Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Manipulation of canopy architecture and possible vigour control mechanisms in kiwifruit

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Plant Physiology

at Massey University, Manawatū, New Zealand.

MASSEY UNIVERSITY
TE KUNENGA KI PŪREHUROA
UNIVERSITY OF NEW ZEALAND

Fadhilnor Abdullah
2017
Abstract

Dwarfing or vigour-controlling rootstocks have been used in many fruit trees to reduce scions growth, improve precocity and yield efficiency, but they are not currently available for kiwifruit. Therefore, there is a strong need to evaluate the vigour-controlling rootstocks and/or other growth manipulation techniques for controlling excessive growth of kiwifruit. In this study, the initial growth and architecture of ‘Hayward’ scions may have been modified by the inter-specific hybrid kiwifruit rootstocks, during the first- and second- year of growth following grafting. Rootstocks modified the trunk cross-sectional area and proleptic bud break of the ‘Hayward’ primary shoots. The lengths of long and short proleptic shoots of the scions from particular rootstocks were also slightly reduced, thus reducing the total length of proleptic shoots on grafted scions. In the field, inter-specific hybrid kiwifruit rootstocks affected the duration and compactness of scions bud break. The most notable effect of hybrid rootstocks was on the growth rate of long proleptic axillary shoots of scions during early spring growth with ‘Hayward’ scions on particular rootstocks had the slowest growth rate compared to other rootstocks. Rootstocks may affect scions floral precocity, with ‘Hayward’ scions on particular kiwifruit rootstocks tended to produce higher flower numbers when they were first planted on the field. There was a strong trend that rootstocks affected the proportion of long shoots and this effect had contributed to the differences in the proportion of non-terminated and terminated shoots of the scions. Auxin transport inhibitor, 1-N-naphthylphthalamic acid (NPA) applied to the stem junction at graft-union on some rootstocks had decreased the length, node number and cross-sectional area of scion primary shoots. However, NPA treatment on particular rootstocks did not affect the growth of scion primary shoots on some of the rootstocks, suggesting that restriction of IAA did not influence the level of IAA transported from shoot to root system of those kiwifruit rootstocks. NPA reduced the leaf size of scions, indicating that sufficient IAA is needed for the leaf growth of kiwifruit, but it may be regulated by the rootstocks. The transport and uptake of radioactivity of IAA in the stem segment varied between the rootstocks, suggesting that the level of IAA in the stem tissues of inter-specific hybrid kiwifruit rootstocks may vary depending on the vigour and genetics of the kiwifruit rootstocks. Restriction of IAA by inverting a single piece of bark (180-degree orientation) and grafted back to the main stem did not completely reduce the vigour of young ‘Hort16A’ vines. However,
the growth and vigour of young ‘Hort16A’ vines in terms of total length, total node number and total leaf area were greatly reduced when grafted three rings of bark from other cultivars in an inverted orientation. In the field, the bark grafting treatments along with girdling were evaluated to regulate the characteristics of ‘Hayward’ fruits. All treatments did not consistently produce similar effects in each season and year. Comparison between treatment, season (i.e. early and late summer) and year indicated that the treatment effects on fruit fresh weight, dry weight and dry matter concentration were only evident in the first harvesting year, and the effects were lessened in the following year. In this study, four distinct phenotypes were found from the kiwifruit seedlings population based on their main primary shoots; i) Long Multiple Stems (LMS), ii) Short Multiple Stems (SMS), iii) Long Single Stem (LS), and iv) Short Single Stem (SS). Gibberellins (GA$_3$+GA$_{4+7}$) treatment on these phenotypes at an early stage of bud break has transformed the morphology and characteristics of proleptic axillary shoots. The mean total number of proleptic and sylleptic axillary shoots (i.e. branching) was increased with gibberellins treatment, suggesting that gibberellins can promote meristematic activity by regulating both apical and sub-apical meristem of kiwifruit shoots.
Acknowledgements

Chapter One

1. General introduction and literature review

1.1 Overview of the thesis
 1.1.1 The importance of rootstocks in fruit tree management
 1.1.2 Hormonal physiology in fruit tree architecture
 1.1.3 Rationale of the thesis, hypotheses and major objectives
 1.1.3.1 Assessment of ‘Hayward’ scions grafted onto inter-specific hybrid rootstocks in the nursery stage and field planting
 1.1.3.2 Hormonal assessment on grafted inter-specific hybrid rootstocks of kiwifruit in relation to their vigour
 1.1.3.3 Vigour manipulation of kiwifruit by bark inserts/grafting
 1.1.3.4 Assessment of kiwifruit seedlings from specific crosses and their responses to gibberellins
 1.2 Literature Review
 1.2.1 The general botany of kiwifruit
 1.2.2 The origin and history of kiwifruit in New Zealand
 1.2.3 Rootstocks in kiwifruit
 1.2.3.1 Seedling rootstocks
 1.2.3.2 Clonal rootstocks
 1.2.4 The physiological mechanisms of vigour control by rootstock
 1.2.4.1 Anatomical characteristics
 1.2.4.2 Restriction of water uptake
 1.2.4.3 Nutrients translocation and uptake
 1.2.4.4 Alteration of endogenous hormones translocation
 1.2.4.5 Graft-union
 1.2.5 Effects of rootstocks on kiwifruit vines
 1.2.6 The relationship between vigour and plant immune system
 1.2.7 Vigour control of tree growth by bark inversion
 1.2.8 Control of branching/axillary outgrowth by apical dominance
Chapter Two

2. Inter-specific hybrid kiwifruit rootstocks have potential to modify scion architecture and vigour of young ‘Hayward’ vines 44

2.1 Introduction ... 44
2.2 Materials and Methods .. 47
 2.2.1 Study site and establishment of plant materials 47
 2.2.2 Propagation and growing medium for grafted materials 47
 2.2.2.1 Grafting of inter-specific hybrid rootstocks 47
 2.2.2.1 Growing conditions of experimental plants 48
 2.2.3 Measurements of shoot architecture and growth characteristics 48
 2.2.4 Experimental design and statistical analysis 49
2.3 Results ... 51
 2.3.1 Trunk cross-sectional area (CSA) of rootstocks and scion bud wood 51
 2.3.2 Characteristics of primary shoot of grafted scion 53
 2.3.3 Effect of rootstocks on spring bud break of primary shoots 53
 2.3.4 Relationship between trunk cross-sectional area of rootstocks, bud wood and primary shoot (scion) ... 54
 2.3.5 Effect of rootstocks on total number of proleptic axillary shoots 56
 2.3.6 Effect of rootstocks on the proportion of different shoot types of scion 58
 2.3.7 Effect of rootstocks on the final length and total length of proleptic axillary shoots ... 60
 2.3.8 Effect of rootstocks on the stem CSA of proleptic axillary shoots 63
 2.3.9 Relationships between trunk cross-sectional area of rootstocks and branching of scions .. 64
 2.3.10 The summary of vigour rating of rootstocks by the end of second season following grafting ... 65
2.4 Discussion ... 67
 2.4.1 Rootstock influence on growth of grafted scions 68
 2.4.2 Rootstock effects on spring bud break of scions 70
 2.4.3 Rootstock effects on the characteristics and production of proleptic axillary shoots (branching) of scions 71
2.5 Summary .. 77
Chapter Three

3. Effect of inter-specific hybrid rootstocks on scion growth and architecture, and the first occurrence of flowering for field grown young ‘Hayward’ vines ... 79

