Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
ADOPTION OF PRECISION AGRICULTURE TECHNOLOGIES FOR FERTILISER PLACEMENT IN NEW ZEALAND

A thesis presented in partial fulfilment of the requirements of the degree of

Doctor of Philosophy

in

Agricultural Engineering

at Massey University, Palmerston North, New Zealand

Massey University

Hayden George Lawrence

2007
ABSTRACT

Major agronomic and economic losses are caused by inaccurate application of nutrients from ground based spreading vehicles. These losses come from both over and under application of fertiliser resulting from such practices as driving at inappropriate bout widths. This work reviewed current spreader testing procedures; compared the performance of international test methodologies and evaluated the use of a digital image processing program to perform spreader testing. Methods to evaluate field performance were developed; this analysis of field application was used to calculate the economic effect of using precision agricultural technologies in New Zealand dairy farming systems.

A matrix of fourteen hundred 0.5 x 0.5 m fertiliser collection trays was used to evaluate individual test methodologies. Results indicated that there were major variations in calculated certifiable bout width between different methods and direct comparison should be avoided. Tray layout within ± 5 m of the centre spread line had the largest effect on calculated bout width whilst methods that incorporated rows of trays in the longitudinal direction were less variable compared to those using a single transverse test. The probability too accurately assign bout widths using different international test methods was analysed, the ACCU Spread (Australia) test method had the highest level of confidence in its bout width calculation followed by the ES (Europe) test method. The ISO(i) (World), ISO(ii) (World) and Spreadmark (NZ) tests were all found to be comparable to one another whilst the ASAE (USA) method had the lowest level of confidence in its bout width calculation because of wide collector tray spacing.

A method to extract a wider range of data from spreader tests using a hybrid image processing system was developed. Results indicated that there was a strong relationship between two dimensional particle area and particle mass under laboratory ($R^2 = 0.991$) and field ($R^2 = 0.988$) conditions.

Although transverse spreader tests provided a good indication of machine performance, they did not account for the interaction of the spreader and its operational environment. A method was developed that used the vehicle location during field application and the transverse spread pattern represented as polygons to create field application maps. Initial results showed large variations compared to the measured transverse spread pattern. A wider study over 102 paddocks on four dairy farms showed that average variation was 37.9%. An improvement to the field application method discussed is given; this tool used the geographical
position, heading angle and a series of static spread pattern tests from the spreading vehicle to achieve greater accuracy in field measurements.

The described field application methods were used to assess the ability to execute a nutrient plan using both actual and optimised spreading data collected during field application. A loss of 66.18 ha^{-1} was calculated when comparing the efficiency of using current spreading methods to those assumed in nutrient budgeting practice. If a guidance and control system were used correctly to provide optimised field application the loss could be reduced to 46.41 ha^{-1}.

This work highlighted the difficulties in achieving accurate field nutrient application; however, by developing the ability to quantify field performance, economic opportunities could be evaluated. Overall, this work found that there was a strong agronomic and economic case for the implementation of precision agricultural technologies in the New Zealand fertiliser industry. However, the current range of equipment used by the spreading industry would have difficulty in delivering these benefits.
ACKNOWLEDGEMENTS

My sincere thanks go to my chief supervisor, Dr. Ian J. Yule for his supervision, guidance, and practical advice on how to approach technical issues throughout this study, and to my co supervisors, Dr. Jim R. Jones and Professor Mike J. Hedley for their advice, constructive suggestions and critical comments throughout.

I would also like to thank everyone involved in the New Zealand Centre for Precision Agriculture, for technical assistance, providing many memorable moments and generally keeping me sane throughout the duration of the study. In particular Potscrub, Mr Pat, Little Johnny Two Pies, Mork, Yuley, MT, Johno and Woody.

My special thanks are extended to Dr. Hilton Furness and Mr. Greg Sneath from FertResearch for liaising with fertiliser industry contributors ensuring the research could be applied at industry level. I also thank the Fertiliser Quality Council, Ravensdown and Ballance Agri-Nutrients for providing technical data and support.

