Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Development of Durable Textile-Conductive Polymer Composites.

A thesis presented in partial fulfilment of the requirements for the degree of
PhD
in
Chemistry
at Massey University, Palmerston North, New Zealand.

Stewart Roger Collie
2007
Abstract.

The research described in this thesis investigated a range of techniques for the in situ polymerisation of thiophene-based intrinsically conductive polymers (ICPs) on textile substrates. Following a review of the literature, three potentially useful techniques were identified; a simple aqueous technique; a vapour phase technique; and a two-stage impregnation technique. The literature also indicated that thiophene-based ICPs were likely to be more durable than those prepared from other precursors.

The aqueous technique proved unsuccessful, but both the vapour and two-stage impregnation techniques were used to prepare textile-ICP composites using 2,2'-bithiophene and 3,4-ethylenedioxythiophene (EDOT). Polymerisation was effected by chemical oxidation of the precursor, with iron (III) salts being the best oxidants. The main drawbacks of the vapour system were the long vapour exposure times (e.g. several days) and/or elevated temperatures required to polymerise these relatively unreactive precursors. Two-stage impregnation was somewhat messy and inefficient, so a novel refinement of the technique (referred to as ‘single dip’) was developed. With this system, the specimen was impregnated with both precursor and oxidant from a single solution, then removed from the solution and the solvent allowed to evaporate. It was only at this stage that polymerisation occurred, and when more reactive ICP precursors (such as pyrrole) were used, polymerisation tended to occur in solution, and was less effective.

The influence of various treatment parameters was established, while tests confirmed that the deposited ICP layer had no detrimental effect on the desirable fabric properties of flexibility and strength. Composites with surface resistance as low as 65 Ω/square were prepared with less than 6% ICP load on the textile (perchlorate-doped poly(EDOT)). The durability of poly(EDOT) composites was far better than polypyrrole under ageing in ambient conditions, accelerated ageing at elevated temperatures, and when given a treatment that simulated laundering. Finally, a scheme for continuously depositing ICPs onto textiles by this approach was designed, as a way of demonstrating the potential for scale-up of the system.
Acknowledgements.

This research was supported by a Bright Futures Enterprise Scholarship administered by the Foundation for Research, Science and Technology on behalf of the Ministry of Education. I would also like to acknowledge the support of my employer, Canesis Network Limited (formerly the Wool Research Organisation of New Zealand), in allowing me time to carry out this work and providing facilities away from Massey University.

I would like to thank my principal supervisor, Professor David Officer of the Nanomaterials Research Centre, Massey University for his guidance and most importantly, his patience. I would also like to thank Dr Nigel Johnson and Dr Anthony Burrell for their valuable input at different stages in the work.

Finally, my greatest debt of gratitude is owed to my wife Joanna, for her love and support, her tolerance of my bursts of intense activity that periodically swamped our existence, and for her proof-reading, printing and compiling of this thesis.
Table of Contents

Abstract. ii

Acknowledgements. iii

Table of Contents. iv

List of Figures. x

List of Tables. xv

Chapter 1 Introduction. 1

1.1 Electrically Conductive Textiles. 1

1.2 Definitions and Conventions Used in this Work. 3

1.3 Thesis Overview. 3

Chapter 2 Literature Review. 5

2.1 Intrinsically Conductive Polymers and their Polymerisation. 5

2.1.1 General Principles. 5

2.1.2 Deposition of ICPs onto Non-Textile Substrates. 10

2.2 Techniques for Preparing Textile-ICP Composites. 14

2.2.1 In Situ Polymerisation in an Aqueous System. 14

2.2.2 In Situ Polymerisation by Two-Stage Impregnation. 23

2.2.3 In Situ Polymerisation by Vapour Phase Deposition. 39

2.2.4 In Situ Polymerisation by Electrochemical Techniques. 46

2.2.5 Deposition of Soluble ICPs. 50

2.2.6 Preparation of Conductive Polymer Textile Fibres. 55

2.3 Applications of Textile-ICP Composites. 60

2.3.1 Sensing Applications. 60

2.3.2 Other Applications 66

Chapter 3 Research Aims. 73

Chapter 4 Experimental Work – Basic Techniques. 75

4.1 Fabric Preparation, Handling and Storage. 75
4.1.1 Specimen Preparation and Identification. 75
4.1.2 Pre-Treatment Rinse. 76
4.1.3 Standard Conditions. 78
4.1.4 Storage. 79