3.1 Introduction ... 79

3.2 Materials and methods ... 81

3.2.1 Experimental site ... 81

3.2.2 Establishment of planting materials ... 81

3.2.3 Measurements of scion growth .. 83

3.2.4 Statistical analysis .. 84

3.3 Results .. 85

3.3.1 Rootstock effects on spring bud break and floral precocity of scions 85

3.3.1.1 Growing season 2012-2013 .. 85

3.3.1.2 Growing season 2013-2014 .. 86

3.3.2 Rootstock effects on spring growth, shoot production and termination of axillary shoots .. 90

3.3.2.1 Growing season 2012-2013 .. 90

3.3.2.1.1 The proportion of proleptic axillary shoots in summer 2012-2013 season .. 90

3.3.2.1.2 The number of proleptic axillary shoots in summer 2012-2013 season .. 91

3.3.2.1.3 The characteristics of trained cordons at the end of summer 2013 .. 95

3.3.2.1.4 Pruning weight of scions in growing season 2012-2013 97

3.3.2.2 Growing season 2013-2014 .. 98

3.3.2.2.1 Spring growth of proleptic axillary shoots in 2013 growing season .. 98

3.3.2.2.2 The growth rate of proleptic axillary shoots in 2013 growing season .. 99

3.3.2.2.3 The proportion of proleptic axillary shoots in 2013-2014 growing season .. 102

3.3.2.2.4 The number of proleptic shoots at the end 2013-2014 growing season .. 103

3.3.2.2.5 The mean length, node number and internode length of proleptic axillary shoots at 2013-2014 growing season .. 107

3.3.3 Rootstock effects on the total node number and distribution of node number of proleptic axillary shoots .. 110

3.3.3.1 The total node number of shoots in 2012-2013 growing season 110

3.3.3.2 The total node number of shoots in 2013-2014 growing season 111

3.3.3.3 The node number distribution in 2013-2014 growing season 111
Table of contents

3.3.4 Trunk CSA of scions and rootstocks in 2012-2013 growing season 114
3.3.5 Rootstock effects on the proportions of flowering proleptic shoots and flowering in 2013-2014 growing season ... 115
3.4 Discussion ... 118
 3.4.1 Effects of rootstocks on growth and shoot architectural structures of ‘Hayward’ scions .. 118
 3.4.1.1 Shoot growth of proleptic axillary shoots .. 118
 3.4.1.2 The proportion of proleptic axillary shoots .. 121
 3.4.1.3 The characteristics of proleptic axillary shoots 122
 3.4.1.4 Trunk cross-sectional area (CSA) of rootstocks and scions 125
 3.4.1.5 Pruning weight of scions ... 126
 3.4.2 Effects of rootstocks on bud break, precocity and flowering of ‘Hayward’ scions ... 127
 3.4.2.1 Spring bud break ... 127
 3.4.2.2 Precocity and flowering ... 130
 3.5 Summary ... 135

Chapter Four

4. Understanding the hormonal signalling in the grafted ‘Hayward’ kiwifruit vines ... 137

4.1 Introduction ... 137
4.2 Materials and methods .. 141
 4.2.1 Experiment 1: Effects of rootstock and auxin transport inhibitor, 1-N- naphthylphthalamic acid (NPA) on scion shoot growth and architecture of young composite ‘Hayward’ vines .. 142
 4.2.1.1 Study site and establishment of experimental plant materials 142
 4.2.1.2 Synthesis of 1-N-naphthylphthalamic acid (NPA) 143
 4.2.1.3 Testing of the biological efficacy of synthesised 1-N-naphthylphthalamic acid using a lettuce root growth bioassay ... 143
 4.2.1.4 Application of NPA to the kiwifruit vines ... 144
 4.2.1.5 Measurement of shoot growth and architecture of ‘Hayward’ vines ... 144
 4.2.1.6 Experimental design and statistical analysis 145
 4.2.2 Experiment 2: Auxin transport capacity of inter-specific hybrid kiwifruit rootstocks with different vigour ... 148
 4.2.2.1 Study site and establishment of experimental plant materials 148
 4.2.2.2 Transport of IAA in rootstocks using agar-donor receiver transport system and [14C]-IAA ... 149
 4.2.2.3 Experimental design and statistical analysis 151
4.3 Results ... 152
4.3.1 Experiment 1 ..152
 4.3.1.1 Main effects of rootstocks and NPA treatment on the characteristics of primary shoots of ‘Hayward’ scions ..153
 4.3.1.1.1 The length of primary shoots of scions ..153
 4.3.1.1.2 Node number of primary shoots of scions153
 4.3.1.1.3 Internode length of primary shoots of scions154
 4.3.1.1.4 Effects of rootstocks and NPA on the number of proleptic axillary shoots of ‘Hayward’ scions154
 4.3.1.1.5 Effects of rootstocks and NPA on the total growth of grafted ‘Hayward’ scions ..153
 4.3.1.2 The relationship between shoot length and node number of primary shoots of ‘Hayward’ scions ..157
 4.3.1.3 Main effects of rootstocks and NPA treatment on the leaf characteristics of primary shoots of ‘Hayward’ scions ..158
 4.3.1.3.1 Leaf area (LA) of primary shoots...158
 4.3.1.3.2 Leaf fresh (FW) and dry weight (DW) of primary shoots..............158
 4.3.1.3.3 Leaf mass per area (LMA) of primary shoots159
 4.3.1.4 The pattern of leaf area along the primary shoots of ‘Hayward’ scions.....160
 4.3.1.5 The final trunk cross-sectional area (CSA) of rootstocks and bud wood.. ...161
 4.3.1.6 Spring bud break of primary shoots of ‘Hayward’ scions.....................162
 4.3.1.7 Main effect of rootstocks and NPA on the total length, total node number and number of shoots of proleptic axillary shoots of ‘Hayward’ scions........163
 4.3.1.8 Main effect of rootstocks and NPA on the total leaf area of proleptic axillary shoots ...163
 4.3.2 Experiment 2 ..165
 4.3.2.1 Uptake and transport of radioactivity in late autumn season165
 4.3.2.2 Uptake and transport of radioactivity in the summer season of 2014167
 4.3.2.2.1 Total uptake and transport ..167
 4.3.2.2.2 Radioactivity in stem segments and agar from rootstocks of differing vigour ...169
 4.3.2.2.3 Distribution patterns of radioactivity in the stem segments172
 4.4 Discussion ...174
 4.4.1 Experiment 1 ...174
 4.4.1.1 Effects of rootstocks and NPA on the growth of primary shoots176
 4.4.1.2 Effects of rootstocks and NPA on the bud break of scion primary shoots178
 4.4.1.3 Effects of rootstocks and NPA on the number of proleptic axillary shoots (i.e. branching) ...181
 4.4.1.4 Effects of rootstocks and NPA on the leaf growth of scions184
 4.4.1.5 Effects of rootstocks and NPA on the total growth of grafted ‘Hayward’ scions ..185
 4.4.2 Experiment 2 ...187
 4.5 Summary ...194
Chapter Five

5. Manipulation of vegetative growth, shoot architecture and fruit characteristics of green (*A. deliciosa*) and gold kiwifruit (*A. chinensis*) by bark grafting ... 196

5.1 Introduction .. 196

5.2 Materials and methods... 199

5.2.1 Effects of bark grafting on vegetative growth and shoot architecture of young, potted ‘Hort16A’ kiwifruit vines (*Growth Manipulation 1 and 2*) .. 199

5.2.1.1 Study site and establishment of experimental plant materials 199

5.2.1.2 Propagation and growing medium ... 199

5.2.1.3 Bark grafting treatment on the kiwifruit stem .. 200

5.2.1.4 Measurements of shoot architecture and vegetative growth 200

5.2.2 Effects of bark grafting on the fruit characteristics of green kiwifruit cv. ‘Hayward’ vines (*Growth Manipulation 3*) .. 202

