Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE HORIZONTALLY APPLIED TAPING SYSTEM (HATS)

THE DEVELOPMENT OF ADHESIVE TAPE FOR A TAPE-SEALED PACKAGING SYSTEM

A thesis submitted to the College of Sciences, Institute of Technology and Engineering, Massey University, Palmerston North, New Zealand, in partial fulfilment of the requirements for the degree of

Master of Technology
in
Packaging Technology

Vivien Wai Ying Yeung

2009
This project details the work done to develop testing methods for adhesive tapes for a tape-seal packaging system for selection at Graphpak Services Limited in Palmerston North, New Zealand. The company developed and patented a tape-scaling system for corrugated cartons that requires the use of pressure sensitive tape. The system is used for sealing cartons for export for the meat and fisheries industry. The tape is applied horizontally around the case with a circular tape head that deforms to conform to the varying surface layers of a case with an overlapping lid, thus securing the lid to the base.

Existing packaging tapes were tested for minimum strength properties and its effectiveness for use with corrugated board. The storage conditions of export goods require a substantial time spend in cooler temperatures, thus an adhesive tape functional at a large range is favoured. The selection of The Sellotape® brand of freezer grade tape was made as an all-round performer on the experiments conducted.

To export goods representing New Zealand, the Ministry of Agriculture and Forestry logo must be visible on the carton. The tape is intended to replace the seal by incorporating the logo on the tape by the means of print. The compatibility of ink on the adhesive tape was investigated and results show that it was most feasible to print on the tape backing substrate.

To deter unscrupulous operators from reusing the carton for black market resale, the carton must be tamper evident. Tests also investigated the conditions needed for a strong adhesive bond to delaminate the corrugated fibre material upon removal of the tape. It was discovered that the treatment of hot air blown on sealed tape produced a tighter seal as well as more fibre tear.

Security features such as bar-coding is highly recommended, and when required the use of microchips implanted in the carton will allow for traceability.

The use of the brand Sellotape for the proposed tape will reduce costs as the tapes are New Zealand made.

The combination of the tape-sealed packaging system and the proposed adhesive tape is an innovative way to incorporate a method of carton closure for waste reduction and a tamper proof international export requirement all in one, a special way to represent the New Zealand export industry.
DECLARATION

I declare that this is my own, independent work. It is being submitted in partial fulfilment of the requirements for the degree of Master of Technology at Massey University. It has not been submitted before for any degree or examination in any other University.

Vivien Wai Ying Yeung

This First Day of June 2009

ACKNOWLEDGEMENTS

Sincere appreciation to all the people and organisations listed below in aiding the completion of this project.

Thanks to,

- Foundation for Research Science and Technology for funding the Technology for Industry Fellowship (TIF) Program.
- Mr John Bradley, Managing Director of Graphpak Services Limited for the opportunity.
- Mr Rod Collins, fellow masterate from Graphpak Services Limited for your guidance and technical support.
- Mr Tom Robertson, Academic Supervisor for your management, support, patients and friendship.
- Mr Gary Radford, Mr Leo Bolter and Mr Steve Glasgow, technicians from Massey University for your assistance.
- Mr Michael Graves, Production Manager and the team from The Sellotape Company in Auckland for your advice and generosity.
- My family for their support and patients.
TABLE OF CONTENTS

ABSTRACT.. III
Declaration.. V
Acknowledgements.. V
List of Figures... XII
List of Tables... XV

1.0 INTRODUCTION...1
1.1 Graphpak Services Limited...1
1.1.2 The HATS Project...1
1.2 Tamper Evidence..2
1.3 Current System of Carton Closure...2
1.4 Proposed Tape-Sealed Packaging Unit...3
1.5 Aims...5
1.6 Objectives..6
1.7 Thesis Structure...6