4.2 Standard Fabrics. 81

4.3 Measurement of Specimen Parameters. 89
4.3.1 Measurement of Mass Add-on. 89
4.3.2 Measurement of Surface Resistance. 90

4.4 Summary of Polymer Deposition Techniques. 93
4.4.1 One-Step Aqueous Technique. 93
4.4.2 Vapour-Phase Deposition. 94
4.4.3 Two-Step Impregnation. 95
4.4.4 ‘Single-Dip’ Technique. 96

4.5 Chemical Reagents. 99

Chapter 5 Experimental Work – Aqueous System. 100

5.1 Background. 100
5.1.1 Initial Attempts. 100
5.1.2 Summary and Conclusions. 101

5.2 Effect of Fibre Type. 103
5.2.1 Background. 103
5.2.2 Experimental Work. 103
5.2.3 Summary and Conclusions. 105

Chapter 6 Experimental Work – Vapour Deposition. 106

6.1 Background. 106
6.1.1 Initial Attempts. 107
6.1.2 Summary and Conclusions. 112

6.2 Effect of Vapour Exposure Time. 114
6.2.1 Background. 114
6.2.2 Experimental Work. 114
6.2.3 Summary and Conclusions. 118

6.3 Effect of Elevated Temperature. 120
6.3.1 Background. 120
6.3.2 Experimental Work. 120
6.3.3 Summary and Conclusions. 123

6.4 Effect of Additional Dopant. 124
Chapter 7 Experimental Work – Two-Stage Impregnation.
7.1 Background. 135
 7.1.1 Principle. 135
 7.1.2 Initial Attempts. 136
7.2 Effect of ICP Precursor Type and Concentration. 138
 7.2.1 Background. 138
 7.2.2 Effect of Precursor Type for a Range of Substrates. 138
 7.2.3 Effect of Precursor Concentration for a Range of Substrates. 140
 7.2.4 Summary and Conclusions. 144
7.3 Effect of Drying Time After Precursor Impregnation. 146
 7.3.1 Background. 146
 7.3.2 Experimental Work. 146
7.4 Effect of Oxidant Concentration. 149
 7.4.1 Background. 149
 7.4.2 Experimental Work. 149
7.5 Effect of Oxidant Solvent Type. 152
 7.5.1 Background. 152
 7.5.2 Experimental Work. 152
 7.5.3 Summary and Conclusions. 155
7.6 Effect of Additional Dopants. 156
 7.6.1 Background. 156
 7.6.2 Experimental Work. 156
 7.6.3 Summary and Conclusions. 158
7.7 Effect of Post-Treatment Hold Time. 159
 7.7.1 Background. 159
 7.7.2 Experimental Work. 159
 7.7.3 Summary and Conclusions. 162
7.8 Characterisation of Specimens. 163
7.8.1 Background.
7.8.2 Experimental Work.
7.8.3 Summary and Conclusions.

7.9 Two-Stage Impregnation Summary and Conclusions.

Chapter 8 Experimental Work – Single Dip Technique.

8.1 Initial Investigation.

8.2 Effect of Precursor Concentration.
8.2.1 Background.
8.2.2 Preliminary Investigation.
8.2.3 Behaviour at Low Precursor Concentration on Three Substrates.
8.2.4 Summary and Conclusions.

8.3 Effect of Oxidant Concentration.
8.3.1 Background.
8.3.2 Iron (III) Chloride Concentration.
8.3.3 Iron (III) Perchlorate Concentration.
8.3.4 Summary and Conclusions.