5.2.2.1 Study site and experimental plant materials .. 202

5.2.2.2 Bark grafting treatment on the kiwifruit vines .. 202

5.2.2.3 Measurements of fruit characteristics and dry matter concentration 204

5.2.3 Experimental design and statistical analysis ... 206

5.2.3.1 Bark grafting treatment on young ‘Hort16A’ potted vines 206

5.2.3.2 Bark grafting on field-grown of ‘Hayward’ vines 206

5.3 Results ... 208

5.3.1 Growth Manipulation 1 (*GM1*) ... 208

5.3.1.1 Early responses of kiwifruit vines to bark grafting 208

5.3.1.2 Effects of bark grafting on the characteristics of long sylleptic shoots 209

5.3.1.3 Effects of bark grafting on the characteristics of medium sylleptic shoots
... ... 211

5.3.1.4 Effects of bark grafting on the characteristics of short sylleptic shoots 212

5.3.1.5 Effects of bark grafting on the total length, leaf area and node number of sylleptic axillary shoots ... 213

5.3.1.6 Effects of bark grafting on the mean proportion and total number of sylleptic axillary shoots .. 213

5.3.1.7 The relationship between final shoot length and node number of sylleptic
axillary shoots .. 214

5.3.2 Growth Manipulation 2 (*GM2*) ... 216

5.3.2.1 Early responses of kiwifruit vines to bark grafting from other cultivars 216

5.3.2.2 The monthly production of sylleptic axillary shoots between bark grafting
and control vines ... 217

5.3.2.3 Effect of bark grafting treatment and insertion of bark of various cultivars (G3, G9 and G14) on the final mean total length and mean total node number of sylleptic axillary shoots ... 218
5.3.2.4 Effect of bark grafting treatment and insertion of bark of various cultivars (G3, G9 and G14) on the characteristics of long sylleptic axillary shoots...220

5.3.2.5 Effect bark grafting treatment and insertion of bark of various cultivars (G3, G9 and G14) on the leaf area of long shoots and total leaf area of sylleptic axillary shoots (long, medium and short shoots)...221

5.3.2.5.1 Mean leaf area of long sylleptic axillary shoots..221

5.3.2.5.2 Mean total leaf area of sylleptic axillary shoots..221

5.3.2.5.3 Leaf area of long sylleptic axillary shoots for the first 15 nodes.............

...222

5.3.2.6 The relationship between final shoot length and node number of sylleptic axillary shoots ..224

5.3.2.7 Effects of bark grafting and insertion of bark of various cultivar (G3, G9 and G14) on the total number of of sylleptic axillary shoots (i.e. branching)..........................226

5.3.2.8 Effects of bark grafting and insertion of bark of various cultivar (G3, G9 and G14) on the spring bud break of young ‘Hort16A’ vines.226

5.3.3 Growth Manipulation 3 (GM3) ..228

5.3.3.1 Bark grafting effects on the fruit fresh and dry weight, and dry matter concentration (DMC) during the first harvesting year..228

5.3.3.2 Bark grafting effects on the fruit fresh and dry weight, and dry matter concentration (DMC) during the second harvesting year229

5.3.3.3 Bark grafting effects on the fruit length, diameter and size in the first harvesting year..231

5.3.3.4 Bark grafting effects on the fruit length, diameter and size in the second harvesting year...232

5.3.3.5 Bark grafting and girdling effects on the fruit weight distribution........234

5.4 Discussion...237

5.4.1 Growth Manipulation 1 and 2 ...238

5.4.1.1 The indication of reduction in auxin transport...238

5.4.1.1.1 Release of axillary buds or new shoot growth below bark graft-
union...238

5.4.1.1.2 The swelling of stems above the bark graft-union239

5.4.1.2 Effect of bark grafting on the characteristics of sylleptic axillary shoots ...240

5.4.1.3 Effect of bark grafting on the total growth of sylleptic axillary shoots.......242

5.4.1.4 Effect of bark grafting on the leaf growth of sylleptic axillary shoots.......243

5.4.1.5 Effect of bark grafting on the production of sylleptic and proleptic axillary shoots...246

5.4.2 Growth Manipulation 3 ...248

5.5 Summary...256
Chapter Six

6. Architectural assessment of kiwifruit seedlings obtained from specific crosses and their responses to gibberellins application

6.1 Introduction .. 258

6.2 Materials and methods .. 261

 6.2.1 Experiment 1: Initial shoot architecture of kiwifruit seedlings obtained from specific crosses

 6.2.1.1 Study site and establishment of experimental plant materials ... 261

 6.2.1.2 The measurement of the vine architectural structures .. 262

 6.2.1.3 Experimental design and statistical analysis .. 262

 6.2.2 Experiment 2: Responses of different phenotypes of kiwifruit seedlings obtained from specific

 6.2.2.1 Study site and establishment of experimental plant materials ... 263

 6.2.2.2 Application of gibberellin treatments .. 263

 6.2.2.3 Measurement of vine architectural structures .. 264

 6.2.2.4 Experimental design and statistical analysis .. 264

6.3 Results ... 265

 6.3.1 Experiment 1 ... 265

 6.3.1.1 The proportion of the different phenotypes within seedlings population 265

 6.3.1.2 The characteristics of the primary shoots among phenotypes .. 266

 6.3.1.3 The correlation between the characteristics of the primary shoots among

 6.3.1.4 The Principal Component Analysis (PCA) on the characteristics of primary

 shoots .. 267

 6.3.2 Experiment 2 ... 270

 6.3.2.1 The characteristics of long proleptic axillary shoots (non-terminated) 270

 6.3.2.2 The characteristics of medium proleptic axillary shoots (terminated)........... 270

 6.3.2.3 The characteristics of short proleptic axillary shoots (terminated) 271

 6.3.2.4 The proportion of terminated and non-terminated axillary shoots 273

 6.3.2.5 The total number of shoots, total length, and total node number of lateral

 axillary shoots ... 274

 6.3.2.6 The relationship between the final length and node number of axillary shoots

 for each phenotype .. 280

6.4 Discussion ... 282

 6.4.1 Experiment 1 ... 282

 6.4.1.1 The phenotypic differences in the kiwifruit seedlings architecture 282

 6.4.1.2 The early architecture of kiwifruit seedlings based on the primary shoots

 characteristics ... 283
Chapter Seven

7. General discussion and conclusions.................................306

7.1 Introduction...306
 7.1.1 Vigour-control in kiwifruit vines: Why is it so important?........307
7.2 PART 1: Rootstock effects on scion vigour, vegetative growth and shoot architecture of kiwifruit vines ...309
 7.2.1 Initial modifications of scions architecture by rootstocks309
 7.2.2 The growth rate and termination of the shoots of grafted scions ...313
 7.2.2.1 Shoot growth rate of scions313
 7.2.2.2 The proportion of different shoots types of scions315
 7.2.3 The bud break of grafted scions318
 7.2.4 Precocity and flowering of the grafted scions320
 7.2.5 Trunk cross-sectional area and vigour of kiwifruit vines322
7.3 PART 2: Hormonal effects on the vegetative vigour of kiwifruit324
 7.3.1 Auxin and shoot growth of kiwifruit324
 7.3.2 Auxin and leaf growth of kiwifruit328
 7.3.3 The role of auxin in bud break, subsequently branching in kiwifruit 329
 7.3.4 Auxin transport and vigour of kiwifruit rootstocks333
7.4 PART 3: Possible approaches for vigour manipulation of kiwifruit336
 7.4.1 Utilization of seedling architectural characteristics336
 7.4.2 Manipulation of vines architecture by gibberellins application339
7.5 Directions for future research in kiwifruit342
7.6 Conclusion and final comments345

