Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A Fuzzy and Wavelet-Based Image Compression Algorithm

A thesis presented in partial fulfillment of the requirements for the degree of Master In Computer Science At Massey University, Albany, New Zealand

Li Huang

2006
Abstract

Nowadays, the Internet and digital image widespread are used in the industry, commerce, military, traffic and all walks of life. However, this kind of general use resulted in required for less transmission time and storage space. Image compression can address the problem of reducing the amount of data to represent a digital image. The image will satisfy the transmission and the preserved request after the compression. With the increasing use some technologies in the image processing, image compression also requires new technology to get the high compression ratio and more better image quality. Therefore, a new standard has been developed by Joint Photographic Experts Group (JPEG). Apart from JPEG, there are other algorithms developed for image compression, Normally, EZW, SHIPT and VQ algorithms. However, they all deal with the calculation of coefficients with too much complexity; as a consequence, compressing still image takes too much time. In the light of these problems, this thesis introduces a new method for dealing with the requirements of the coefficients while retaining the important detail in the image, by employing a Fuzzy Logic technique reduce the number of the coefficients, and then utilizes the Huffman or LZW algorithm to complete the image compression. The algorithm developed in this research, called IWF algorithm, is based on four key techniques: 1) a wavelet transform for decomposition. This technique allows the combination of lossless and lossy compression with extremely high compression rate and image quality. 2) Quantization, this technique generally works by compressing a range of value to a single quantum value. By reducing the number of discrete symbols in a given stream, the stream becomes more compressible. This step in the IWF process is a lossy transformation. 3) Adaptation of Fuzzy logic techniques. This step uses the Fuzzy Logic techniques to handle the wavelet coefficients, enable the wavelet coefficients to have the same value in the high subbands. 4) Adaptation of Lossless data compression techniques.

Keywords: Image Compression, Fuzzy Logic, Wavelet transforms, Decomposition, Haar Wavelet transform,
Acknowledgments

I thank Reyes, Napoleon for his invaluable support and guidance as my supervisor. His readiness to give help and suggestions throughout the year has been highly appreciated.

I would also like to thank my family for their support throughout this year.

Li Huang

Massey University
March 2006
ABSTRACT .. 1

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 Overview of the Current State of Technology .. 1
1.2 Research Objectives .. 2
1.3 Scope and Limitations of Research .. 3
1.4 Assumptions .. 3
1.5 Significance of the Research ... 4
1.6 Research Methodology ... 5
1.7 Organization of the Thesis .. 6

CHAPTER 2 .. 7

THEORETICAL FRAMEWORK ... 7

2.1 Basic Image Compression Concepts .. 7
 2.1.1 Image Types .. 7
 2.1.2 Colour Space ... 8
 2.1.3 Data Redundancy .. 11
 2.1.4 Two Categories of Image Compression Technique 13
 2.1.5 Compression Ratio and Error Metrics ... 14
2.2 Image Coding .. 15
 2.2.1 Introduction .. 15
 2.2.2 Run Length Encoding .. 16
 2.2.3 Huffman Coding ... 17
 2.2.4 LZW Coding ... 22
 2.2.5 Huffman Algorithm Vs LZW Algorithm (Results) 29
2.3 Transform coding .. 30
 2.3.1 Introduction .. 30
 2.3.2 Discrete Cosine Transform ... 31
 2.3.3 Wavelet Transform ... 33
 2.3.3.1 Haar Wavelet .. 37
 2.3.3.2 Morlet Wavelet .. 38
 2.3.3.3 Marr Wavelet ... 38
 2.3.4 Typical Image Compression Algorithms based on Wavelet Transform ... 39
 2.3.4.1 EZW Algorithm .. 39
 2.3.4.2 SPIHT Algorithm .. 46
2.4 Fuzzy Logic and Fuzzy Image Processing ... 48
 2.4.1 What is Fuzzy Logic? ... 48
 2.4.2 What is Fuzzy Set Theory? ... 49
 2.4.3 Fuzzy Membership Functions ... 50
 2.4.4 Applications of Fuzzy Techniques in Image Processing 53
 2.4.4.1 Fuzzy Image Enhancement .. 53
2.4.4.2 Fuzzy Image Segmentation ... 54
2.4.4.3 Fuzzy Edge Detection ... 55