8.4 Effect of Oxidant Counter-Ion.
8.4.1 Background.
8.4.2 Effect of Oxidant Counter-Ion for Two Precursors.
8.4.3 Effect of Oxidant Counter-Ion for Three Substrates.
8.4.4 Summary and Conclusions.

8.5 Effect of Solvent Used in Polymerisation Solution.
8.5.1 Background.
8.5.2 Effect of Solvent for EDOT with Iron (III) Chloride.
8.5.3 Comparison of Methanol and Ethanol.
8.5.4 Summary and Conclusions.

8.6 Effect of Additional Dopant.
8.6.1 Background.
8.6.2 Doping with Di-Sodium Salt of NDS.
8.6.3 Doping with NDSA (Armstrong’s Acid).
8.6.4 Summary and Conclusions.

8.7 Effect of Substrate Fibre Type.
8.7.1 Background.
8.7.2 Preparation of Specimens and Experimental Design.
8.7.3 Results and Discussion.
8.7.4 Ageing Behaviour.
8.7.5 Blank Treatments. 219
8.8 Effect of Process Variables. 222
 8.8.1 Background. 222
 8.8.2 Solution Impregnation Time. 222
 8.8.3 Solvent Evaporation Time. 225
 8.8.4 Solution Depletion with Multiple Dips. 227
 8.8.5 Viability of Oxidant Solution Over Time. 229
 8.8.6 Summary and Conclusions. 231
8.9 Effect of Multiple Coatings. 233
 8.9.1 Background. 233
 8.9.2 Treatment-by-Treatment Analysis. 233
 8.9.3 Behaviour on Standard Fabrics. 236
 8.9.4 Behaviour with Alternative Oxidants. 237
 8.9.5 Surface Morphology of Multiple-Coated Specimens. 238
 8.9.6 Summary and Conclusions. 241
8.10 Effect on Fabric Properties. 243
 8.10.1 Fabric Bending Properties. 243
 8.10.2 Fabric Burst Strength. 251
8.11 Durability of Textile-ICP Composites. 257
 8.11.1 Background. 257
 8.11.2 Methodology. 258
 8.11.3 Results and Discussion. 260
 8.11.4 Summary and Conclusions. 268
8.12 Characterisation of Textile-ICP Composites. 272
 8.12.1 Thickness of Coating and Extent of Polymerisation. 272
 8.12.2 Elemental Analysis of Textile-Poly(EDOT) Composites. 284
8.13 Summary and Conclusions. 296
 8.13.1 An Optimum ICP Deposition System. 296
 8.13.2 Conclusion. 299

Chapter 9 Summary and Comparison of Techniques. 301
 9.1 Aqueous System (Miliken). 301
 9.2 Vapour Deposition. 301
 9.3 Two-Stage Impregnation. 302
 9.4 Single Dip Technique. 302
 9.5 Comparison of Techniques. 304
Chapter 10 Conclusions and Future Work.

10.1 Conclusions.

10.2 Future Work.
 10.2.1 Vapour Deposition.
 10.2.2 Two-Stage Impregnation.
 10.2.3 Single Dip Technique.
10.3 Final Remarks.

References.

Appendices (supplied in electronic form as a CD).