References ..346
Appendices... 363
Appendix 1.. 363
Appendix 2.. 364
Appendix 3.. 365
Appendix 4.. 366
Appendix 5.. 367
Appendix 6.. 367
Appendix 7.. 368
Appendix 8.. 368
Appendix 9.. 369
Appendix 10.. 370
Appendix 11... 374
Appendix 12... 377

Full Publications... 378
List of figures

Figure 1.1. A grafted composite tree and its component parts (Mudge et al., 2009) ..5
Figure 1.2. Conducted experiments and arrangement of chapters in this thesis ...12
Figure 1.3. The fruits of Actinidia delicosa (left) and Actinidia chinensis (right). The most obvious character was in the hairiness of fruit skins. (Source of pictures from Ferguson, 2004)15
Figure 1.4. The summary of the hypotheses on the physiological mechanism of dwarfing rootstocks on composite trees ..22
Figure 1.5. Classification of apical dominance according to the definition by Lang et al. (1987)35
Figure 1.6. Life cycle of Orobanche minor, a root parasitic plant: a) seed germination is elicited by host-derived stimulants (strigolactones), b) seedling attaches to host root with haustoria, c) and d) parasite tubercles grow underground for several weeks or months before emergence of the flowering shoots, and e) The parasite produces a large number of seeds, which remain viable for many years in soil. (source Xie and Yoneyama (2002))39
Figure 2.1. An example of cleft-graft of a ‘Hayward’ scion grafted onto the inter-specific hybrid rootstock stem. (A) Cleft cut made using grafting machine, and (B) matching the wedge cut of scion stem into the stem of rootstock ..48
Figure 2.2. Schematic representation of the architecture in the second season of growth of Actinidia delicosa cv. ‘Hayward’ on inter-specific hybrid rootstocks (14 months after grafting). Classification of shoot types produced on the primary shoot of the scion, as per Seleznyova et al. (2002) ..50
Figure 2.3. The relationship between trunk CSA of rootstock (mm2) and trunk CSA of the bud wood (mm2) at: (A) 8 months, (B) 14 months, and (C) trunk CSA of scion primary shoots (mm2) at 14 months. Noted here, the relationship between trunk CSA of rootstocks and bud wood, including trunk CSA of scion primary shoots was getting weaker from 8 months to 14 months ..55
Figure 2.4. Total shoot length of proleptic axillary shoot (short, medium and long) of ‘Hayward’ scions. Rootstocks are ranked from smallest to largest based on the initial stem CSA at 8 months (see Table 2.2). Numbers in parentheses within bars are the total number of proleptic axillary shoots for each shoot type (short, medium and long). Number of rootstocks was normalised to four for each rootstock (n=4). Refer Table 2.3 and Table 2.6 for the statistical analysis. ..57
Figure 2.5. The relationship between trunk CSA of rootstocks (mm2) and; (A) total number, and (B) total length of proleptic axillary shoots of scions ...64
Figure 2.6. The relationship between trunk CSA of scions (mm2) and; (A) total number, and (B) total length of proleptic axillary shoots of scions ..65
Figure 3.1. (A) Example of pergola structure used in this study, (B) the experimental plants were planted and trained using support strings (30/11/2011), (C) two strong actively growing shoots were trained Y-shaped structure (15/01/2013), and (D) the shoots were laid down to become permanent cordons (09/10/2013) ..82
Figure 3.2. Time course for bud break of ‘Hayward’ scion grafted onto inter-specific hybrid rootstocks during spring 2013 season. No significant differences on the bud break were observed on the date of 9/9/13, 14/9/13 and 19/9/13. Red solid arrows indicate the date when bud break differed significantly between rootstocks. Significant differences in percentage bud break between rootstocks were observed starting the date of 24/9/13 onward with $P=0.02$, $P=0.006$, $P=0.02$, $P=0.02$ and $P=0.02$, respectively. ‘GN- self rooted control. Blue lines were drawn for guideline. Numbers in the parenthesis are rootstock selection ..87
Figure 3.3. The mean relative bud break of ‘Hayward’ scion grafted onto inter-specific hybrid rootstocks during spring 2013 season. Red solid arrows indicate the date when the highest or peak times of mean bud break were recorded for each rootstock. Relative bud break is expressed as the percentage of buds that was opened during each observational time relative to the total bud which opened (Wang et al., 1994). GN - self-rooted control. Blue lines were drawn for guideline. Numbers in the parenthesis are rootstock selections. Numbers in the parenthesis that highlighted in red are the days period over 70% bud break.

Figure 3.4. The mean final bud break (%) of ‘Hayward’ scion grafted onto inter-specific hybrid rootstocks during spring 2013 season. GN - self-rooted control. In order of increasing vigour according to the results in Chapter Two. Vertical bars indicate standard error of means.

Figure 3.5. The relationship between the final length and node number of long proleptic shoots that have been trained to be permanent cordon at summer 2013 (early February 2013).

Figure 3.6. Growth and development (i.e shoot length) of long (○), medium (□) and short (△) shoots of the ‘Hayward’ scions growing on inter-specific hybrid rootstocks during spring 2013 season. The first date of measurement was on October 1st, 2013. Red lines were drawn for the guidelines. Numbers in the parentheses are rootstock selections.

Figure 3.7. Shoot growth rate (mm day⁻¹) of long (○), medium (□) and short (△) shoots of the ‘Hayward’ scion growing on inter-specific hybrid rootstock during spring 2013 season. The first date of measurement was October 1st, 2013. Red lines were drawn for the guidelines. Numbers in the parentheses are rootstock selections.

Figure 3.8. The relationship between final length and node number of proleptic axillary shoots of ‘Hayward’ scions. The length and node number of proleptic axillary long, medium and short shoots are pooled in the same graph.

Figure 3.9. Mean total node number of ‘Hayward’ scions during growing season of 2012-2014. Vertical bars indicate standard error of means. No data were recorded for rootstocks number 21 and 71 due to replanting in 2012-2013 growing season, and excluded in graph C.

Figure 3.10. The node number distributions of the proleptic axillary shoots at the end of 2013-2014 growing season for each rootstock. Numbers in the parentheses are rootstock selections.

Figure 3.11. The relationship between trunk cross-sectional area of rootstocks (mm²) and trunk cross-sectional area of scions (mm²) in summer 2013 (early February 2013).

Figure 4.1. The arrangement of the experimental vines at the standing out area, Plant Growth Unit, Massey University, Palmerston North. The primary shoots of ‘Hayward’ scions were trained and supported using string attached to the galvanised iron post.

Figure 4.2. Effects of different concentrations of 1-N-naphthylphthalamic acid (NPA) on; (A) the mean length of lettuce cv. ‘Butter Crunch’ roots expressed as a percentage of mean root length for control seedlings, and; (B) morphological characteristics of the root after treated with NPA.

Figure 4.3. (A) Inter-specific hybrid kiwifruit rootstocks propagated from cuttings, and; (B) The cuttings of inter-specific hybrid kiwifruit rootstocks two months after transplanted into 3 L polybags.