2.0 LITERATURE REVIEW..7
2.1 Adhesives..7
2.1.1 History..7
2.1.2 The Classification of Adhesives...7
2.1.3 Categories of Adhesives..7
2.1.4 Peel..8
2.1.5 Modes of Failure...9
2.1.6 Effect of Adhesive Thickness and Backing......................................9
2.1.7 Permanent Versus Removable..9
2.2 Pressure Sensitive Tape..12
2.2.1 How is Pressure Sensitive Tape Made?..13
2.3 Packaging Tapes..15
2.3.1 Backing (Carrier) Materials...16
2.3.2 Adhesives for Pressure Sensitive Packaging Tape........................16
2.3.3 Tack...17
2.3.4 Low Temperature Tapes (Freezer Grade/Cold Temperature).........17
2.3.5 Recyclability..18
2.3.6 Requirements for Good Bond Strength..18
2.4 Corrugated Fibreboard..19
2.4.1 Origins of Corrugated Fibreboard Packaging.................................19
2.4.2 What is Corrugated Fibreboard?..20
2.4.3 Box Structure..20
2.4.4 Flutes...22
2.4.5 Corrugated Container Attributes .. 24
2.4.6 Container Styles ... 24
2.4.7 Packaging Functions ... 26
2.4.8 Corrugated Containers for Food Packaging .. 26
2.5 Summary ... 27

3.0 TAPE PERFORMANCE SPECIFICATIONS AND TESTING 28
3.1. Target Performance Specifications for proposed tape ... 28
3.2 Specifications of Pressure Sensitive Tapes investigated in this project 29
 3.2.1 Manufacturer's comments ... 32
3.3 Initial Experiment .. 33
 3.3.1 Finished Roll Adhesive Coating Weight Test .. 33
 3.3.2 Methods and Materials .. 33
 3.3.3. Results .. 34
 3.3.4 Discussion ... 35
3.4 Adhesion Experiment .. 35
 3.4.1 Peel Adhesion Test .. 35
 3.4.2. Methods and Materials for Peel Adhesion for Single Coated Pressure Sensitive Tapes at 180° Angle .. 36
 3.4.3(a). Results .. 40
 3.4.3(b). Results .. 40
 3.4.4. Discussion ... 42
3.5 Tape Backing Experiment .. 43
 3.5.1 Ultimate Tensile Strength and Elongation Test ... 43
 3.5.2 Methods and Materials for Tensile Strength and Elongation of Pressure Sensitive Tapes ... 43
 3.5.3. Results .. 44
 3.5.4. Discussion ... 46
3.6 Conclusions ... 46

4.0 TAPE MATERIAL AND ADHESIVE SYSTEM .. 47
4.1 Selection and testing of tape and adhesive substrate ... 47
 4.1.1 Tape applicator unit ... 47
 4.1.2 Printing inks .. 47
4.2 Printing Ink Experiment 1 ... 49
 4.2.1 Ink-jet printing on adhesive side of tape test.. 49
 4.2.2 Methods and Materials .. 50
 4.2.3 Results .. 50
 4.2.4 Discussion ... 52
4.3 Printing Ink Experiment 2 ... 53
 4.3.1 Ink stamp with tape test .. 53
 4.3.2 Methods and Materials .. 53
7.3.3 Results ... 95
7.3.4 Discussion ... 96

8.0 CONCLUSIONS .. 97

8.1 Recommendations ... 99
8.2 Further Work ... 99

REFERENCES ... 100

GLOSSARY .. 102

APPENDIX .. 105

A.1 MAF Endorsement
B.1 Finished Roll Adhesive Coating Weight Test [Sellotape® Quality Control Manual, 2000]
B.2 Results of Finished Roll Adhesive Coating Weight Test
B.3 Standard Conditions, Appendage A
B.4 Test Equipment, Appendage B
B.5 Preparation for Testing, Appendage D
B.6 Peel Adhesion for Single Coated Pressure Sensitive Tapes at 180° Angle
 [Pressure Sensitive Council Test Methods]
B.7 Standard Test Methods for Peel Adhesion of Pressure-Sensitive Tape at 180° Angle
B.8 Initial Sample Condition Test Results and Graph
B.9 Peel Adhesion Results – Freezer
 Peel Adhesion Freezer Results Graphs
 Peel Adhesion Results – Chiller
 Peel Adhesion Chiller Results Graphs
 Peel Adhesion Results – Room Temperature
 Peel Adhesion Room Temperature Results Graphs
B.10 Standard Test Method for Tensile Strength and Elongation of Pressure-Sensitive Tapes
B.11 Tensile Strength and Elongation of Pressure Sensitive Tapes
 [Pressure Sensitive Council Test Methods]
B.12 Ultimate Tensile/Strain and Elongation of Tested Tapes Results
B.13 Ultimate Tensile/Strain and Elongation Results Graphs
C.1 Rolling Ball Tack Method, [Sellotape® Quality Control Manual, 2000]
C.2 Tack Rolling Ball, [Pressure Sensitive Council Test Methods]
C.3 Results of Rolling Ball Tack Test
C.4 Box Test Method, [Sellotape® Quality Control Manual, 2000]
D.1 Full Experimental Design for Peel Adhesion Test with Heat Treatment and Ink
D.2 Peel Adhesion Test with Heat Treatment and Ink Results
D.3 Peel Adhesion Test with Heat Treatment and Ink Graphs
D.4 Peel Adhesion Test with Heat Treatment and Ink Minitab Results
D.5 Table for 95th percentiles for the F distribution