Appendix 1: A short glossary of textile terms.
Appendix 2: Textile fibre polymers.
Appendix 3: Specimen images.
Appendix 4: Miscellaneous data and analysis.
List of Figures.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Some intrinsically conductive polymer (ICP) precursors.</td>
</tr>
<tr>
<td>2.2</td>
<td>Polymerisation scheme for pyrrole → polypyrrole.</td>
</tr>
<tr>
<td>2.3</td>
<td>Scheme for chemical polymerisation and doping of polypyrrole.</td>
</tr>
<tr>
<td>2.4</td>
<td>3,4-ethylenedioxythiophene (EDOT), C₆H₄O₂S.</td>
</tr>
<tr>
<td>2.5</td>
<td>Aromatic sulphonic acid dopants.</td>
</tr>
<tr>
<td>2.6</td>
<td>Textile-polyaniline composites prepared with KIO₃ as the oxidant.</td>
</tr>
<tr>
<td>2.7</td>
<td>Pyrrole polymerisation yield (Y) as a function of time for different oxidant (APS) concentrations.</td>
</tr>
<tr>
<td>2.8</td>
<td>SEM images of polypyrrole-coated fibres.</td>
</tr>
<tr>
<td>2.9</td>
<td>Polypyrrole-coated wool fibres.</td>
</tr>
<tr>
<td>2.10</td>
<td>Effect of substrate fibre for admicellar polymerisation of ICPs onto cotton and polyester.</td>
</tr>
<tr>
<td>2.11</td>
<td>Effect of monomer concentration on electrical properties.</td>
</tr>
<tr>
<td>2.12</td>
<td>High-magnification SEM images of polypyrrole-coated cellulose and wool fibres.</td>
</tr>
<tr>
<td>2.13</td>
<td>SEM images of wool-polypyrrole fabrics before and after abrasion testing.</td>
</tr>
<tr>
<td>2.14</td>
<td>1-(3-hydroxypropyl)pyrrole.</td>
</tr>
<tr>
<td>2.15</td>
<td>SEM images of vapour-deposited polypyrrole on viscose fibres.</td>
</tr>
<tr>
<td>2.16</td>
<td>SEM images of polypyrrole-coated polycaprolactam fibres.</td>
</tr>
<tr>
<td>2.17</td>
<td>SEM images of polypyrrole on polyester.</td>
</tr>
<tr>
<td>2.18</td>
<td>SEM micrographs of polyaniline-coated spun and filament yarns.</td>
</tr>
<tr>
<td>2.19</td>
<td>Change in surface resistance after abrasion testing for wool coated with poly(3-decanylpyrrole) by five techniques.</td>
</tr>
<tr>
<td>2.20</td>
<td>Possible linkages of poly(3-alkylthiophene).</td>
</tr>
<tr>
<td>2.21</td>
<td>Poly(EDOT)/PSS fibre.</td>
</tr>
<tr>
<td>2.22</td>
<td>Change in electrical resistance (dR/R) of a polypyrrole-coated fabric with elongation (dL/L).</td>
</tr>
<tr>
<td>2.23</td>
<td>The CSIRO/IPRI Intelligent Knee Sleeve.</td>
</tr>
<tr>
<td>2.24</td>
<td>Nylon and elastane fibres coated with polypyrrole.</td>
</tr>
<tr>
<td>2.25</td>
<td>Heating behaviour of a textile-ICP composite.</td>
</tr>
<tr>
<td>2.26</td>
<td>Particles (presumed to be recovered elemental gold) present on polypyrrole-coated fibres.</td>
</tr>
<tr>
<td>2.27</td>
<td>Total EM shielding effectiveness for the three best fabrics from [41].</td>
</tr>
</tbody>
</table>
4.1. Identification protocol for up to 10 specimens.

4.2. Handling and storage of a typical textile-ICP composite specimen (polyester interlock fabric with poly(EDOT) deposited on it).