Figure 4.4. (A) A schematic diagram of agar-donor receiver transport system of [¹³C]-IAA in stem segment of kiwifruit rootstocks (modified from Soumelidau et al., 1994b and Kamboj (1996)); (B) Arrangement of transport system of [¹³C]-IAA of kiwifruit stem segments of inter-specific hybrid kiwifruit rootstocks tested in laboratory; (C) Close-up of [¹³C]-IAA transport system used in Experiment Two.

xv
Figure 4.5. (A) The apical (yellow arrow) and leaves of primary shoots of ‘Hayward’ scion exhibiting epinasty two day after application of NPA, and (B) the axillary outgrowth on the rootstock stem two week after application of NPA. No axillary outgrowth was observed on the rootstock stem without NPA (data not shown) ... 152

Figure 4.6. Effect of rootstocks and auxin transport inhibitor (±NPA) on the mean primary shoots length of ‘Hayward’ scions. The applications of NPA were given four times (Jan 30th, Feb 15th, Feb 28th and Mar 16th) and the red solid arrow represents the starting date of NPA application. Letters in parentheses are rootstock number, and GN is for green cutting (own-root) ... 155

Figure 4.7. The relationship between the length and node number of the primary shoots ‘Hayward’ scions with (○) and without NPA (●) application (data were pooled together). For individual NPA treatment (± NPA) on every rootstack, see Appendix 2. ns, *, **, *** non-significant or significant at P≤0.05, 0.01 and 0.001, respectively .. 157

Figure 4.8. Effect of rootstocks and auxin transport inhibitor (±NPA) on the individual leaf size (cm²) along the node of primary shoots of ‘Hayward’ scions .. 160

Figure 4.9. Distribution pattern of radioactivity in the three apical, middle and basal stem segment No.18 (low-vigour, ○) and No.101 (high-vigour, ●) rootstocks. Rootstocks were classified according to vigour from previous experiment (Chapter Three). Vertical bars represent the minimum significant difference (MSD) at P=0.05 according to the Tukey’s test 166

Figure 4.10. Comparison in the total uptake and activity of radioactivity between 24h (●) and 48h (○). Data were log-transformed for statistical analysis. Rootstocks were classified according to vigour from previous experiment (Chapter Three). Bars indicate MSD at 5%. * and ** significant at P≤0.05 and 0.01, respectively according to Tukey’s test 168

Figure 4.11. Distribution patterns of radioactivity in the three different stem segments (apical, middle and basal) of kiwifruit rootstocks during the summer season of 2014. Rootstocks were classified according to vigour from previous experiment (Chapter Three). Means sharing the same letters are not significantly different at P=0.05 according to Tukey’s test, after ANCOVA adjustment using cross-sectional area of apical as covariate .. 173

Figure 5.1. (A) Self-rooted gold kiwifruit ‘Hort16A’ cuttings planted in 45 L polybag, and (B) a specially designed tool used for bark grafting ... 201

Figure 5.2. Schematic diagrams of the method of bark grafting on stem of young potted ‘Hort16A’ kiwifruit vines. Noted here, in Growth Manipulation 1, only one strip of bark was taken and grafted back on the same vines either in normal or an inverted orientation. In Growth Manipulation 2, three strips of barks were taken from other kiwifruit cultivars (G3, G9 and G14) and grafted back on the main stem of ‘Hort16A’ vines either in normal or an inverted orientation .. 201

Figure 5.3 (A-F). The steps for bark inversion on green kiwifruit cultivar ‘Hayward’ vines. Yellow arrow indicates the bark orientation (inverted or normal) .. 203

Figure 5.4. Schematic diagram of fruit characteristics measurements made on green kiwifruit (Actinidia delicosa cv. ‘Hayward’) .. 205

Figure 5.5. Yellow arrows indicate; (A) bark swelling and thickening above the bark graft-union area in inverted orientation, and (B) swelling and thickening of bark were less obvious on the graft-union in normal orientation .. 208

Figure 5.6. Effects of bark grafting on the mean final; (A) length, (B) node number, (C) internode length, (D) stem cross-sectional area, (E) leaf area, and (F) number of leaves of long sylleptic axillary shoots of young gold kiwifruit cv. ‘Hort16A’ vines. Means sharing same letters are not significantly different at P=0.05 according to LSD$_{0.05}$ test. Bars denote the LSD at P=0.05 ... 210
Figure 5.7. Effects of bark grafting on the mean final; (A) length, (B) node number, (C) internode length, (D) stem cross-sectional area, (E) leaf area, and (F) number of leaves of medium sylleptic axillary shoots of young gold kiwifruit cv. ‘Hort16A’ vines. Means sharing same letters are not significantly different at $P=0.05$ according to LSD$_{0.05}$ test. Bars denote the LSD at $P=0.05$... 211

Figure 5.8. Effects of bark grafting on the mean final; (A) length, (B) node number, (C) internode length, (D) stem cross-sectional area, (E) leaf area, and (F) number of leaves of short sylleptic axillary shoots of young gold kiwifruit cv. ‘Hort16A’ vines. Means sharing same letters are not significantly different at $P=0.05$ according to LSD$_{0.05}$ test. Bars denote the LSD at $P=0.05$... 212

Figure 5.9. The relationship between the final length and node number of young ‘Hort16A’ vines at the end of summer season. The length and node number of long, medium and short shoots for each treatment are pooled in the same graph (large graphs) .. 215

Figure 5.10. (A) Yellow arrows indicate the development of axillary outgrowth below the bark grafting area; (B) bark swelling and thickening on the top of graft-union in inverted bark grafting and; (C) no swelling and thickening of bark was observed in the graft-union of normal orientation... 216

Figure 5.11. Mean of total length of sylleptic axillary shoots (mm) of young ‘Hort16A’ vines during the first-four months following bark grafting. Insertion of bark from; (A) G3 cultivar, (B) G9 cultivar, and (C) G14 cultivar. Symbols indicate, (Δ) control-no bark grafting, (○) bark grafting-normal orientation, and (●) bark grafting-inverted orientation. *,**,*** significant at $P\leq0.05$, 0.01 and 0.001, respectively according to ANOVA F-test. Bars denote the LSD at $P=0.05$... 218

Figure 5.12. Main effects bark grafting treatment and insertion of cultivars on the mean final total length (Panel A and B) and mean total node number (Panel C and D) of sylleptic axillary shoots (mm) of young ‘Hort16A’ vines. Means sharing same letters are not significantly different at $P=0.05$ according to LSD$_{0.05}$ test. Bars denote the LSD at $P=0.05$... 219

Figure 5.13. Mean leaf area as a function of node position of long sylleptic axillary shoots of young ‘Hort16A’ vines (cm^2) at the end of growing season (April 2012), means value (\pm standard error). (A) Bark grafting from G3 cultivar, (B) bark grafting from G9 cultivar, and (C) bark grafting from G14 cultivar. Symbols indicate, bark grafting-normal orientation (△), and bark grafting-inverted orientation (●). Nodes are numbered from the shoot base and n=6-9 for each node position ... 223

Figure 5.14. The relationship between the final length and node number of young ‘Hort16A’ vines at the end of summer season. Symbols indicate; (△) bark grafting in normal orientation and (●) bark grafting in inverted orientation. The length and node number of long, medium and short shoots for each treatment were pooled together in the same graph (large graphs) .. 225

Figure 5.15. Frequency of fruit weight distribution (%) from the treatments; (A) Bark grafting – inverted orientation, (B) Bark grafting – normal orientation, and (C) girdling conducted in the first harvesting year (early summer, December) ... 235

Figure 5.16. Frequency of fruit weight distribution (%) from the treatments; (A) Bark grafting – inverted orientation, (B) Bark grafting – normal orientation, and (C) girdling conducted in the first harvesting year (late summer, February) ... 235

