragement and assistance.
INTRODUCTION

While conducting studies in the Manawatu on the brown spot disease of blue lupins caused by *Pleiochaeta setosa* (Kirchn.) Hughes, Milne (1964) frequently encountered a *Stemphylium* disease characterised by necrotic lesions on leaves, stems and pods. A disease caused by a species of this genus had not previously been reported on blue lupins in New Zealand, but in the United States of America Wells, Forbes, Webb and Edwardson (1956) described two previously unrecognised diseases on this host, namely "little leaf spot" caused by *Stemphylium botryosum* Wallroth and "gray leaf spot" caused by *S. solani* Weber. Milne considered his isolates to be *S. botryosum* but was confused by the symptoms being typical of those recorded for *S. solani* (gray leaf spot). He did not pursue the matter further and at the completion of his studies on *P. setosa* there remained the unresolved question of the identity of the *Stemphylium* species present on blue lupin in the Manawatu.

The anomaly revealed by Milne (1964) was explained in a later publication by Wells, Forbes and Edwardson (1961a) in which they reported the discovery of a virulent strain of the little leaf spot organism (*S. botryosum*) that caused gray leaf spot symptoms identical to those induced by *S. solani*. It seemed probable therefore that

1/ *Lupinus angustifolius* L.
Milne had in fact isolated virulent strains of *S. botryosum* from diseased blue lupins. In the present study the identity of the species causing gray leaf spot is established and consideration given to field identification of the disease.

The second part of this work concerns taxonomy of the genus *Stemphylium*. Until recently the accepted concept of *Stemphylium* was based on a compromise proposal put forward by Wiltshire in 1938. This was necessary, if not strictly correct, due to the original concept of *Stemphylium* being misinterpreted soon after the genus was erected in 1833 and a different group of fungi thereafter being commonly attributed to *Stemphylium*. However, in a recent paper Simmons (1967) restored the original concept by proposing that the other group be transferred to another genus, namely *Ulocladium Preuss*. This makes it possible for the first time in over 100 years to consider the genus *Stemphylium* strictly within the limits of the original concept laid down by Wallroth.

The final part of the study is concerned with the seed-borne nature of the gray leaf spot disease of blue lupins in New Zealand. The presence of necrotic lesions on developing pods and seeds, together with a report that the pathogen is seed-borne (Milne 1964) suggested that both seed yield and seed performance may be affected. Further, if viable inoculum of the pathogen is associated with harvested seed from blue lupin crops, this could be of significance in the establishment of primary infection foci when such seed is used for further cropping.
These three areas of study can be summarised as follows:

I the pathogen - its identity, and field identification of the disease it causes;

II taxonomy of Stemphylium - the tenability of present species, and an evaluation of species delimitation in this genus;

III significance of the pathogen in blue lupin seed crops - its effect on seed yields and seed performance, its presence in seed lines and the significance of this in the establishment of primary infection foci.