4.3. Plain weave structure (chosen for all standard fabrics).

4.4. SEM image of nylon standard fabric (N).

4.5. SEM image of polyester standard fabric (D).

4.6. SEM image of acrylic standard fabric (O).

4.7. SEM image of wool standard fabric (W).

4.8. SEM image of cotton standard fabric (C).

4.9. SEM image of glass standard fabric (G).

4.10. SEM image of polyester interlock fabric (P INT).

4.11. Parallel electrode assembly used for surface resistance measurements

4.12. Cutting of samples for measurement of surface resistance from treated specimen.

4.13. Vapour deposition set-up.

5.1. Mass add-on – seven fibre types.

5.2. Surface resistance – seven fibre types.

6.4. Surface resistance vs. mass add-on for three precursors on polyester interlock (P INT).

6.5. Mass add-on and surface resistance – elevated temperature (pyrrole).

6.9. Surface resistance vs. mass add-on for three precursors with additional dopant (NDSA).

6.10. SEM images – pyrrole, 1.00 mol/L FeCl₃·6H₂O.

6.11. SEM images – pyrrole, 0.25 mol/L FeCl₃·6H₂O.

6.12. SEM images – pyrrole, 0.05 mol/L FeCl₃·6H₂O.

6.13. SEM images – pyrrole, 1.00 mol/L FeCl₃·6H₂O, 0.05 mol/L NDSA.

6.14. SEM images – 2,2'-bithiophene, 1.00 mol/L FeCl₃·6H₂O.

6.15. SEM images – 2,2'-bithiophene, 1.00 mol/L FeCl₃·6H₂O, 0.01 mol/L NDSA.

6.16. SEM images – EDOT, 1.00 mol/L FeCl₃·6H₂O.

6.17. SEM images – EDOT, 1.00 mol/L FeCl₃·6H₂O, 0.05 mol/L NDSA.
7.1. Mass add-on and surface resistance – precursor concentration (three precursors). 142
7.3. Mass add-on – drying time (two substrates, two precursors). 147
7.4. Surface resistance – drying time (two substrates, two precursors). 148
7.5. Mass add-on and surface resistance – oxidant concentration (two precursors). 150
7.6. Mass add-on – oxidant solvent (two substrates, two precursors). 153
7.7. Surface resistance – oxidant solvent (two substrates, two precursors). 154
7.8. Mass add-on and surface resistance – additional dopant (NDSA, two precursors). 158
7.10. Surface resistance – post-treatment hold time (two substrates, two precursors). 161
7.11. SEM images of BT(i).
7.12. SEM images of BT(ii).
7.13. SEM images of BT(iv).
7.14. SEM images of BT(v).
7.15. SEM images of EDOT(i).
7.16. SEM images of EDOT(ii).
7.17. SEM images of EDOT(iii).
7.18. SEM images of EDOT(iv).
7.19. SEM images of EDOT(v).

8.1. Mass add-on and surface resistance – precursor concentration (EDOT). 175
8.2. Surface resistance – lower precursor concentration (EDOT, three substrates). 178
8.3. Mass add-on – lower precursor concentration (EDOT, three substrates). 178
8.4. Mass add-on and surface resistance – oxidant concentration (iron (III) chloride). 182
8.5. Mass add-on and surface resistance – oxidant concentration (iron (III) perchlorate, EDOT). 184
8.6. Mass add-on and surface resistance – oxidant concentration (iron (III) perchlorate, 2,2'-bithiophene). 184
8.7. p-Toluenesulphonate. 187
8.8. Progression of R' with ageing of specimens with different dopant anions. 190
8.9. Surface resistance – two polymerisation solvents (three oxidants, three substrates). 202
8.10. NDS (di-sodium salt, left) and NDSA (Armstrong’s acid, right). 204
8.11. Surface resistance – additional dopant (di-sodium NDS, two precursors). 207
8.13. Surface resistance and mass add-on – additional dopant (NDSA). 209
8.15. Surface resistance – six fibre types (two precursors).
8.16. SEM: cotton-poly(EDOT) composite.
8.17. SEM: wool-poly(EDOT) composite.
8.18. SEM: acrylic-poly(EDOT) composite.
8.20. SEM: polyester-poly(EDOT) composite.
8.21. Progression of R' with ageing of specimens with different fibre types.
8.23. Surface resistance – impregnation time (three substrates).
8.25. Surface resistance – polymerisation solution depletion.
8.27. Change in surface resistance and mass add-on with multiple poly(EDOT) layers.
8.28. SEM images – multiple layers of poly(EDOT).
8.30. Possible electrical pathways in conductive textiles.
8.31. Flexural rigidity of standard fabrics.
8.32. Burst strength of standard fabrics.
8.33. Progression of R' – polyester, control.
8.34. Progression of R' – polyester, elevated temperature.
8.35. Progression of R' – polyester, elevated temperature, polypyrrole excluded.
8.36. Progression of R' – polyester, rinsed.
8.37. Progression of R' – polyester, rinsed, polypyrrole excluded.
8.38. Progression of R' – polyester, washed.
8.39. Progression of R' – polyester, washed, polypyrrole excluded.
8.40. Variability of R' over successive readings.
8.41. Annular polymer coating around cylindrical fibre.
8.42. Light microscopy: W4 x 1, poly(EDOT) on wool (top image 42x magnification, middle and bottom images 185x magnification).
8.43. Light microscopy: W60 x 1, poly(EDOT) on wool (185x magnification).
8.44. Light microscopy: P4 x 1, poly(EDOT) on polyester (top image 42x magnification, bottom image 185x magnification).
8.45. TEM: WC, untreated wool (magnification 13,500x).
8.46. TEM: W4 x 1, poly(EDOT) on wool (top image magnification 30,950x, bottom image 39,250x).
8.47. TEM: W60 x 1, poly(EDOT) on wool (magnification 30,950x). 280
8.48. TEM: PC, untreated polyester (magnification 13,500x). 281
8.49. TEM: P4 x 1, poly(EDOT) on polyester (top image magnification 30,950x,
bottom image 13,500x). 282
8.50. TEM: P60 x 1, poly(EDOT) on polyester (magnification 13,500x). 283
8.51. Suitable polymer substrates for elemental analysis. 285