X
Table for 99\% percentiles for the F distribution

D.6 Significance Calculations

E.1 New Zealand Meat Industry Association (Inc.) Carton Sealing Standard Diagrams

F.2 Modelling the Heat Transfer Resistance of Corrugated Paperboard. Peer Reviewed Paper. The NZ Food Journal 29(3) by F Bilge Thompson, Tom R Robertson and Andrew C Cleland, Massey University

F.3 Heat Transfer Results, Calculations and Graphs
LIST OF FIGURES

Figure 1-1 Mr John Bradley, Mr Rod Collins and I pictured at Taylor Preston Meat Processing Plant in Wellington, February 2002

Figure 1-2 Tape Head Roller (illustration created by Mr Rod Collins)

Figure 1-3 Photos of a modified taping machine applying tape to a carton with lid. Modified from vertical to horizontal taping, machine supplied by The Sellotape® Company in Auckland.

Figure 1-4 Illustrations of the results from the application of the tape-sealed unit to cartons with tape (illustrations created by Mr Rod Collins)

Figure 2-1 Ideal Model of the Relationship between Average Molecular Weight and Peel Strength of a Pressure Sensitive Adhesive

Figure 2-2 Four Components of a Typical Pressure Sensitive Tape

Figure 2-3 Construction of Single and Double-Sided Tape

Figure 2-4 Illustration of the Slitting Process

Figure 2-5 Probe Tack as a Function of Temperature

Figure 2-6 Impact of Substrates Texture on the Strength of the Adhesive Bond

Figure 2-7 Corrugated Fibreboard

Figure 2-8 Single Faced Fibreboard

Figure 2-9 Single Wall Corrugated

Figure 2-10 Double Wall Corrugated

Figure 2-11 Triple Wall Corrugated

Figure 2-12 Duo Arch Corrugated

Figure 2-13 Comparison of Flutes

Figure 2-14 Assembled RSC with Corresponding Flat Scored and Slotted Sheet Layout

Figure 2-15 Assembled HSC and Lid with Corresponding Flat Scored and Slotted Sheet Layout

Figure 2-16 Assembled FPF with Corresponding Flat Scored and Slotted Sheet Layout