I particularly appreciated the financial assistance from an Enterprise Scholarship in conjunction with New Zealand Fertiliser Manufacturers’ Research Association (NZFMRA) for my study. Also a Claude McCarthy Fellowship and A Royal Society travel grant which aided me to travel to overseas conferences.

Finally my immense gratitude to my parents for supporting me in my agricultural endeavours, and my partner Alecia, for her love, encouragement and support during my PhD study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER 1

General Information

1.1. Introduction | 1
1.2. New Zealand fertiliser industry | 1
1.3. Precision agricultural techniques in fertiliser application | 4
1.4. Improvement opportunities | 5
1.5. Aims of study | 6
1.6. Structure of thesis | 6

CHAPTER 2

A Statistical Analysis of International Test Methods used for Analysing Spreader Performance

2.1. Introduction | 10
2.2. Materials and Methods | 13
2.3. Results | 16
2.4. Discussion | 24
2.5. Conclusion | 26

CHAPTER 3

A Statistical Comparison of International Spreader Test Methods to Test Confidence in Bout Width Calculations

3.1. Introduction | 28
3.2. Methodology | 31
3.3. Results | 33
3.4. Discussion | 51
CHAPTER 4
Development Of An Image Processing Method To Assess Spreader Performance
4.1. Introduction ... 55
4.2. Background .. 56
4.3. Methodology .. 62
4.4. Results .. 66
4.5. Discussion ... 71
4.6. Conclusion ... 74

CHAPTER 5
Estimation of the Infield Variation of Fertiliser Application
5.1. Introduction ... 78
5.2. Materials and Methods 79
5.3. Results and Discussion 82
5.4. Conclusion ... 87

CHAPTER 6
A GIS Methodology To Calculate The In-Field Dispersion Of Fertiliser From A Spinning Disc Spreader
6.1. Introduction ... 89
6.2. Background .. 90
6.3. Methodology .. 94
6.4. Results and Discussion 102
6.5. Conclusion ... 106

CHAPTER 7
Modelling of Fertiliser Distribution Using Measured Machine Parameters.
7.1. Introduction ... 107
7.2. Method Design and Implementation 108
7.3. Results and Discussion 117
7.4. Conclusion ... 119
CHAPTER 8
An Economic Analysis of Fertiliser Application Accuracy on New Zealand Dairy Farms

8.1. Introduction ..122
8.2. Nutrient use on New Zealand dairy farms123
8.3. Method ...128
8.4. Results and Discussion ...131
8.5. Conclusion ..139

Chapter 9
Conclusion

9.1. Background ...141
9.2. Summary ..141
9.3. Major findings ...145
9.4. Future study direction ...147
9.5. Dissemination of knowledge148

References ...152

Appendix A ...141
LIST OF TABLES

Table 1.1. Quantity and value of common fertilisers spread annually in New Zealand for agricultural activities...2
Table 2.1. Variations in transverse measurement methods of various spreader testing programs used throughout the world..10
Table 2.2. Physical characteristics of urea fertiliser used in all tests...13
Table 2.3. Variation in application rate at set intervals from the spreader from 36 combined transverse distribution tests at 80, 100 and 150 kg ha⁻¹..18
Table 2.4. Variation in certifiable bout widths using six different test methods and three target application rates where the transverse CV (%) was < 15%, application rate was not considered in this data set..................18
Table 2.5. Probability of a bout width being calculated from five international test methods that would be within the 90% confidence limit of that calculated from the ISO(i)/Spreadmark testing method at three application rates...24
Table 3.1. Test constraints for various international testing programs used around the world to test the transverse distribution accuracy of fertiliser spreaders ..30
Table 3.1. 95% confidence intervals in specified bout width calculations for international spread test methods when MVboul < 0.15...51
Table 4.1. SGN and UI ranges used to identify the effect on spread pattern from a fertiliser spreader...............57
Table 4.2. Prediction of distribution segregation based on SGN and UI between two fertilisers to be blended ...58
Table 4.3. Proportion of urea particles contained in sieve apertures between 0 and 4 mm prior to spreading.65
Table 4.4. Identification rates of 30 urea particles using image analysis contained in sieve apertures between 0.0 and 4.0 mm²...67
Table 4.5. Average particle area (mm²) and particle weight (mg) contained in sieve apertures between 0.4 and 4.0 mm. ..67
Table 4.6. Average physical characteristics of particles contained in sieve apertures between 1.0 and 4.0 mm² extracted from image analysis...70
Table 4.7. Comparison of Size Guide Number (SGN) and Uniformity Index (UI) calculated from both mechanical sieving and computer sieving using image analysis .. 71