10.1. A possible continuous single-dip treatment for yarns (or fabrics). 309
List of Tables.

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Reagent adsorption and surface resistance for deposition of polypyrrole onto synthetic fibre fabrics.</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Fastness properties of polypyrrole-coated regenerated cellulose fabrics.</td>
<td>22</td>
</tr>
<tr>
<td>2.3 Surface resistivity for admicellar polymerised ICPs on cotton and polyester.</td>
<td>27</td>
</tr>
<tr>
<td>2.4 Conductivity of textile-polyaniline composites prepared with different dopants.</td>
<td>32</td>
</tr>
<tr>
<td>2.5 Mechanical properties of a textile-reinforced composite prepared with polyaniline-coated glass-fibre fabric.</td>
<td>35</td>
</tr>
<tr>
<td>2.6 Mechanical properties of viscose-polypyrrole composites.</td>
<td>46</td>
</tr>
<tr>
<td>2.7 Electrochemical polymerisation parameters.</td>
<td>47</td>
</tr>
<tr>
<td>2.8 Selected mechanical and electrical properties of polyacrylonitrile/polyaniline fibres.</td>
<td>56</td>
</tr>
<tr>
<td>4.1 Moisture content of textiles.</td>
<td>78</td>
</tr>
<tr>
<td>4.2 Fabric description and mass per unit area (weight).</td>
<td>82</td>
</tr>
<tr>
<td>4.3 Fibre density, diameter and calculated fabric specific surface area (α).</td>
<td>84</td>
</tr>
<tr>
<td>5.1 Mass add-on and surface resistance – seven fibre types.</td>
<td>104</td>
</tr>
<tr>
<td>6.1 Vapour pressure and boiling point data for ICP precursors.</td>
<td>106</td>
</tr>
<tr>
<td>6.2 Preliminary experiment – oxidant solvent.</td>
<td>108</td>
</tr>
<tr>
<td>6.3 Preliminary experiment – oxidant concentration.</td>
<td>108</td>
</tr>
<tr>
<td>6.4 Preliminary experiment – exposure time.</td>
<td>109</td>
</tr>
<tr>
<td>6.5 Preliminary experiment – alternative oxidant.</td>
<td>110</td>
</tr>
<tr>
<td>6.6 Reproducibility of results.</td>
<td>110</td>
</tr>
<tr>
<td>6.7 Preliminary experiment – thiophene variants.</td>
<td>111</td>
</tr>
<tr>
<td>6.8 Preliminary experiment – thiophene variants with p-TSA.</td>
<td>112</td>
</tr>
<tr>
<td>6.9 Mass add-on and surface resistance – vapour exposure time.</td>
<td>115</td>
</tr>
<tr>
<td>6.10 Correlation coefficients (mass add-on vs. surface resistance) for all precursor/substrate combinations.</td>
<td>118</td>
</tr>
<tr>
<td>6.11 Mass add-on and surface resistance – temperature.</td>
<td>121</td>
</tr>
<tr>
<td>6.12 Mass add-on and surface resistance – additional dopant.</td>
<td>125</td>
</tr>
<tr>
<td>6.13 Mass add-on and approximate surface resistance – SEM specimens.</td>
<td>129</td>
</tr>
</tbody>
</table>