Figure 5.17. Frequency of fruit weight distribution (%) from the treatments; (A) Bark grafting – inverted orientation, (B) Bark grafting – normal orientation, and (C) girdling conducted in the second harvesting year (early summer, December) ... 236

Figure 5.18. Frequency of fruit weight distribution (%) from the treatments; (A) Bark grafting – inverted orientation, (B) Bark grafting – normal orientation, and (C) girdling conducted in the second harvesting year (late summer, February) ... 236

xvii
Figure 6.1. The kiwifruit seedlings obtained from specific crosses planted in 3L pots hardening inside the glasshouse at PFR, Palmerston North, New Zealand ..261

Figure 6.2. Four different phenotypes found within the population of kiwifruit seedlings; (A) Long Multiple Stems (LM), (B) Long Single Stem (LS), (C) Short Multiple Stems (SMS), and (D) Short Single Stem (SS) ..265

Figure 6.3. The proportions (%) of the different phenotypes (i.e. single and multiple stems phenotypes) found from the 102 kiwifruit seedlings population. Long Multiple Stems (LM), Long Single Stem (LS), Short Multiple Stems (SMS), and Short Single Stem (SS) (n=102)266

Figure 6.4. Principal Component Analysis for all parameters studied. (A) Loading Plot for interpreting relationship among parameters (shoot length, node number, internode length and shoot CSA. (B) Score Plot for interpreting relationship among kiwifruit seedlings phenotypes (Long Multiple Stems-LM, Long Single Stem-LS, Short Multiple Stems-SMS, and Short Single Stem-SS) ..269

Figure 6.5. Responses of kiwifruit buds to the application of GA treatment (GA$_3$+GA$_4$+7) and GA promote lateral axillary shoots (i.e. sylleptic branching) in all phenotypes. (A) Initiation of lateral axillary shoots outgrowth at the main stem of proleptic shoots. (B) Lateral axillary shoots developed and form a few leaves. (C) Lateral axillary shoots developed into complete shoots at the end of experimental period. Pictures A until C: Axillary buds located on the base of the proleptic shoots. (D) Stimulation of lateral axillary shoots (sylleptic) on the buds located at the top of the apical proleptic shoots. *Yellow large arrows indicate the main stem of proleptic shoots. Red small arrows indicate the stimulated lateral axillary shoots ...279

Figure 6.6. The relationships between the final length and node number of the axillary shoots (proleptic and sylleptic shoots) at the end of the experimental period from all seedling phenotypes and application of GA (±GA) ..281

Figure 7.1. Schematic diagrams of the; (A) comparison of the canopy architectural structure of kiwifruit vines at the whole vine level, and (B) comparison of the shoot architectural structure of kiwifruit at the single shoot level ..318
List of tables

Table 1.1. The inter-specific hybrid Actinidia species that were used as rootstocks in this study that have been grafted with A. deliciosa cv. ‘Hayward’ kiwifruit .. 4

Table 1.2. Comparison between seedlings and clonal rootstocks in kiwifruit ... 19

Table 2.1. The mean trunk CSA of initial grafted rootstocks and ‘Hayward’ bud wood measured after 8 and 14 months following grafting ... 52

Table 2.2. The mean trunk CSA and mean internode length of the primary shoot after season one, and percentage bud break of primary shoot after season two, for ‘Hayward’ scions grafted onto inter-specific hybrid rootstocks. ... 54

Table 2.3. The mean total number of proleptic axillary shoots on primary shoot of ‘Hayward’ scions grafted onto inter-specific hybrid rootstocks during spring 2011-2012 growing season ... 56

Table 2.4. The mean proportion of different shoot types (long, medium and short) of ‘Hayward’ scions grafted onto inter-specific hybrid rootstocks during summer 2011-2012 growing season ... 58

Table 2.5. The mean proportion of terminated (short and medium shoots) and non-terminated (long shoots) shoot of ‘Hayward’ scions grafted onto inter-specific hybrid rootstocks during summer 2011-2012 growing season ... 59

Table 2.6. The mean length of short, medium and long of proleptic axillary shoots of ‘Hayward’ scions grafted onto inter-specific hybrid rootstocks ... 62

Table 2.7. The mean CSA of short, medium and long shoots of proleptic axillary shoots of ‘Hayward’ scions grafted onto inter-specific hybrid rootstocks ... 63

Table 2.8. Vigour rating of inter-specific hybrid kiwifruit rootstocks with the original parentage by the end of the second growing season ... 66

Table 3.1. Effects of inter-specific hybrid rootstocks on the mean bud break (%) and mean number of flowers (floral precocity) on ‘Hayward’ kiwifruit scions during 2012-2013 growing season ... 85

Table 3.2. Effect of rootstocks on the mean proportion of different shoot types of ‘Hayward’ scions at early summer 2013 ... 92

Table 3.3. Effect of rootstocks on the mean proportion of terminated or non-terminated of ‘Hayward’ scions at early summer 2012-2013 ... 93

Table 3.4. The mean number of long, medium and short proleptic axillary shoots of ‘Hayward’ scions grafted onto inter-specific hybrid kiwifruit rootstocks at end of summer 2012-2013 growing season ... 94

Table 3.5. Effect of rootstocks on the characteristics of long proleptic axillary that have been trained as cordons in summer 2013 (Early February 2013) ... 96

Table 3.6. Effect of inter-specific hybrid rootstocks on the mean pruning weight of ‘Hayward’ kiwifruit scions at end of summer 2013 growing season ... 98

Table 3.7. The mean proportion of long, medium and short proleptic axillary shoots of ‘Hayward’ scions grafted onto inter-specific hybrid rootstocks (2013-2014) ... 104

Table 3.8. The mean proportion of terminated (short and medium shoots) and non-terminated (long shoots) of proleptic axillary shoots of ‘Hayward’ scions grafted onto inter-specific hybrid rootstocks (2013-2014) ... 105
Table 3.9. The mean number of long, medium and short proleptic axillary shoots of ‘Hayward’ scions grafted onto inter-specific hybrid kiwifruit rootstocks at end of summer 2013-2014 growing season...106

Table 3.10. The characteristics of different proleptic shoots (long, medium and short) of ‘Hayward’ scions grafted onto inter-specific hybrid kiwifruit rootstocks...108

Table 3.11. The mean shoot CSA (mm²) of long, medium and short proleptic axillary shoots of ‘Hayward’ scions grafted onto inter-specific kiwifruit hybrid rootstocks in summer 2014 ...109

Table 3.12. Trunk CSA of kiwifruit rootstocks and scions (mm²) in summer 2013 (early February 2013) ...114

Table 3.13. The mean proportion of flowering and non-flowering shoots of ‘Hayward’ scions grafted onto inter-specific hybrid kiwifruit rootstocks ...116

Table 3.14. The mean number of flowers per vine, fruit number per vine, fruit setting (%), flower number per lateral shoot and flower number per winter bud of ‘Hayward’ scions grafted onto inter-specific hybrid kiwifruit rootstocks ...117

Table 3.15. The characteristics of inter-specific hybrid kiwifruit rootstocks and their vigour classification ...134

Table 4.1. The characteristics and vigour classification of inter-specific hybrid kiwifruit rootstocks used in Experiment 1 and Experiment 2 ...141

Table 4.2. The root characteristics of lettuce seedlings cv. ‘Butter Crunch’ after being treated with different concentration of NPA ...147

Table 4.3. Main effect of rootstock and auxin transport inhibitor (±NPA) on characteristics of the primary shoots (length, node, internode length, diameter and shoot CSA of ‘Hayward’ scions at the end of first growing season (June 2013))..156