Table 5.1. Percentage of total area receiving different levels of fertiliser application on four individual paddocks using a 26 m and 16 m swath spreader .. 83

Table 5.2. The effect on field CV of using an actual and perfect spread pattern over four sampled paddocks. 85

Table 5.3. The effect of driving method on field CV when using an actual tested spread pattern and simulated driving pattern on four sampled paddocks .. 85

Table 5.4. The effect of driving method on field CV when using a perfect spread pattern and simulated driving pattern on four sampled paddocks .. 85

Table 5.5. Average economic loss from three spreader tracking scenarios using an actual and perfect spread pattern on a pasture based grazing system .. 86

Table 6.1. Paddock size information for four dairy farms in Waikato, New Zealand ... 94

Table 6.2. The effect of sample grid spacing on extracted fertiliser application statistics on a 2.25 ha field .. 99

Table 6.3. Variation in field application and application rate of urea (46%N) over four farms ... 102

Table 6.4. The effect of paddock size on field application variation over 102 paddocks ... 103

Table 7.1. Comparison of application statistics for actual and optimised start/stop positions of a fertiliser spreader operating in a 3.48 ha field when attempting to apply 125 kg ha⁻¹ of urea fertiliser .. 118

Table 8.1. Nutrient status for various soil types required to achieve near maximum pasture production on New Zealand dairy farms (adapted from Roberts & Morton (1999)) ... 124

Table 8.2. Quantity of nutrients required to raise soil status to near optimum levels during the soil development period (adapted from Roberts & Morton (1999)) ... 125

Table 8.3. Quantity of nutrients required per 100 kg MS to maintain soil status at near optimum levels during the soil maintenance period (adapted from Roberts & Morton (1999)) ... 125

Table 8.4. Soil test data results from trial site situated on Horotiu silt loam in the Waikato region of New Zealand ... 129

Table 8.5. Typical on-ground nutrient costs when applied as granular fertiliser from a broadcast spreader as calculated using Oversee (AgResearch, 2006) ... 130
Table 8.6. Maintenance nutrients required in order to maintain soil status at current optimal levels of the Waikato trial site.

Table 8.7. Optimised fertiliser requirement (kg ha⁻¹) and cost ($ ha⁻¹) in order to maintain soil status at current optimal levels on a 107 ha Waikato dairy farm over a 12 month period.

Table 8.8. Calculated application statistics for a fertiliser program to apply maintenance nutrient requirements plus 150 kg N ha⁻¹ over 8 application dressings in a 12 month period.

Table 8.9. Area percentage of fertiliser within ± 10% of target application rate for actual and optimised driving patterns for base and urea fertiliser used on a 107 ha Waikato dairy farm over a 12 month period.

Table 8.10. Total quantity and value of Phosphorus (P), Potassium (K) and Sulphur (S) applied over optimum maintenance levels on a 107 ha Waikato dairy farm over a 12 month period.

Table 8.11. Total quantity of Phosphorus (P), Potassium (K) and Sulphur (S) applied under optimum maintenance levels and the respective reduction in soil nutrient status on a 107 ha Waikato dairy farm over a 12 month period.

Table 8.12. Nitrogen response and respective production and economic values for theoretical, actual and optimised driving patterns using 150 kg N ha⁻¹ split into five equal applications over a 12 month on a 107 ha Waikato dairy farm.