7.3. Correlation coefficients.
7.9. Surface resistance ranking.
7.10. Mass add-on and surface resistance – additional dopant.
7.11. Mass add-on and surface resistance – hold time.
7.12. Treatment variations.
7.13. Approximate surface resistance and mass add-on values – SEM specimens.
7.15. Effect of agitation of the solution during oxidant impregnation.

8.2. Polymerisation solution details – precursor concentration (EDOT).
8.4. Polymerisation solution details – lower precursor concentration (EDOT).
8.5. Mass add-on and surface resistance – lower precursor concentration (EDOT, three substrates).
8.6. Polymerisation solutions – oxidant concentration (iron (III) chloride).
8.7. Mass add-on and surface resistance – oxidant concentration (iron (III) chloride).
8.8. Polymerisation solutions – oxidant concentration (iron (III) perchlorate).
8.9. Mass add-on and surface resistance – oxidant concentration (iron (III) perchlorate).
8.10. Polymerisation solution details – oxidant counter-ion.
8.11. Mass add-on and surface resistance – oxidant counter-ion (two precursors).
8.15. Mass add-on and surface resistance – six polymerisation solvents.
8.16. Mass add-on and surface resistance – two polymerisation solvents (three oxidants, three substrates).

8.17. Polymerisation solution details – di-sodium 1,5-naphthalenedisulphonate.

8.18. Polymerisation solution details – 1,5-naphthalenedisulphonic acid.

8.19. ANOVA for surface resistance of specimens prepared with dopant ratios < 1:3 (1% significance level).

8.23. Statistical analysis of difference of mean surface resistance for different impregnation times.

8.25. ANOVA for evaporation times of 30 minutes and above (surface resistance).

8.28. ANOVA for ‘new’ and ‘old’ oxidant solutions (surface resistance).

8.31. Mass add-on and surface resistance – one and five layers (three oxidants).

8.32. Mass add-on and surface resistance – SEM specimens (one, two, five and ten layers).

8.33. Specimen mass per unit area (g/m², bending specimens).

8.34. Mass add-on – bending specimens.

8.35. Surface resistance – bending specimens.

8.36. Change in properties for cotton fabric.

8.38. Surface resistance – burst strength specimens.

8.39. Polymerisation conditions for durability specimens.

8.40. Initial surface resistance values.

8.41. Final R’ values, all substrates.

8.42. Variability of resistance measurements.

8.43. Fibre diameter and coating thickness.

8.44. Mass add-on and approximate surface resistance – elemental analysis specimens (Cl-doped poly(EDOT)-coated polyester and cotton).

8.45. Elemental analysis (g/100 g) of Cl-doped poly(EDOT)-coated polyester and cotton fabrics.
8.46. Elemental analysis (mol/100 g) of Cl-doped poly(EDOT)-coated polyester and cotton fabrics. 288
8.47. Molar ratio of constituent elements for untreated cotton and polyester. 289
8.48. Percentage (by mass) of poly(EDOT) specific elements in composite. 291
8.49. Mass add-on and approximate surface resistance – elemental analysis specimens (Cl, ClO₄ and NO₃-doped poly(EDOT)-coated polyester). 291
8.50. Elemental analysis (g/100 g) of Cl, ClO₄ and NO₃-doped poly(EDOT)-coated polyester. 292
8.51. Elemental analysis (mol/100 g) of Cl, ClO₄ and NO₃-doped poly(EDOT)-coated polyester. 293
8.52. Percentage (by mass) of poly(EDOT) specific elements in composite. 293
8.53. Summary of optimum polymerisation conditions for the preparation of textile-ICP composites by the single-dip technique. 298

9.1. Summary of ’best results’ for each precursor. 304