Table 4.4. Main effects of rootstocks and auxin transport inhibitor (±NPA) on the final mean leaf characteristics (leaf area, leaf fresh weight, leaf dry weight and leaf mass per area) of ‘Hayward’ scions at the end of first growing season (June 2013) ..159

Table 4.5. Main effect of rootstocks and auxin transport inhibitor (±NPA) on the final mean trunk cross-sectional area (CSA) of rootstocks and budwoods at the end of first growing season (June 2013) ..161

Table 4.6. Main effect of rootstock and auxin transport inhibitor (±NPA) on the mean proportion of bud break of ‘Hayward’ scions in the spring growing season (October 2013) ..162

Table 4.7. Main effects of rootstocks and auxin transport inhibitor (±NPA) on the mean total length, node number, and number of proleptic shoots of ‘Hayward’ scions at the end spring growing season (October 2013) ..164

Table 4.8. Total uptake and transport of radioactivity in low-vigour rootstock No.18 (A. chinensis x A. macrosperma) and high-vigour rootstock No.101 (A. macrosperma x A. melanandra) during late autumn 2014 season (May 2014) ..165

Table 4.9. Total uptake and transport of radioactivity recovered (sum of activity in all the segments and agar) after 24h and 48h. Data were log-transformed for statistical analysis (log dpm) ...167

Table 4.10. Uptake and transport of radioactivity in different position of kiwifruit rootstock stem segments (apical, middle, and basal) after 24h. Data were log-transformed for statistical analysis. Specific activity was expressed as log dpm mm⁻² cross-sectional area of apical 170
Table 4.11. Uptake and transport of radioactivity in different position of kiwifruit rootstock stem segments (apical, middle, and basal) after 48h. Data were log-transformed for statistical analysis. Specific activity was expressed as log dpm mm2 cross-sectional area of apical ... 170

Table 4.12. Interaction between rootstock, hour and stem position (apical, middle, and basal) on total activity, uptake and transport of radioactivity after 24h and 48h. Data were log-transformed for statistical analysis. Specific activity was expressed as log dpm mm2 cross-sectional area of apical... 171

Table 5.1. Effects of bark grafting on the mean total shoot length (mm), mean total leaf area (cm2) and mean total node number of sylleptic axillary shoots of young ‘Hort16A’ vines 213

Table 5.2. Effects of bark grafting on the mean proportion and mean total number of sylleptic axillary shoots (branching) of young ‘Hort16A’ vines .. 214

Table 5.3. Effects of bark grafting on the characteristics of long sylleptic axillary shoots (length, node number, internode length and shoot cross-sectional area) of young ‘Hort16A’ vines..... 220

Table 5.4. Effects of bark grafting on the final leaf area (cm2) of long sylleptic axillary shoots and mean total leaf area (cm2) per vine of young ‘Hort16A’ vines. ... 222

Table 5.5. Effect of insertions of bark of various cultivars (G3, G9 and G14) on the total number of sylleptic axillary shoots (i.e. branching) and the percentage of spring bud break (%) of young ‘Hort16A’ vines .. 227

Table 5.6. Effect of bark grafting (normal and inverted orientation) and girdling on the mean fruit fresh weight (g), dry weight (g) and dry matter concentration (DMC) of ‘Hayward’ kiwifruit in the first and second harvesting year... 230

Table 5.7. Effect of bark grafting (normal and inverted orientation) and girdling on the mean fruit length (mm), fruit diameter (mm) and fruit size of ‘Hayward’ kiwifruit in the first and second harvesting year... 233

Table 6.1. Non-parametric Analysis of Variance (Kruskal-Wallis ANOVA Test) of four different phenotypes, Long Multiple Stem (LMS), Long Single Stem (LS), Short Multiple Stem (SMS), and Short Single Stem (SS) .. 267

Table 6.2. Comparison of the characteristics of the primary shoots between different phenotypes of kiwifruit seedlings obtained from specific crosses .. 267

Table 6.3. Correlations among parameters of shoot characteristics of kiwifruit seedlings obtained from specific crosses ... 268

Table 6.4. Main effects of seedling phenotypes and the application of gibberellins (± GA) on the characteristics of proleptic axillary shoots ... 272

Table 6.5. Main effects of seedling phenotypes and the application of gibberellins (± GA) on the proportions of terminated and non-terminated of axillary shoots .. 273

Table 6.6. Main effects of seedling phenotypes and the application of gibberellins (± GA) on the total number of shoots, total length and total node number of axillary shoots 275

Table 6.7. The Least Square Means Analysis for the effects of seedling phenotypes and gibberellins treatments (± GA) on the characteristics of the proleptic axillary shoots 277
List of appendices

Appendix 1. The relationship between shoot length and node number of scion primary shoots (Chapter Two) ... 363

Appendix 2. The relationship between shoot length and node number for individual treatment (± NPA) .. 364

Appendix 3. Effect of rootstocks and auxin transport inhibitor (± NPA) on the mean proportions of bud break of ‘Hayward’ scions in the early spring growing season (October 2013).......................... 365

Appendix 4. Effect of rootstock and auxin transport inhibitor (± NPA) on the bud break pattern of ‘Hayward’ scions. Symbols indicate; NPA treated (○) and non-treated (●) vines 366

Appendix 5. Effect of rootstock and auxin transport inhibitor (± NPA) on the mean relative bud break of ‘Hayward’ scions. Symbols indicate; NPA treated (○) and non-treated (●) vines 367

Appendix 6. Arrows indicate the axillary bud outgrowth below the graft-union area from the bark grafting vines; (A) in an inverted and (B) normal orientation but no axillary outgrowth from the control vines (C) .. 367

Appendix 7. (A) The amount of pruning of axillary outgrowth and suckers below the bark graft-union and; (B) the mean pruning weight (kg) of axillary outgrowth and suckers produced below the bark graft-union. Means sharing same letters are not significantly different at P=0.05 according to LSD 0.05 test. Bars denote the LSD at P=0.05 .. 368

Appendix 8. Mean total leaf area of long sylleptic axillary shoots of young ‘Hort16A’ vines (cm²) for the first 15 nodes at the end of growing season, means value (± standard error). (A) Bark grafting from G3 cultivar, (B) bark grafting from G9 cultivar, and (C) bark grafting from G14 cultivar. Means sharing same letters are not significantly different at P=0.05 according to LSD 0.05 test. Bars denote the LSD at P=0.05 .. 368

Appendix 9. The horizontal box-plots showing the fruit weight distributions (range) for bark grafting (normal and inverted) and girdling in the first and second harvesting year 369

Appendix 10. Non-destructive leaf area estimation in green kiwifruit (Actinidia deliciosa) by using simple linear regression... 370

Appendix 11. Bio-assay of Orobanche seedlings treated with xylem sap and root exudates from different kiwifruit phenotypes for strigolactones identification 374