Table 8.13. Added spreader contractor charge out rate ($ ha⁻¹) required above the current rate ($10.40 ha⁻¹) in order for a spreading contractor to break even when implementing a GNSS guidance and spreader control system of various value and over different time periods for a machine spreading 7000 ha yr⁻¹.
LIST OF FIGURES

Figure 1.1. Flow of individual groups linked to the New Zealand fertiliser industry and their interaction........2

Figure 2.1. 1400 Tray matrix used to collect 18 simultaneous transverse tests on a Transpread W twin chain spreader..14

Figure 2.2. Average Distribution Graph at (a) 80 kg ha\(^{-1}\), (b)100 kg ha\(^{-1}\) and (c)150 kg ha\(^{-1}\) when using six different international transverse test methods..17

Figure 2.3. Coefficient of variation and average application rate at three target application rates - (a) 80 kg ha\(^{-1}\), (b) 100 kg ha\(^{-1}\) and (c) 150 kg ha\(^{-1}\). ..19

Figure 2.4. Range in calculated certifiable bout widths using six internationally recognised testing methods.21

Figure 2.5. Simulation of expected certifiable bout width from 36 transverse tests at 80 kg ha\(^{-1}\) using six different testing methods..22

Figure 2.6. Simulation of expected certifiable bout width from 36 transverse tests at 100 kg ha\(^{-1}\) using six different testing methods..23

Figure 2.7. Simulation of expected certifiable bout width from 36 transverse tests at 150 kg ha\(^{-1}\) using six different testing methods..24

Figure 3.1. Test tray layout used to reconstruct international fertiliser spreader test methods. 1400 0.5 x 0.5 m collection trays were used to construct a 80 x 18 (40 x 9 m) tray matrix (See also Fig. 2.1 (chapter 2) and Fig. 3.8)...28

Figure 3.2. Mean and 95% CI (2 s.d.) for urea granule mass landing on trays as a function of longitudinal position, at nominal application rates of (a) 80 kg ha\(^{-1}\), (b) 100 kg ha\(^{-1}\), and (c) 150 kg ha\(^{-1}\). ..36

Figure 3.3. (a) Coefficient of variation CV_t and (b) expected industry measure of variation MVe plotted as a function of transverse tray position at nominal application rates of 80 kg ha\(^{-1}\), 100 kg ha\(^{-1}\), and 150 kg ha\(^{-1}\). ..37

Figure 3.4. Urea granule mass collected on trays at selected transverse tray positions over all 18 rows at nominal application rates of (a) 80 kg ha\(^{-1}\), (b) 100 kg ha\(^{-1}\), and (c) 150 kg ha\(^{-1}\). ..38
Figure 3.5. Comparison between $2S_i^2$ and $S_{d,j}^2$, where $2S_i^2$ is twice the variance of the masses collected and $S_{d,j}^2$ is the variance of differences between masses landing on adjacent trays. Results are shown for both passes at each nominal application rate (a) 80 kg ha$^{-1}$, (b) 100 kg ha$^{-1}$, and (c) 150 kg ha$^{-1}$.

Figure 3.6. F-test comparison between pass pairs of $2S_i^2$ and $S_{d,j}^2$ as a function of tray position, where $2S_i^2$ is twice the variance of the masses collected and $S_{d,j}^2$ is the variance of differences between masses landing on adjacent trays. Results are shown for both passes at each nominal application rate (a) 80 kg ha$^{-1}$, (b) 100 kg ha$^{-1}$, and (c) 150 kg ha$^{-1}$.

Figure 3.7. F-test comparison of variances S_i^2 and $S_{d,j}^2$ as a function of tray position, where S_i^2 is twice the variance of the masses collected and $S_{d,j}^2$ is the variance of differences between masses landing on every 8th tray. Results are shown for both passes at a nominal application rate of 150 kg ha$^{-1}$.