Figure 3-1 Photos of Sellotape® Fresh Tape

Figure 3-2 Photos of Sellotape® Freezer Grade Tape

Figure 3-3 Photos of Sellotape® Old Age Tape

Figure 3-4 Photos of 3M™ Cold Temperature Tape

Figure 3-5 Photos of 3M™ Medium Age Tape

Figure 3-6 Photos of 3M™ Old Age Tape

Figure 3-7 Photos of Panfix Tape
Figure 3-8 TAXT2 Texture Analyser
Figure 3-9 Photo of Specimen Cutter
Figure 3-10 Cross section of specimen applied onto the panel
Figure 3-11 Side on view
Figure 3-12 Specimen in Adhesive Tester
Figure 3-13 Rate of temperature increase of corrugated board from freezer to room temperature
Figure 3-14 Force of Peel Adhesion of all tested Tapes from Freezer from Vertical Pull
Figure 3-15 Force of Peel Adhesion of all tested Tapes from Chiller from Vertical Pull
Figure 3-16 Specimen in Tensile Tester
Figure 4-1 Diagram of Large Character ink-jet printing methods
Figure 4-2 Photo of resulting immediate tape and board contact of font 12
Figure 4-3 Photo of resulting immediate tape and board contact of font 20
Figure 4-4 Photo of resulting delayed tape and board contact of font 12
Figure 4-5 Photo of resulting delayed tape and board contact of font 20
Figure 4-6 Photo of stamps used in this experiment
Figure 4-7 i-Stamper test specimen (right) and peeled tape substrate (left) immediate lift
Figure 4-8 X-Stamper test specimen (right) and peeled tape substrate (left) immediate lift
Figure 4-9 Sanrio set test specimen (right) and peeled tape substrate (left) immediate lift
Figure 4-10 i-Stamper test specimen (right) and peeled tape substrate (left) after 24 hours
Figure 4-11 X-Stamper test specimen (right) and peeled tape substrate (left) after 24 hours
Figure 4-12 Sanrio set test specimen (right) and peeled tape substrate (left) after 24 hours
Figure 4-13 Photos of Metal Test Ramp with Steel Ball Bearing
Figure 4-14 Photo of Test Ramp and Test Specimen Set Up
Figure 4-15 Photos of Ball Bearing Released onto Test Specimen
Figure 4-16 Test Specimen Application Illustration
Figure 4-17 Diagram to Interpret Instructions Above
Figure 4-18 Illustration of Handle Making
Figure 4-19 Picture of Box Test's finished setup, showing rod that holds the assembly of sandbags in box on bracket
Figure 4-20 Photo of Experiment in Progress at Ambient Temperature
Figure 4-21 Photo of Failing Test Specimen at Ambient Temperature
Figure 4-22 Photo of Experiment in Freezer
Figure 4-23 Photo of One of the Box Test in the Freezer on One Side
Figure 5-1 Makita Heat Gun 1100 with Surface Nozzle
Figure 5-2 Single Face Corrugated Fibreboard Orientation Labelled
Figure 5-3 Corrugated Panel Time Guides for Peel Adhesion Heat Test

XIII
Figure 5-4 Photo of One of the Specimens to be Tested (left) and Peeled (right), with Fibre and Ink Evident on the Tape
Figure 5-5 Graph of Force versus Fibre Torn from Freezer
Figure 5-6 Graph of Force versus Fibre Torn from Chiller
Figure 5-7 Graph of Force versus Fibre Torn at Room Temperature
Figure 6-1 Sample of MAF Seal
Figure 6-2 Germany made Tamper Evidence Tape
Figure 6-3 Tamper evidence tape peeled, leftover warning message (top), non adhesive top layer of tape (bottom)
Figure 7-1 Design Style Container with Cover (DCS)
Figure 7-2 Pattern for Design Style Container with Cover
Figure 7-3 Five Panel Folder (FPF)
Figure 7-4 Pattern for Five Panel Folder
Figure 7-5 Illustration of a Five Panel Folder Unassembled
Figure 7-6 Photo of an existing five panel folder meat carton from Taylor Preston with sample MAF seals taped horizontally with PSA
Figure 7-7 Another photo of an existing five panel folder meat carton from Taylor Preston with sample MAF seals taped horizontally with PSA
LIST OF TABLES

Table 1-1 Advantages and Disadvantages of Adhesive Taping, Hot Melt Gluing and Polypropylene Strapping
Table 2-1 Corrugated Size Classification
Table 3-1 Sellotape® Fresh specifications
Table 3-2 Sellotape® Freezer Grade specifications
Table 3-3 Sellotape® Old Age specifications
Table 3-4 3M™ Cold Temperature specifications
Table 3-5 3M™ Medium Age specifications
Table 3-6 3M™ Old Age specifications
Table 3-7 Panfix specifications
Table 3-8 Results of the Finished Roll Adhesive Coating Weight Test
Table 3-9 Recorded and calculated results of the Finished Roll Adhesive Coating Weight test
Table 3-10 Review of Tape Specifications
Table 3-11 Results of Ultimate Tensile Strength and Elongation Test
Table 4-1 Table of comparisons between the Electrovalve drop-in-demand and Piezo drop-on-demand technologies
Table 4-2 Results of Rolling Ball Tack Test
Table 4-3 Table of Results Rearranged for Comparison
Table 4-4 Box Test Results at Ambient Temperature
Table 4-5 Box Test Results from Freezer
Table 4-6 Summary of results in descending order of pass days in Box Test at Ambient Temperature
Table 5-1 Results of Temperature Test Measured with Digital Thermometer ± 5 °C
Table 5-2 Observations of board after treatment
Table 5-3 Experimental Design for Peel Adhesion Test with Heat Treatment and Ink
Table 5-4 Results Table of Measurements from the Freezer
Table 5-5 Results Table of Measurements from the Chiller
Table 5-6 Results Table of Measurements at Room Temperature
1.0 – INTRODUCTION