CHAPTER 3 ... 56

REVIEW OF RELATED LITERATURE .. 56
3.1 YCC Colour Space and Image Compression 56
3.2 JPEG Compression Techniques .. 57
3.3 JPEG 2000: The Next Compression Standard Using Wavelet
Technology 58
3.4 Image Compression Techniques... 59
3.5 Image Compression Method of Vector Coding Based on Wavelet
Transform .. 59
3.6 Embedded Image Coding Using Zerotrees of Wavelet Coefficients
.. 60
3.7 A Comparative Study on Digital Mamography Enhancement
Algorithm Based on Fuzzy Theory .. 60
3.8 An algorithm for Image Clustering and Compression 61
3.9 Image Coding Using Wavelet Transform .. 61
3.10 On Embedded Zerotree Wavelets Coding and other Improved
Algorithms .. 62
3.11 Wavelet-based Image Compression ... 62
3.12 EZW Encoding .. 62
3.13 Colour Image Compression/Reconstruction by YUV Fuzzy
Wavelets .. 62

CHAPTER 4 ... 64

THE IMAGE COMPRESSION ALGORITHM BASED ON WAVELET
AND FUZZY LOGIC (IWF) 64
4.1 Central Thesis .. 64
4.2 General System Architecture .. 65
4.3 Wavelet Transform (Haar Wavelet) ... 65
4.4 Fuzzification Function ... 67
4.4.1 Possibility Distribution algorithm .. 68
4.4.2 Contrast Improvement with Intensification Operator 68
4.4.3 Contrast Improvement with Fuzzy Histogram Hyperbolization 69
4.4.4 Contrast Improvement based on Fuzzy If-Then Rules 70
4.4.5 Experiment Results ... 70
4.5 IWF Algorithm .. 71
4.6 Sample Application of the IWF Algorithm 74
4.7 Grayscale Image Compression .. 76
4.7.1 Introduction ... 76
4.7.2 IWF Algorithm (grayscale image) .. 76
List Figures

Fig.1 The Comparison of RGB, YUV, YIQ and YCrCb Colour Space .. 11
Fig.2 Source Encoder and Decoder Model ... 13
Fig.3 Binary Tree Creations ... 19
Fig.4 Delphi Implementation of the Huffman Algorithm ... 21
Fig.5 Comparison the between Original Image and Reconstructed Image
 (Huffman algorithm) .. 21
Fig.6 Delphi Implementation the LZW Algorithm .. 28
Fig.7 Comparison the between Original Image and Reconstructed Image
 (LZW algorithm) ... 29
Fig.8 The Transform Coding System ... 30
Fig.9 1-D DCT Basis Functions for N=8 .. 33
Fig.10 Basis Function of an 8x8 DCT ... 33
Fig.11 Wavelet Decomposition .. 35
Fig.12 Vertical and Horizontal Decomposition Image ... 35
Fig.13 1 to 3 Levels Wavelet Decomposition Image .. 36
Fig.14 Haar Wavelet ... 37
Fig.15 Morlet Wavelet ... 38
Fig.16 Marr Wavelet ... 39
Fig.17 Three Level Wavelet Decomposition .. 40
Fig.18 Flow Chart for Encoding a Coefficient .. 42
Fig.19 Two Kind of Scan Ordering .. 43
Fig.20 Coefficients .. 44
Fig.21 Representation of “dark gray-levels” with a Crisp and a Fuzzy Set
 .. 50
Fig.22 The Triangular Membership Function .. 51
Fig.23 The Trapezoidal Membership Function .. 51
Fig.24 The Gaussian Membership Function .. 52
Fig.25 The Generalized bell Membership Function .. 53
Fig. 26 The Main Principle of Fuzzy Image Enhancement 54
Fig. 27 Basic Idea of Compression Scheme .. 56
Fig. 28 Block Diagram of JPEG Compression ... 57
Fig. 29 Block Diagram of JPEG2000 Compression 59
Fig. 30 The Image Compression Process .. 59
Fig. 31 General Architecture of a Fuzzy and Wavelet-Based Image
Compression ... 65
Fig. 32 Results using different fuzzification functions 71
Fig. 33 The Fuzzification Function ... 73
Fig. 34 8x8 Image Data ... 74
Fig. 35 2-level Wavelet Decomposition .. 74
Fig. 36 Coefficients after Mapping ... 75
Fig. 37 Coefficients after Fuzzification ... 75
Fig. 38 Original Image (lena.bmp 512 x 512) ... 77
Fig. 39 Relationship between the Time and the Level of Wavelet
Decomposition .. 78
Fig. 40 Relationship between the Time and the Compression 78
Fig. 41 Relationship between the Time and the Decompression 79
Fig. 42 Relationship between the Time and the Reconstruction 79
Fig. 43 Relationship between the Total Time and the Level of
Decomposition .. 80
Fig. 44 Relationship between the Compression Ratio and the Level of
Decomposition .. 80
Fig. 45 Test Images ... 81
Fig. 46 Compressed Images (3-Level of Wavelet Decomposition) 81
Fig. 47 Relationship between the Compression Ratio and the Level of
Decomposition .. 82
Fig. 48 Original Test Image (lena.bmp 512 x 512) 82
Fig. 49 Compressed Image (1-Level Wavelet Decomposition,
Compression Ration 3:1) .. 83
Fig.50 Compressed Image
(2-Level Wavelet Decomposition, Compression Ration 6:1) 83
Fig.51 Compressed Image
(3-Level Wavelet Decomposition, Compression Ration 13:1) 84
Fig.52 Compressed Image
(5-Level Wavelet Decomposition, Compression Ration 62:1) 84
Fig.53 The Diagram of IWF Colour Image Compression 87
Fig.54 The Transform the Colour Scpace .. 87
Fig.55 Original colour images .. 88
Fig.56 Compressed colour images (1-level wavelet decomposition) 88
Fig.57 Compressed colour images (2-level wavelet decomposition) 88
Fig.58 Original Test Image (lena.bmp 256x256) 89
Fig.59 Compressed Image (1-Level Wavelet Decomposition, Compression Ratio 2:1) .. 89
Fig.60 Compressed Image
(2-Level wavelet Decomposition, Compression Ratio 3.2:1) 90
Fig.61 Compressed Image
(3-Level Wavelet Decomposition, Compression Ratio 7.2:1) 90
Fig.62 Compression of an Image ... 94
Fig.63 Decompression of an Image ... 94
List Tables