Figure 3.8. Test tray layouts for six international test methods reconstructed from a 1400 tray matrix (Figure 3.1) to compare levels of confidence in individual tray mass measurement.

Figure 3.9. Expected coefficient of variation, CV_i (equation (4)), for all international tests as a function of tray position for test data collected at nominal application rates of (a) 80 kg ha$^{-1}$, (b) 100 kg ha$^{-1}$ and (c) 150 kg ha$^{-1}$.

Figure 3.10a. Industry measure of variation for six international spread tests: (a) ISO(i), (b) ISO(ii), (c) ASAE, (d) ES, (e) ACCU-Spread and (f) Spreadmark as a function of tray position when applying urea at a nominal application rate of 80 kg ha$^{-1}$.

Figure 3.10b. Industry measure of variation, MV_i, for six international spread tests: (a) ISO(i), (b) ISO(ii), (c) ASAE, (d) ES, (e) ACCU-Spread and (f) Spreadmark as a function of tray position when applying urea at a nominal application rate of 100 kg ha$^{-1}$.

Figure 3.10c. Industry measure of variation for six international spread tests: (a) ISO(i), (b) ISO(ii), (c) ASAE, (d) ES, (e) ACCU-Spread and (f) Spreadmark as a function of tray position when applying urea at a nominal application rate of 150 kg ha$^{-1}$.
Figure 3.11a. Probability of $MV_{bout} > 0.15$ as a function of specified bout width for the international spread tests; (a) ISO World (i), (b) ISO World (ii), (c) ES Europe, (d) ACCU Spread (Aus), and (e) Spreadmark (NZ) at a nominal application rate of 80 kg ha$^{-1}$. Results are shown for the two round-and-round overlap scenarios.

Figure 3.11b. Probability of $MV_{bout} > 0.15$ as a function of specified bout width for the international spread tests; (a) ISO World (i), (b) ISO World (ii), (c) ES Europe, (d) ACCU Spread (Aus), and (e) Spreadmark (NZ) at a nominal application rate of 100 kg ha$^{-1}$. Results are shown for the two round-and-round overlap scenarios.

Figure 3.11c. Probability of $MV_{bout} > 0.15$ as a function of specified bout width for the international spread tests; (a) ISO World (i), (b) ISO World (ii), (c) ES Europe, (d) ACCU Spread (Aus), and (e) Spreadmark (NZ) at a nominal application rate of 150 kg ha$^{-1}$. Results are shown for the two round-and-round overlap scenarios.

Figure 4.1. Model parameters used for calculating the distribution pattern of a centrifugal distributor (Reproduced from Olislagers et al., 1996).

Figure 4.2. (a) Image of fertiliser particles with blue colour plane extracted. (b) Binary image of fertiliser particles with noise removed.

Figure 4.3. Transverse and longitudinal transects taken for image analysis from a 1400 tray matrix used for a fertiliser spreader test.

Figure 4.4. 2nd order polynomial regression analysis of particle area (mm2) and particle mass (mg) of urea particles contained in sieve apertures between 0.4 and 4.0 mm.

Figure 4.5. Regression analysis of predicted total tray mass calculated from total particle area (g) and actual measured total particle mass (g) of urea contained in a 500 x 500 mm fertiliser collection tray.

Figure 4.6. Distribution of minor axis lengths for individual particles contained within sieve apertures between 1.0 and 4.0 mm.

Figure 4.7. Raw images capture from a tray inside ±4 m of the spreading vehicle (a) and outside ± 4 m from the spreading vehicle (b).