1.1 GRAPHPACK SERVICES LIMITED

Graphpak Services Limited was established in 1981 in Palmerston North, New Zealand. Its core business is to service and provide engineering to the printing and packaging industry and produce unique machinery for the dairy, fibreboard packaging, print finishing and food processing industries. Own and operated by Mr John D Bradley for over 20 years, the company has undergone new structural and management change. Graphpak has since been bought by Manawatu Precision and John has formed a new company with Bob McIhatton called Lyhatton that focuses further on the development of the Horizontally Applied Taping System (HATS) project; both the tape-sealed packaging unit as well as the adhesive tape. Lyhatton has now relocated to Fielding.

Figure 1-1 Mr John Bradley, Mr Rod Collins and I pictured at Taylor Preston Meat Processing Plant in Wellington February 2002

1.1.1 THE HATS PROJECT

In 1992; John saw a need to provide a solution to replace existing polypropylene strapping in the packaging industry after recognising the reoccurring failure of holding the package together with this method. He patented a design idea of his own that would allow a horizontal taping machine to seal corrugated fibreboard that not only holds the package intact better than strapping but in addition increases the shelf life of the product. John also considered existing security requirements to which Ministry of Agriculture, MAF became interested and so too did the local produce sector.
It was clear that this innovative system had much potential which also required resources from the company that it could not provide on its own, therefore in 2001, technology in industry fellowship funding (TIF) was granted for a masterate student to take this idea to the next level, onto developing a production model. Student Rod Collins undertook this project and developed a tape head roller which makes sealing the tape horizontally possible.

1.2 TAMPER EVIDENCE

The New Zealand meat export industry has often commonly been a target to unscrupulous operators that reuse the New Zealand meat carton and Ministry of Agriculture and Forestry (MAF) seals to sell counterfeit meat products. When these products have reached their required destinations, it may be discovered that the product is counterfeit. This alone will give our products and brand to our overseas market a bad reputation.

Currently, the cardboard boxed meat products are strapped with polypropylene to secure the lid. Official Ministry of Agriculture and Forestry (MAF) seals which are adhesive labels are placed on these straps whereby the lid and base of the cardboard box meets, and usually two labels are required and used. With this type of packaging closure, it is not surprising counterfeiting is common.

Often whole shipments of meat are returned to New Zealand where a few cartons are either found to have evidence of tampering or labels have fallen off due to temperature differences and rough handling. Rough handling is common and with the use of the strapping material as handles to move the cartons and for palletisation. Seals become unstuck, the box will be reshaped due to the strapping material digging to the corners of the carton and lids are not tapered as strapping alone does not make for a uniform package. This therefore makes palletisation untidy and weak. The whole shipment may then be returned to New Zealand at our expense.

1.3 CURRENT SYSTEMS OF CARTON CLOSURE

Adhesive Taping System
- Used on regular slotted cartons (RSC).

Hot Melt Glue
- Applied to lid and side flaps of carton.

Polypropylene Strapping
- Straps are tightened and heat sealed to join.
Table 1-1 Advantages and Disadvantages of Adhesive Taping, Hot Melt Gluing and Polypropylene Strapping

<table>
<thead>
<tr>
<th>FACTORS</th>
<th>ADHESIVE TAPING</th>
<th>HOT MELT GLUING</th>
<th>POLYPROPYLENE STRAPPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of use</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Easily removed</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Environmentally friendly</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Expensive</td>
<td>x</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Good carton structural integrity</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>High maintenance</td>
<td>x</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>High Strength</td>
<td>x</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Manual operated</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>May hinder carton loading</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational only on flat surface</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Prevent ingress of foreign matter</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Printed message</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Require separation for recycling</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Reshapes carton</td>
<td>x</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Subject to breakages/failure</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Time constraints</td>
<td>x</td>
<td>✓</td>
<td>x</td>
</tr>
</tbody>
</table>