Appendix 12. The morphology of root system of unworked kiwifruit rootstocks 377
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.D.</td>
<td>Anno Domini</td>
</tr>
<tr>
<td>ABA</td>
<td>Abscisic acid</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>Analysis of covariance</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BAP</td>
<td>Benzyloxyanilopurine</td>
</tr>
<tr>
<td>CCD<sub>n</sub></td>
<td>Carotenoid Cleavage Dioxygenase, <i>n</i> denotes the number</td>
</tr>
<tr>
<td>CG.4213</td>
<td>Cornell-Geneva 4213</td>
</tr>
<tr>
<td>CG.7037</td>
<td>Cornell-Geneva 7037</td>
</tr>
<tr>
<td>CG.8534</td>
<td>Cornell-Geneva 8534</td>
</tr>
<tr>
<td>CK</td>
<td>Cytokinins</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>CO<sub>2</sub></td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>cv.</td>
<td>Cultivar</td>
</tr>
<tr>
<td>CSA</td>
<td>Cross-Sectional Area (mm<sup>2</sup>)</td>
</tr>
<tr>
<td>DMC</td>
<td>Dry matter concentration</td>
</tr>
<tr>
<td>dpm</td>
<td>Disintegrations per minute</td>
</tr>
<tr>
<td>EMLA.27</td>
<td>East Malling/Ashton Long 27</td>
</tr>
<tr>
<td>G.16</td>
<td>Geneva 16</td>
</tr>
<tr>
<td>G.935</td>
<td>Geneva 935</td>
</tr>
<tr>
<td>GA</td>
<td>Gibberellins</td>
</tr>
<tr>
<td>GA<sub>n</sub></td>
<td>Gibberellin, <i>n</i> denotes the number</td>
</tr>
<tr>
<td>GLM</td>
<td>General linear model</td>
</tr>
<tr>
<td>GM1</td>
<td>Growth manipulation 1</td>
</tr>
<tr>
<td>GM2</td>
<td>Growth manipulation 2</td>
</tr>
<tr>
<td>GM3</td>
<td>Growth manipulation 3</td>
</tr>
<tr>
<td>GN</td>
<td>Green cuttings (self-rooted control)</td>
</tr>
<tr>
<td>GR24</td>
<td>Synthetic strigolactones</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>Hi-Cane</td>
<td>Hydrogen cynamide</td>
</tr>
<tr>
<td>HV</td>
<td>High-Vigour rootstock group</td>
</tr>
<tr>
<td>IAA</td>
<td>Indole-3-acetic acid</td>
</tr>
<tr>
<td>IBA</td>
<td>Indole-3-butaric acid</td>
</tr>
<tr>
<td>IV</td>
<td>Intermediate-Vigour rootstock group</td>
</tr>
<tr>
<td>K</td>
<td>Kalium</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf Area Index</td>
</tr>
<tr>
<td>LMA</td>
<td>Leaf Mass per Area</td>
</tr>
<tr>
<td>LMS</td>
<td>Long Multiple Stems</td>
</tr>
<tr>
<td>LS</td>
<td>Long Single Stem</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significant Difference</td>
</tr>
<tr>
<td>LV</td>
<td>Low-Vigour rootstock group</td>
</tr>
<tr>
<td>lsmeans</td>
<td>Least square means</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>MAX</td>
<td>More Axillary Growth (<i>n</i>) denotes the number</td>
</tr>
<tr>
<td>M.104</td>
<td>Merton 104</td>
</tr>
<tr>
<td>M.16</td>
<td>Malling 16</td>
</tr>
<tr>
<td>M.793</td>
<td>Malling 793</td>
</tr>
<tr>
<td>M.9</td>
<td>Malling 9</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>MM.106</td>
<td>Malling Merton 106</td>
</tr>
<tr>
<td>MM.111</td>
<td>Malling Merton 111</td>
</tr>
<tr>
<td>MM.25</td>
<td>Malling Merton 25</td>
</tr>
<tr>
<td>MM.27</td>
<td>Malling Merton 27</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NAA</td>
<td>1-Naphthaleneacetic acid</td>
</tr>
<tr>
<td>No.</td>
<td>Rootstock number</td>
</tr>
<tr>
<td>NPA</td>
<td>1-N-naphthylphthalamic acid</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2$</td>
<td>Oxygen</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PFR</td>
<td>Plant and Food Research</td>
</tr>
<tr>
<td>PGU</td>
<td>Plant Growth Unit</td>
</tr>
<tr>
<td>PGR</td>
<td>Plant Growth Regulator</td>
</tr>
<tr>
<td>PSA</td>
<td>Pseudomonas syringae pv. Actinidiae</td>
</tr>
<tr>
<td>QTLs</td>
<td>Quantitative Trait Loci</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomised Completed Block Design</td>
</tr>
<tr>
<td>SAM</td>
<td>Shoot Apical Meristem</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
<tr>
<td>SLs</td>
<td>Strigolactones</td>
</tr>
<tr>
<td>SMB</td>
<td>Short Multiple Stems</td>
</tr>
<tr>
<td>spp.</td>
<td>Species</td>
</tr>
<tr>
<td>SS</td>
<td>Short Single Stem</td>
</tr>
<tr>
<td>TIBA</td>
<td>2,3,5,-Triiodobenzoic acid</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>USA</td>
<td>United State of America</td>
</tr>
<tr>
<td>VLV</td>
<td>Very Low-Vigour rootstock group</td>
</tr>
<tr>
<td>$[^{14}C]$-IAA</td>
<td>Carboxyl-labelled indole-3-acetic acid</td>
</tr>
<tr>
<td>$[^{14}H]$-IAA</td>
<td>Tritiated-labelled indole-3-acetic acid</td>
</tr>
</tbody>
</table>
Defination of terms

<table>
<thead>
<tr>
<th>TERM</th>
<th>DEFINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proleptic shoots</td>
<td>The shoots that developed from buds which has been dormant for some period of time. The leaves scale usually enclose the bud.</td>
</tr>
<tr>
<td>Syleptic shoots</td>
<td>The shoots that developed from lateral buds with any period of dormancy. The leaves scale do not usually enclose the bud.</td>
</tr>
<tr>
<td>Girdling</td>
<td>The completely removal of a strip of bark around the entire circumference of a vines (consisting of cambium or phloem).</td>
</tr>
<tr>
<td>Phenology</td>
<td>The scientific study of periodic biological phenomena (e.g. shoot, flowering and fruiting stage).</td>
</tr>
<tr>
<td>Precocity</td>
<td>The ability of fruit trees or vines to induce fruitfulness without the need for completing the juvenile phase.</td>
</tr>
<tr>
<td>Bud break</td>
<td>The opening of a dormant bud when the shoot begins to grow and usually during early spring.</td>
</tr>
<tr>
<td>Phenotype</td>
<td>The physical appearance, observable characteristics or particular traits (e.g. plant morphology).</td>
</tr>
<tr>
<td>Genotype</td>
<td>The set of genes, which is responsible for a particular trait.</td>
</tr>
<tr>
<td>Long shoots</td>
<td>The kiwifruit shoots that have a number of neofomed nodes and the total number of nodes per shoot is up to 90, and non-terminated.</td>
</tr>
<tr>
<td>Medium shoots</td>
<td>The kiwifruit shoots that have more than nine nodes and terminated.</td>
</tr>
<tr>
<td>Short shoots</td>
<td>The kiwifruit shoots that have nine or less nodes and terminated.</td>
</tr>
<tr>
<td>Clonal rootstock</td>
<td>A vegetatively propagated or cloned rootstock as opposed to a germinated seedling rootstock.</td>
</tr>
<tr>
<td>Leader pruning</td>
<td>Pruning or removing all vigorous vegetative shoots that closed to the central leader of kiwifruit vines.</td>
</tr>
</tbody>
</table>
List of publications and conferences

Abdullah, F., Woolley, D.J., K.A. Funnell, B.M. van Hooijdonk and A.P. Friend (2013). Preliminary observation on the initial architecture of kiwifruit seedlings obtained from specific crosses. Poster paper presented in New Zealand Institute of Agriculture and Horticulture Plant Science Conference 2013, Massey University, Palmerston North, New Zealand. 2-4 July 2013. (Part of Chapter 6)