Figure 5.1. Spreader driving methods evaluated; (a) actual data; (b) up and down; (c) round and round; and (d) perfectly straight.
Figure 5.2. Output from Basic spreader interpolation data showing areas receiving single and double applications .. 80

Figure 5.3. Actual, smoothed, and perfect spread pattern test data for Urea (46% N) for a (A) 26 m swath flattop spreader (Bredal); and (B) 16 m swath triangular spreader (Transpread) .. 81

Figure 5.4. Process used to create a field fertiliser application map; A. raw track data; B. adjacent buffers from track lines; C. kriged application map ... 82

Figure 5.5. Basic application interpolation method results for tested paddocks A-D ... 83

Figure 5.6. Spatial variation in Paddock A when using (A) actual tracking data and actual spread pattern; (B) actual tracking data and a perfect spread pattern; (C) simulated up and down tracking data and actual spread pattern; and (D) simulated up and down tracking data and perfect spread pattern ... 84

Figure 5.7. Field variation (%) versus economic loss per hectare ($ ha⁻¹) calculated from the effect of uneven spreading on production response of New Zealand dairy pasture (kg DM kg N⁻¹) ... 87

Figure 6.1. Transverse distribution pattern of a 1317 Mercedes-Benz with a Bredal K65-1134 bin operating at a 26 m swath width ... 95

Figure 6.2. Process to convert from *.csv file (a) into point shapefile (b) into a polyline shapefile (c) to display spreader vehicle movements in a 2.25ha field .. 97

Figure 6.3. Comparison of transverse pattern data when using 0.5 m and 1 m tray intervals .. 97

Figure 6.4. (a) Construction of individual buffers with respective proportional application rates required to produce an application pattern (b) the same as expressed by the spreading vehicle .. 99

Figure 6.5. Process used to create a field fertiliser application map on a 2.25ha field; (A) raw track data; (B) adjacent buffers from track lines; (C) kriged application map .. 100

Figure 6.6. Percentage area receiving individual fertiliser application rates extracted from kriged application map .. 101

Figure 6.7. Difference in application rate between the simulated test overlap pattern and extracted values from a kriged application map using an A-B transect line .. 101

Figure 6.8. Fertiliser application map (A1 & B1) converted to areas of high and low application (A2 & B2) using ‘hotspot analysis’. A2 is a 1.06 ha paddock where 26.8% of the total area received low application rates. B2 is a 1.14 ha paddock where 49.1% of the total area received high application rates ... 104
Figure 6.9. Application rate distribution of urea over four farms where the target application rate was 80 kg ha\(^{-1}\).. 104

Figure 7.1. Collected GPS track log from a Bredal K65-1134 dual spinning disc fertiliser spreader using RINEX GuideTrax software on a 3.48 ha paddock... 109

Figure 7.2. Static spread pattern for Urea from a Bredal K65-1134 dual spinning disc fertiliser spreader ... 109

Figure 7.3. Schematic diagram of known and required variables used to calculate the geographic position of 0.5 x 0.5 m quadrants of a static spread pattern from a spreading vehicle when applying fertiliser under field conditions.. 111

Figure 7.4. Schematic diagram of known and required variables used to calculate intermediate points required between each known GPS location \((x_{\text{GPS}}, y_{\text{GPS}})\)... 113

Figure 7.5. GIS model process to create fertiliser application surface (kg ha\(^{-1}\)) from a raw XY event layer created from the field distribution calculator... 115

Figure 7.6. Fertiliser application surfaces created using measured machine parameters for original (a) and optimised (b) starting and stopping positions of the spreading vehicle during field application. 116

Figure 7.7. Fertiliser application start/stop positions for (a) Original GPS track data and (b) optimised start/stop positions to minimise significant over and under application at the start and end of individual swath runs... 117

Figure 7.8. Zones of nil, single and double application as obtained using a “virtual road” maps created from (a) original and (b) optimised spreader application paths... 119

Figure 8.1. Fertiliser application surface for urea applied on 11.6 ha at a target application rate of 65 kg ha\(^{-1}\). Calculated mean application rate for the applied area was 68.6 kg ha\(^{-1}\) (sd = 23.2 kg ha\(^{-1}\)) indicating field application variation of 33.8%... 129

Figure 8.2. Response to nitrogen as effected by pasture characteristics, season and growth management (Adapted from P. B. Ball & Field, 1982) ... 137

Figure A.1. Random measurements showing the differences of values from the mean. Differences between measurements are the sum of these terms... 162