✓ = Advantages
× = Disadvantages

1.4 PROPOSED TAPE-SEALED PACKAGING UNIT

Currently the New Zealand freezing works and Fisheries industries are looking for more effective methods of carton closure, especially for the export of goods. Their existing method is by mechanised polypropylene strapping and hot melt gluing by which causes non-recyclable waste and requires manpower to operate machinery. It has also been a target to reuse and misuse of the goods overseas which spoils New Zealand’s brand name. The Ministry of Agriculture and Forestry, have voiced their concern of inadequate carton seal placements which has lead to products being rejected or held pending awaiting corrective action overseas. Both parties have expressed interest for this new taping technology, a method developed by Graphpak Services Limited that seals the carton with packaging tape that can incorporate the required seals while reducing materials and waste. An endorsement from MAF can be viewed in the Appendix A.1.

This new revolutionary technology developed by Mr John D Bradley, managing director of Graphpak Services Limited has been patented and further developed by a masterate project focussing on the development of the tape-sealed packaging unit, that is the tape application
equipment. The initial idea started from only a tape head roller which can be housed by a tape dispenser, figure 1-2.

Figure 1-2 Tape Head Roller (Illustration created by Mr Rod Collins)

This method of sealing boxes whereby the tape can be deformed to conform to the varying surface layers of a case with an overlapping lid. The tape is applied horizontally around the case, thus securing the lid to the base. (Figs 1-2, 1-4). Applications of this packaging system include meat, seafood and potentially other fresh or frozen produce.

Figure 1-3 Photos of a modified taping machine applying tape to a carton with lid. Modified from vertical to horizontal taping, machine supplied by The Sellotape® Company in Auckland.

Figure 1-4 Illustrations of the results from the application of the tape-sealed unit to cartons with tape (Illustrations created by Mr Rod Collins)
The advantages of this type of closure of cartons are:

- The package is tamper evident; the carton fibre material will delaminate when the tape is removed.
- A hermetic seal is produced reducing freezer burn and eliminating the need for plastic liners for frozen products. There is no air gap in the fold of the tape to the lid.
- Structural integrity is improved allowing thinner gauge packaging materials, thus reducing packaging material.
- Better constancy of the shape of the packaging improving palletisation with less air gaps between packages, hence improving heat transfer during the freezing process.
- Corresponds to recycling requirements

The potential market and environmental factors that dominate this new method of carton closure has been explored by fellow student Rod Collins in his research of the feasibility of this project while undertaking the development in the construction of the taping system. The potential economic significance for the food packaging industry was also explored and is immense. The savings from material reduction alone will impact the large export trade that exists in New Zealand. [Charles Roderick Collins 2002, Horizontal Application of Tape System (HATS)].

This project will be successful if an adhesive sealing tape can be developed that: imparts minimum strength properties to the packed carton; is tamper evident; incorporates security features to deter fraud and allow traceability; produces an airtight seal; and allow savings in packaging materials.

This work reports on the support of the tape-sealed packaging unit and investigates potential existing packaging tapes that are likely options for use with this system. Existing freezer grade or cold temperature tapes with its vast working temperature range is favoured.

1.5 AIMS

The aims of this research are to

1. Investigate existing packaging tapes with potential for selection for use with the tape-seal packaging system.
2. Develop security measures to protect the tape and system.
3. Develop a package design for use with this tape sealing system.
4. Make recommendations for future development of the tape and system.
1.6 OBJECTIVES

1. Develop appropriate performance specifications and test methods to conduct on selected existing packaging tapes.
2. Investigate tape and adhesive substrates for suitability.
3. Explore methods of security protection of the tape and system.
4. Develop a package design to take advantage of this tape sealing system.

1.7 THESIS STRUCTURE

The literature review follows this section and provides a basic overview of relevant topics and issues that aid in attaining the project's aim. Five experimental chapters follow each including results and discussions, the topics investigated are:

1. Tape Performance Specifications and Testing.
2. Tape Material and Adhesive System.
3. Use of Ionised Air.
5. Package Design.

The project then comes together again for an overall conclusion.