Table.1 Sample 8 x 8 screen of red, green, blue, cyan, magenta, yellow, and black pixels .. 18
Table.2 Frequency Table for Table 3.1 .. 19
Table.3 Huffman Codes for Fig 2.3 .. 20
Table.4 A String Table for LZW Algorithm ... 25
Table.5 A LZW Compression Table ... 26
Table.6 A LZW Decompression Table .. 27
Table.7 Comparison the between Huffman and LZW Algorithms ... 29
Table.8 Comparing the Probability and Fuzzy Theory ... 49
Table.9 Comparing the RMSE of two Algorithms .. 92
List of Abbreviation

1-D - 1 Dimension
2-D - 2 Dimension
ANN - Artificial neural Network
DCT - Discrete Cosine Transformation
DFT - Discrete Fourier Transformation
DHT - Discrete Hada Masurium transformation
DM - Delta Modulation
DPCM - Differential Pulse Code Modulation
EZW - Embedded Zerotree Wavelet
GIF - graphic interchange format
ISDN - Integrated Services Digital Network
IWF - Image Compression Based on Wavelet and Fuzzy Logic
IZ - Isolated Zero
LIP - List of Insignificant Pixels
LIS - List of Insignificant Set
LSP - List of Significant Pixels
LZW - Lempel Ziv Welch
MSE - Mean Square Error
N - Negative
P - Positive
PCM - Pulse Code Modulation
PDF - portable document format
PSNR - Peak Signal to Noise Ratio
RMSE - root mean square error
SPHIT - Set Partitioning in Hierarchical Trees
TIFF - tagged image file format
VQ - Vector Quantification
ZTR - Zero Tree Root
Chapter 1

Introduction

1.1 Overview of the Current State of Technology

The main goal of image compression is to minimise the data volume of an image with no significant loss of information. The reduction in file size allows more images to be stored in a given amount of disk or memory space, and it also reduces the transmission cost of images sent over the Internet or downloaded from Web pages.

Several different methods exist for the compression of images. All basic image compression groups have advantages and disadvantages. Methods for image compression fall into several major categories:

- Transform-based methods
- Vector quantisation methods
- Pyramid-based techniques
- Hybrid compression methods
- Huffman encoding

Transform-based techniques are renowned to better preserve subjective image quality and are less susceptible to statistical image property changes both inside a single image, and between images. One attractive quality of transform-based techniques is their insensitivity to transmission channel noise. If one transform coefficient is altered during transmission, the resulting image distortion is distributed homogeneously through the image or image section and therefore undesirable disruptive effects are minimised. Predictive compression techniques is transmitted, the error causes image distortion not only in a particular pixel, but within a neighbourhood of pixels because
the predictor involved has a considerable visual effect in a reconstructed image. are plagued with the problem of propagating difference value transmission errors. When an erroneous difference value

Vector quantisation methods have the advantage of only employing a single decoding scheme; comprising of a look-up table only. Vector quantisation methods, however, require complex code, and parameters are very sensitive to image data, often blurring the edges of images.

Pyramid-based techniques have a natural compression ability, and are suitable for dynamic image compression and smart transmission approaches. Pyramid-based methods have shown the potential for further improvement of compression ratios.

Hybrid compression methods generally combine the different dimensionalities of transform compressions with predictive compressions. Hybrid compression methods can also combine predictive approaches with vector quantisation.

Huffman encoding falls into a separate category of image compression, and is distinguished by its provision of optimal compression and error-free decompression.

1.2 Research Objectives

The focus of this study is on developing a new image compression method based on Wavelet transforms and Fuzzy Logic techniques. Many researches have been conducted using Wavelet transforms, however, only very few researches have been done using the fuzzy approach, and the full potential of Fuzzy Logic in the field of image compression has not yet been fully explored.

The general objectives of this study are:

1. To understand the basic concepts of wavelet transform operation.
2. To learn about image compression techniques developed using the Wavelet
transform and Fuzzy Logic.

3. To combine Wavelet transforms and Fuzzy techniques to reduce the computational cost of image compression.

The specific objectives of this study are:

1. To develop a Hybrid Wavelet approach to image compression that would be faster and more efficient than other Fuzzy Logic approaches.

2. To develop a fast and simple Fuzzy coding technique for generating the Wavelet coefficients.

1.3 Scope and Limitations of Research

The scope of this study will include only static images. Both grey-scale and colour images will be used. The scope of the study will not, however, be extended to testing the algorithm on video sequences.

1.4 Assumptions

It is assumed that the performance of the algorithm developed in this research can be compared against other algorithms by compressing and decompressing the same set of images used by other algorithms and inspecting speed, compression ratios, and root mean square errors.
1.5 Significance of Research

Image compression addresses the problem of reducing the amount of data required to represent a digital image. From the information theory viewpoint, image compression is the removal of redundant information, namely keeping the non-definite information, and removing the determined information. From a mathematical viewpoint, image compression means to transform a 2-D pixel array into a statistically uncorrelated data set, where such transformation is applied to storage or transmission of the image. At some rate, the compressed image is decompressed to reconstruct the original image or an approximation of it.

Wavelet compression [Antonini, M., Barlaud, M., Mathieu, P., & Daubechies, I. (1992)] is one of the most effective methods of image compression. The algorithm is based on multi-resolutinal analysis. Like conventional JPEG compression, the JPEG compression algorithm is based on the DCT transform, and separated the whole image to small sub-images. This method however, returns grainy compressed images, or those reflecting the "block effect". On the other hand, Wavelet compression algorithm presents an image as sets of real coefficients. After the wavelet decomposition step, the most important image information is located at the low frequency subband. In addition, the other Wavelet coefficients of a typical image are nearly zero, and the image is thus well-approximated with a small number of high-valued Wavelet coefficients. The advantage of Wavelet compression is that, in contrast to JPEG, the Wavelet algorithm does not divide the image into small blocks, but takes and analyzes the whole image. The distinguishing characteristic of Wavelet compression is that it allows arriving at the best compression ratio.

By and large, Wavelet image compression is gaining acceptance in the internet community for its robustness in the presence of noise during the transmission of images. Unlike predictive methods, Wavelet-based techniques do not generate square image compression artifacts. On the other hand, one advantage of predictive methods over Wavelet-based techniques is that they achieve larger compression ratios in a much less expensive way. In light of this problem, this research amends the weaknesses of pure Wavelet image compression techniques by injecting Fuzzy techniques to speed up the calculation of Wavelet coefficients. As a result, image compression is achieved by utilizing Fuzzy logic in the quantization of Wavelet coefficients, allowing for the preservation of important image details while discarding less significant ones.

1.6 Research Methodology

In devising a new Fuzzy and Wavelet-based image compression algorithm, the following steps have been taken:

1. Study of the basic concepts of image compression.
2. Study of the different colour spaces and implementation of colour space transformation equations.
4. Study and implementation of the Huffman algorithm.
5. Study and implementation the LZW algorithm.
7. Study and implementation of the EZW algorithm.
8. Study of the SPHIT algorithm.
9. Comparison of EZW and SPHIT.
12. Study of Fuzzy Logic and Fuzzy image processing.
13. Study and analysis of other image compression algorithms based on Wavelet transforms.

14. Study and analysis of other existing image compression algorithms based on Fuzzy logic.

1.7 Organisation of the Thesis

This work is divided into five chapters and is described briefly as follows:

Chapter 2 provides a theoretical framework for the issues relating to different kinds of image compression and Fuzzy Logic techniques (Basic image concepts, image coding, transform coding, Fuzzy Logic and Fuzzy image processing).

Chapter 3 presents a review of related literature, and discusses relevant algorithms in detail with analysis.

Chapter 4 presents a brief overview of the algorithm developed. The chapter starts by introducing the principles of the algorithm, and then follows with the intricacies of the algorithm applied to both grey-scale and colour images, including analysis and experimental results.

Lastly, in Chapter 5, conclusions and future works are presented.